25 research outputs found
Analysis of human immune responses in quasi-experimental settings: tutorial in biostatistics
<p>Abstract</p> <p>Background</p> <p>Human immunology is a growing field of research in which experimental, clinical, and analytical methods of many life science disciplines are utilized. Classic epidemiological study designs, including observational longitudinal birth cohort studies, offer strong potential for gaining new knowledge and insights into immune response to pathogens in humans. However, rigorous discussion of methodological issues related to designs and statistical analysis that are appropriate for longitudinal studies is lacking.</p> <p>Methods</p> <p>In this communication we address key questions of quality and validity of traditional and recently developed statistical tools applied to measures of immune responses. For this purpose we use data on humoral immune response (IR) associated with the first cryptosporidial diarrhea in a birth cohort of children residing in an urban slum in south India. The main objective is to detect the difference and derive inferences for a change in IR measured at two time points, before (pre) and after (post) an event of interest. We illustrate the use and interpretation of analytical and data visualization techniques including generalized linear and additive models, data-driven smoothing, and combinations of box-, scatter-, and needle-plots.</p> <p>Results</p> <p>We provide step-by-step instructions for conducting a thorough and relatively simple analytical investigation, describe the challenges and pitfalls, and offer practical solutions for comprehensive examination of data. We illustrate how the assumption of time irrelevance can be handled in a study with a pre-post design. We demonstrate how one can study the dynamics of IR in humans by considering the timing of response following an event of interest and seasonal fluctuation of exposure by proper alignment of time of measurements. This alignment of calendar time of measurements and a child's age at the event of interest allows us to explore interactions between IR, seasonal exposures and age at first infection.</p> <p>Conclusions</p> <p>The use of traditional statistical techniques to analyze immunological data derived from observational human studies can result in loss of important information. Detailed analysis using well-tailored techniques allows the depiction of new features of immune response to a pathogen in longitudinal studies in humans. The proposed staged approach has prominent implications for future study designs and analyses.</p
PROTECTIVE LEVELS OF VARICELLA-ZOSTER ANTIBODY DID NOT EFFECTIVELY PREVENT CHICKENPOX IN AN X-LINKED AGAMMAGLOBULINEMIA PATIENT
SUMMARY We describe the case of an eight-year-old boy with X-linked agammaglobulinemia who developed mild varicella despite regular intravenous immunoglobulin (IVIG) therapy. He maintained protective antibody levels against varicella and the previous batches of IVIG that he received had adequate varicella-specific IgG levels. The case illustrates that IVIG may not prevent VZV infection
Can the intake of antiparasitic secondary metabolites explain the low prevalence of hemoparasites among wild Psittaciformes?
Background: Parasites can exert selection pressure on their hosts through effects on survival, on reproductive success, on sexually selected ornament, with important ecological and evolutionary consequences, such as changes in population viability. Consequently, hemoparasites have become the focus of recent avian studies. Infection varies significantly among taxa. Various factors might explain the differences in infection among taxa, including habitat, climate, host density, the presence of vectors, life history and immune defence. Feeding behaviour can also be relevant both through increased exposure to vectors and consumption of secondary metabolites with preventative or therapeutic effects that can reduce parasite load. However, the latter has been little investigated. Psittaciformes (parrots and cockatoos) are a good model to investigate these topics, as they are known to use biological control against ectoparasites and to feed on toxic food. We investigated the presence of avian malaria parasites (Plasmodium), intracellular haemosporidians (Haemoproteus, Leucocytozoon), unicellular flagellate protozoans (Trypanosoma) and microfilariae in 19 Psittaciformes species from a range of habitats in the Indo-Malayan, Australasian and Neotropical regions. We gathered additional data on hemoparasites in wild Psittaciformes from the literature. We considered factors that may control the presence of hemoparasites in the Psittaciformes, compiling information on diet, habitat, and climate. Furthermore, we investigated the role of diet in providing antiparasitic secondary metabolites that could be used as self-medication to reduce parasite load.
Results: We found hemoparasites in only two of 19 species sampled. Among them, all species that consume at least one food item known for its secondary metabolites with antimalarial, trypanocidal or general antiparasitic properties, were free from hemoparasites. In contrast, the infected parrots do not consume food items with antimalarial or even general antiparasitic properties. We found that the two infected species in this study consumed omnivorous diets. When we combined our data with data from studies previously investigating blood parasites in wild parrots, the positive relationship between omnivorous diets and hemoparasite infestation was confirmed. Individuals from open habitats were less infected than those from forests.
Conclusions: The consumption of food items known for their secondary metabolites with antimalarial, trypanocidal or general antiparasitic properties, as well as the higher proportion of infected species among omnivorous parrots, could explain the low prevalence of hemoparasites reported in many vertebrates
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta