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Abstract

Background: Parasites can exert selection pressure on their hosts through effects on survival, on reproductive
success, on sexually selected ornament, with important ecological and evolutionary consequences, such as changes
in population viability. Consequently, hemoparasites have become the focus of recent avian studies. Infection varies
significantly among taxa. Various factors might explain the differences in infection among taxa, including habitat,
climate, host density, the presence of vectors, life history and immune defence. Feeding behaviour can also be
relevant both through increased exposure to vectors and consumption of secondary metabolites with preventative
or therapeutic effects that can reduce parasite load. However, the latter has been little investigated. Psittaciformes
(parrots and cockatoos) are a good model to investigate these topics, as they are known to use biological control
against ectoparasites and to feed on toxic food. We investigated the presence of avian malaria parasites (Plasmodium),
intracellular haemosporidians (Haemoproteus, Leucocytozoon), unicellular flagellate protozoans (Trypanosoma) and
microfilariae in 19 Psittaciformes species from a range of habitats in the Indo-Malayan, Australasian and Neotropical
regions. We gathered additional data on hemoparasites in wild Psittaciformes from the literature. We considered
factors that may control the presence of hemoparasites in the Psittaciformes, compiling information on diet, habitat,
and climate. Furthermore, we investigated the role of diet in providing antiparasitic secondary metabolites that could
be used as self-medication to reduce parasite load.

Results: We found hemoparasites in only two of 19 species sampled. Among them, all species that consume at least
one food item known for its secondary metabolites with antimalarial, trypanocidal or general antiparasitic properties,
were free from hemoparasites. In contrast, the infected parrots do not consume food items with antimalarial or even
general antiparasitic properties. We found that the two infected species in this study consumed omnivorous diets.
When we combined our data with data from studies previously investigating blood parasites in wild parrots, the
positive relationship between omnivorous diets and hemoparasite infestation was confirmed. Individuals from open
habitats were less infected than those from forests.
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Conclusions: The consumption of food items known for their secondary metabolites with antimalarial, trypanocidal or
general antiparasitic properties, as well as the higher proportion of infected species among omnivorous parrots, could
explain the low prevalence of hemoparasites reported in many vertebrates.

Keywords: Antiparasitic metabolites, Blood parasites, Cacatuidae, Haemoparasites, Herbivorous, Omnivorous, Plant
secondary metabolites, Psittacidae, Self-medication

Background
Parasites can exert ecological and evolutionary pressures
on their hosts [1–4]. This pressure can affect the host in
various ways, including decreased body condition,
reproductive success, and survival, as well as physio-
logical castration [5–8]. Ultimately, parasites affect the
fitness of the host by promoting the evolution of behav-
ioural, physiological or immunological anti-parasite
defences [1, 9–11]. The co-evolutionary dynamics of host
defence mechanisms and parasite counter-adaptations are
influenced by many factors, including environmental con-
ditions, genetic background, immune defence investment,
life history traits, behaviour, host age and sex [12–16].
Due to their ecological and evolutionary importance,

avian malaria parasites (Plasmodium) and related hae-
mosporidians (Haemoproteus and Leucocytozoon), the
unicellular parasitic flagellate protozoa Trypanosoma,
and the early stage in the life-cycle of some parasitic
nematodes known as microfilaria, have become the focus
of a number of avian studies and has resulted in the
establishment of an open access database dedicated to
haemosporidians (MalAvi) [3, 16–23]. Avian haemospo-
ridians are single-celled, intracellular parasites in which
the fertilisation, formation of zygotes, and asexual spor-
ogony take place in a blood-sucking dipteran vector
while sexual gametogony and asexual merogony occur in
the avian host [24]. Plasmodium haemosporidians are
usually transmitted by dipteran vectors belonging to the
Culicidae, while Haemoproteus are transmitted by
dipterans of the Ceratopogonidae and Hippoboscidae,
and Leucocytozoon through species belonging to the
Simuliidae [24]. Avian Trypanosoma are transmitted by
biting midges (Ceratopogonidae) [25], while in the case
of microfilariae the common intermediate hosts are
blood-sucking insects of the Simuliidae, Ceratopogo-
nidae, Tabanidae and Culicidae [26]. Although all these
blood parasites are widely distributed, they are restricted
to the distribution of both their avian hosts and their
vectors [24, 27, 28]. Plasmodium appears to be more
cosmopolitan than the other related haemosporidians.
Haemoproteus appears to be absent from some oceanic
regions, while Leucocytozoon appears to be less abundant
in the Neotropical and Australian regions [19, 24, 28, 29].
Blood parasites are distinguished by having at least one
developmental stage in the host bloodstream (for detailed

descriptions see [24]), and by eliciting chronic infections
in wild birds [1–3, 24]. Yet, a relapse of the parasite infec-
tion usually takes place during the breeding season of the
avian host, facilitating the infection of the vectors and the
transfer of infection to the offspring [24]. Delayed
reproduction, reduced clutch sizes, reduced parental
working capacity while feeding nestlings, and in-
creased predation risk, are some of the reported ef-
fects of blood parasites on the host, particularly
during situations of stress that deteriorate the condi-
tion of an individual [1, 2, 7, 10, 26]. Although some
blood parasites have been classified as non-pathogenic,
they certainly remove resources from the host that could
be otherwise be used for growth, maintenance or
reproduction, reducing thus reproductive success and ul-
timately fitness [1].
The degree of blood parasite infection reported varies

greatly among birds, including taxa with high prevalence
(e.g. songbirds), but also taxa with low prevalence (e.g.
some seabirds) or even an absence of parasites (e.g.
storks, waders, nightjars, some seabirds, sandgrouse,
parrots, swifts) [24, 30–44]. Various factors may explain
this disparity. Songbirds have been more often sampled
than some other bird groups that have not been re-
corded harbouring blood parasites [19, 24–44]. Secondly,
microscopy may underestimate the prevalence in cases
of very low infection, poor quality of the blood smears,
or if the observers are not properly trained (e.g. [40, 41],
and references therein). Various abiotic and biotic fac-
tors might also explain the large taxonomic variability of
infection prevalence e.g. nesting habitat, nest character-
istics, host density, temperature, elevation, topography,
water availability and vector abundance [41, 45–47]. Sev-
eral of these factors have been shown to influence the
hemoparasite-host interactions by affecting parasite
prevalence in the insect vectors and the probability of
transmission to the avian host [20, 47–49]. Birds from
certain habitats, such as tundra, arid, island and/or mar-
ine environments, have been reported as having a lower
prevalence than birds from other habitats [19, 32, 43,
50–53]. Another possible reason for the variation in
abundance of blood parasites includes the variable pres-
ence and density of the vectors [50, 54, 55], and the abil-
ity by the host immune system to resist or control
infection [24]. Moreover, a blood parasite will reach its
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host only during a specific life-stage when the avian host
has to be susceptible, the necessary vectors need to be
present and competent, and the environmental condi-
tions need to be appropriate for the transmission [47].
Food availability appears to play a key role by affecting
the condition of the birds, which in turn can affect their
susceptibility to parasites [56–58]. Feeding behaviour
can likewise play an important role [12, 20]. A
wide-ranging study on wild Neotropical birds found that
species with omnivorous diets had a higher prevalence
of Plasmodium, whereas insectivores had a higher preva-
lence of microfilariae [20]. Moreover, some animals con-
sume food containing secondary metabolites with
preventative or therapeutic effects that can be used as
self-medication to reduce parasite load, against microbes
or that can even serve as antioxidants [59–63]. These
secondary metabolites often interact with proteins, bio-
membranes or nucleic acids of the parasites, disrupting
their bioactivities and thus acting as effective antipara-
sitic medication [63]. Non-human primates, ruminants,
wolves (Canis lupus), cougars (Puma concolor) and
domestic dogs (C. l. familiaris) ingest plants with anti-
parasitic properties but with little or no nutritional value
[59–61, 64–66], wood ants (Formica paralugubris) use
resin to inhibit the growth of microorganisms [67], some
passerines use lime rind against lice [68] and fresh plant
material to repel parasites or mask the chemical cues
that parasites use to find the host [69], while great bus-
tards (Otis tarda) have been shown to consume blister
beetles (Meloidae) that contain secondary metabolites
with antimicrobial and pathogen-limiting activity [62].
Consequently, there is not a unique explanation for
the complex variety of hemoparasite-host interactions,
and comparative multivariate analyses suggest that
phylogenetic, ecological, behavioural, climatic, and
life-history traits determine the large variation ob-
served in hemoparasite prevalence [3, 7, 12, 16, 19,
20, 43, 47, 48, 70–72]. Lastly, it is important men-
tioning that a reduction or the absence of parasite in-
fections might influence the evolutionary trajectories of
bird species. Identifying the underlying drivers of variation
in pathogen prevalence has important ramifications in the
fields of evolutionary ecology and disease ecology. Accord-
ingly, the avoidance of infections may positively affect host
traits, such as reproduction and survival, allowing species
not subject to pathogen pressure to locally outcompete
other species or to become successful invaders in intro-
duced communities [73, 74].
The Psittaciformes (parrots and cockatoos) avian order

is distributed from the tropics to sub-Antarctic regions,
in a wide range of habitats extending from tundra to
rainforest [75]. Psittaciformes are mostly cavity nesters,
with only monk parakeets (Myiopsitta monachus) build-
ing twig nests and some Agapornis species building

domed nests within cavities [75, 76]. Most species tend
to be gregarious forming loose to very dense colonies
[77–79]. The wide range of habitats used, the gregarious
behaviour and the nesting characteristics of the
Psittaciformes could favour contact with the vectors and
hence the transmission of parasites. In fact, some hae-
mosporidians like Haemoproteus (Parahaemoproteus)
handai, H. (P.) psittaci, and H. (P.) homohandai have
been originally described from captive Psittaciformes
[24, 80, 81]. Moreover, blood parasites appear to be
common among captive parrots particularly in zoos
([24, 80–82], most records in [83–89]). However,
when considering only wild Psittaciformes, 66% of
parrot populations studied so far reported an apparent ab-
sence of blood parasites (44 of 67 populations; Additional
file 1: Table S1, and references therein). A plausible ex-
planation for this difference is that the stress associated
with captivity may increase the immunological susceptibil-
ity of individuals or reduce their capacity to avoid the vec-
tors commonly present in zoos, thus increasing parasite
load [78–92]. Another explanation is that the absence of
hemoparasites could be related to a strong innate immun-
ity in some Psittaciformes [42, 93]. Also, the monk
parakeet and the red-fronted parakeet (Cyanoramphus
novaezelandiae) have been shown to bring fresh green
leaves to the nest, a behaviour that has been interpreted as
a way to actively deter ectoparasites [94, 95] acting as
blood parasite vectors. Many parrots in the wild feed on
toxic fruits, seeds or flower buds [96–98], whereas in cap-
tivity they obtain food that does not contain toxins [99].
Thus, it could also be possible that parrots use secondary
metabolites present in the diet as self-medication to re-
duce parasite load [61–69, 95]. Alternatively, differences
in the diet, habitats or environmental factors like climate
could also determine the large interspecific variation in
blood parasite prevalence reported for Psittaciformes
(Additional file 1: Table S1 and references therein). Until
now, none of these potential explanations has been inves-
tigated in detail and information on blood parasite infec-
tion in wild Psittaciformes remains patchy, including
mostly occasional data collected during general surveys
(Additional file 1: Table S1 and references therein), and
few individual species investigated in detail [100–102].
Given the wide range of habitats, climates and diets

that Psittaciformes exploit, as well as their previously re-
ported antiparasitic behaviour, this group of birds has a
great potential as a model to investigate environmental
and behavioural factors. This includes diet selection and
self-medication, which may determine the interspecific
variation in blood parasite prevalence in vertebrates. We
therefore studied the presence of hemoparasites of the
genera Haemoproteus, Plasmodium, Leucocytozoon and
Trypanosoma, as well as microfilariae across populations
of wild Psittaciformes. We sampled 19 Psittaciformes
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species from 25 localities covering an extensive range of
habitats and climate types in the Indo-Malayan, Austra-
lasian and Neotropical zoogeographical regions. We
considered extrinsic and intrinsic factors that may con-
trol the presence of hemoparasites in Psittaciformes,
compiling information on food items consumed, habitats
used and climate. We also investigated the potential role
of the food consumed in providing antiparasitic second-
ary metabolites that could be used as self-medication to
reduce parasite load. Furthermore, we searched the lit-
erature for wild parrots previously investigated for
hemoparasites, and additionally compiled information
on the corresponding diets, habitats and climates. We
hypothesised that parrots consuming antiparasitic sec-
ondary metabolites have a lower prevalence of
hemoparasites.

Methods
Own samples
Between 1999 and 2014, we obtained blood (n = 329),
liver (n = 23), heart (n = 1) and kidney (n = 1) samples
belonging to 19 Psittaciformes species from 25 localities.
Maps showing the position of all localities sampled in
this study are provided in Additional file 2: Figures
S1–S5. Adults (n = 213), nestlings (n = 112) and juve-
niles (n = 4) were captured in their nests. The age of the
adult parrots sampled was unknown. We obtained sam-
ples from nestlings during the pre-fledging (pf ) period;
this means the nesting period shortly before the young
leave the nest and long after the minimal prepatent
period reported for several blood parasites [103–105].
The prepatent period for blood parasites i.e. the period
between infection and presence of infective forms in
blood, varies between 5 and 14 days [24, 103]. This
might be the reason for the usually low blood parasite
counts in nestlings [106, 107]. Nevertheless, blood para-
sites were found in 20% of 13-day-old nestlings of the
pied flycatcher (Ficedula hypoleuca) [104] and in 67% of
15-day old blue tits (Cyanistes caeruleus) [108]. Juveniles
were sampled during their first year of life (i.e.
post-fledging). For this reason, the age categories consid-
ered are ‘pre-fledging’, ‘juvenile’ and ‘adult’. Liver, heart
and kidney samples were obtained from birds found
dead in the vicinity of parrot nests, colonies or roosting
places. For ethical reasons, we did not accept samples
from hunted or lethally sampled birds for this study.
We collected blood samples via puncture of the cuta-

neous ulnar vein immediately after capture. In order to
minimize stress, we sampled individuals only once and
kept handling time to a minimum, usually below 5–10
min, before returning them to their nests. Like in previ-
ous studies, blood sampling had no detectable adverse
effects [42, 93, 109, 110]. We stored blood samples on
FTA classic cards (Whatman International Ltd.,

Maidstone, UK), in lysis buffer (100 mM Tris pH 8, 10
mM NaCl, 100 mM EDTA, 2% SDS), or in ethanol 70%
(see details per species in Table 1). Liver, kidney and
heart samples were sampled under sterile conditions
(tools and cabinets) and preserved in 70% ethanol.
We only included samples obtained from wild Psittaci-

formes. We excluded samples of parrots and cockatoos
that could have been in contact with (i) poultry; (ii) pets;
(iii) zoos; (iv) aviculture facilities; (v) wildlife hospitals;
(vi) rehabilitation facilities; (vii) reintroduction program
facilities; or (viii) the staff of any of the previously men-
tioned facilities. One exception were the parakeets sam-
pled at Tiritiri Matangi Island (New Zealand), which
were descendants from birds translocated from captivity
to the island c.30 years ago [111]. Co-workers who are
veterinary practitioners and also work with captive birds,
strictly refrained from contact with the above-mentioned
facilities in the weeks before sampling. We considered
these precautions mandatory, since parasites are com-
mon in captive birds, probably as an effect of captivity
[86, 89–91]. We took special precautions to avoid both
the contamination of samples and spreading of disease
into wild populations during sampling.
Genomic DNA from samples stored in FTA cards was

extracted according to Martínez et al. [112]. The DNA
solution was purified using the commercial kit NZYGel-
pure (NZYTech, Lisbon, Portugal). By means of PCR,
we amplified a part of the cytochrome b gene or the 18S
ribosomal RNA gene using previously published primers
[113]. Sequences of the primers, size of the amplicons,
and PCR conditions are shown in Table 2. PCR reactions
consisted of 10 μl reaction volumes containing between
20 and 100 ng of template DNA, 0.25 μM of each pri-
mer and SYBR® Select Master Mix (Applied Biosystems,
Foster City, CA, USA). The reactions were cycled using
a StepOnePlus Real-Time PCR System (Applied Biosys-
tems). The diagnosis was performed by visualizing the
melting curve of the amplicons. After screening, positive
samples were amplified again to obtain larger amplicons
that facilitate the identification of haplotypes [113]. PCR
reactions contained between 20 and 100 ng of the DNA
template, Supreme NZYTaq 2× Green Master Mix
(NZYTech) and 250 nM of each primer (Palu F/ Palu R).
Using a Veriti thermal cycler (Applied Biosystems), reac-
tions were run using the following conditions: 95 °C for
10 min (polymerase activation), 40 cycles at 95 °C for 30
s, annealing at 56 °C for 30 s, 72 °C for 30 s, and a final
extension at 72 °C for 5 min. All amplicons were recov-
ered from agarose gels and subjected to direct sequen-
cing using an ABI 3730 XL automated sequencer
(Applied Biosystems). DNA extraction and PCR set up
were always performed in different laminar flow cabi-
nets. We never detected amplicons in negative controls
added in each PCR batch. A positive control for each
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pair of primers was routinely used. All analyses were
carried out at the Departamento de Biomedicina y Bio-
tecnología, Área de Parasitología, Facultad de Farmacia,
Universidad de Alcalá, Alcalá de Henares, Spain, with
the exception of the brown-throated conure (Eupsittula
pertinax) samples. As we were not able to export these
samples from Venezuela, some co-authors (AM, RR and
VS) analysed the 9 samples of the brown-throated
conure at the Instituto Venezolano de Investigaciones
Científicas. In this case, Haemoproteus, Plasmodium and
Leucocytozoon parasites were also screened by the nested
PCR method but the partial amplification of the cyto-
chrome b (here 471 bp) gene was carried out using dif-
ferent primers. For the first PCR round, we used the
primer pair Haem NFI (5'-CAT ATA TTA AGA GAA
ITA TGG AG-3') and Haem NR3 (5'-ATA GAA AGA
TAA GAA ATA CCA TTC-3') [114]. We then used 2 μl
of the first PCR reaction mixture as the template for a
second-round PCR, in which Haem R2 (5'-GCA TTA
TCT GGA TGT GAT AAT GGI-3') was paired with
Haem F (5'-ATG GTG CTT TCG ATA TAT GCA
TG-3'), and Haem R2L (5'-CAT TAT CTG GAT GAG
ATA ATG GIG C-3') with Haem FL (5'-ATG GTG TTT
TAG ATA CTT ACA TT-3') [114]. In order to detect
possible positive samples that were not detected by the
firsts primers set, we amplified an additional cytochrome
b gene fragment also using a nested PCR [115]. The
outer reaction was carried out with the primers DW2
(5'-TAA TGC CTA GAC GTA TTC CTG ATT ATC
CAG-3') and DW4 (5'-TGT TTG CTT GGG AGC TGT
AAT CAT AAT GTG-3’) [116]. We used a 2 μl aliquot
of this product as a template for a nested reaction with
primers DW1 (5’-TCA ACA ATG ACT TTA TTT
GG-3') and DW6 (5'-GGG AGC TGT AAT CAT AAT
GTG-3') [116]. Additionally, we carried out a nested
PCR using 2 μl aliquot of the first reaction with the
primers DW1 and HaemR (5'-CAT ATC CTA AAG
GAT TAG AGC TAC CTT GTA A-3').
We identified hemoparasite lineages using the Basic

Local Alignment Search Tool (BLAST) in GenBank and
the MalAvi databases [17]. We named new lineages

using the five-letter species code to indicate the bird
host, and submitted the results/sequences to GenBank
and MalAvi databases.
The main food items consumed by the 19 Psittaci-

formes species that we sampled in this study is provided
in Additional file 3: Table S2. Most of this information
was gathered by the co-authors during ongoing research
projects on the species considered, while some of the in-
formation originates from recent literature cited in
Additional file 3: Table S2. Information on the secondary
metabolites contained in the items consumed by the
sampled parrots was obtained from the references also
provided in Additional file 3: Table S2. The secondary
metabolites were classified according to their main activ-
ity in (i) antimalarial, trypanocidal or general antipara-
sitic properties; (ii) anthelmintic; (iii) antimicrobial; and
(iv) antioxidant (Additional file 3: Table S2). Detailed
information on the habitats where we obtained our
samples is provided in Table 1. Information on the cli-
mate associated with these habitats was obtained from
the references provided in Table 1.

Additional data from the literature
We also searched the literature for wild parrots previ-
ously investigated for hemoparasites, and additionally
collected information on the corresponding diets, habi-
tats and climates. For the literature search, we used the
library of the Working Group Psittaciformes of the
International Ornithologists’ Union. At the time of the
literature search, this comprehensive library, which is
updated monthly, comprised > 3600 papers (from 1817
to present). The literature in the library was reviewed
manually by JFM in search for any previously published
paper containing information on blood parasites affect-
ing wild parrots. The search terms used to assist this
search are listed in Additional file 1: Table S1.
We found 24 studies and reviews previously investigat-

ing blood parasites in wild parrots belonging to 52 spe-
cies (covering 67 different populations; Additional file 1:
Table S1). For these parrot species, we summarized in
Additional file 1: Table S1 the following information: (i)

Table 2 Primers used for PCR detection of hemoparasites in wild Neotropical, Indo-Malayan and Australasian Psittaciformes

Gene Primer name Primer sequence 5’→3’ Size (bp) Annealing Parasite

Cytochrome b Palu-Fq CAAGGTAGCTCTAATCCTTTAGG 201 54 °C / 30 s Haemoproteus; Plasmodium

Palu-R DGGAACAATATGTARAGGAGT

Cytochrome b L180 GAGAACTATGGAGTGGATGG 221 60 °C / 30 s Leucocytozoon

Leunew1-R CCCAGAAACTCATTTGWCC

18S rRNA Try-F GGAGAGGGAGCCTGAGAAATA 121 60 °C / 30 s Trypanosoma

Try-R ATGCACTAGGCACCGTCG

18S rRNA NF110 GCTAATACATGCACCAAAGCTCC 119 60 °C / 30 s microfilaria

NR228 CAAGACCATGCGATCAGC
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number of individuals investigated (adults and nestlings);
(ii) number of individuals infected, including the total
number, and the subtotals discriminated in Haemopro-
teus, Plasmodium, Leucocytozoon, Trypanosoma and
microfilaria; (iii) diets; (iv) habitats used; (v) climates;
(vi) screening methods used for parasite detection and
(vii) pertinent references. Yet, detailed information on
specific food items consumed by a number of those par-
rot species is scarce (i.e. include a few plant items men-
tioned in the literature or vague observations like in e.g.
Aratinga euops ‘they feed on fruits, seed, berries nuts
and probably blossoms and leaf buds’, [75]) or even com-
pletely unknown (e.g. Pionopsitta pulchra, [75, 117]).
For this reason, following González et al. [20], we classi-
fied the diets as (i) herbivorous; (ii) omnivorous-carrion,
for species including carrion in their diets; (iii)
omnivorous-insectivorous, for species including insects
in their diets; (iv) ‘herbivorous?’-scarce information; or
(v) unknown (Additional file 1: Table S1). The shortage
of information on specific food items consumed by a
number of these parrot species prevented us from being
able to investigate the secondary metabolites that could
be present in their diets (Additional file 1: Table S1), as
we did for the parrot species sampled in this study
(Additional file 3: Table S2).

Comparative analyses
To facilitate comparisons, we included in Additional file
1: Table S1 the data corresponding to the 19 Psittaci-
formes species from the 25 localities that we investigated
(marked ‘this study’ in the References column) and pro-
duced a combined dataset. Then, we transformed the in-
fection information of the combined dataset into
presence/absence data for each individual investigated
(see combined dataset provided in Additional file 4), as
37% of previously published data on hemoparasites in
wild parrots lacked information on prevalence. We ex-
cluded studies from statistical testing for which data
were only partially available or uncertain (i.e. marked
‘NA’, ‘herbivorous?-scarce information’ or ‘unknown’ in
Additional file 1: Table S1). We also excluded studies
from statistical testing for which only data on nestlings
existed. This was done to avoid cases in which infection
could have been not detected because the nestlings were
too young at the time of sampling thus not giving the
parasites time to develop. Although we were certain that
this was not the case for the nestlings sampled in our
study, and in order to be conservative, we likewise ex-
cluded our data on nestlings from statistical testing.
Given the large number of habitat and climate categories
in the combined dataset, we transformed the data into
binomial categories to allow adequate statistical compar-
isons. Habitats were classified as forest or non-forest, cli-
mates as tropical or non-tropical, diets as herbivorous or

omnivorous, and the screening methods as PCR-based
or not (Additional file 4). We assessed the combined
dataset (N = 520) for the effects of diet, habitat, cli-
mate and screening method (as factors) on the pres-
ence of parasites in the studied individuals using
Generalized Linear Mixed-Effects Models with bino-
mial error distribution and model selection based on
Akaike information criterion (AIC) in the R program-
ming language (script and full dataset provided in
Additional file 4; packages MuMIn and lme4) [118].
To account for inherent variation among species, we
also included the species to which each individual
subject belonged as a random intercept in the Gener-
alized Linear Mixed-Effects Models (script provided
in Additional file 4). In the dredge function in
MuMIn, all possible candidate models (i.e. subsets of
the global model) were tested using each unique lin-
ear combination of covariates. The best models are
then selected based on ΔAIC scores less than or
equal to two. In order to evaluate the predictive
power of our diet models and its balance between
sensitivity and specificity, we ran a 10-fold cross
validation, fitting the model to training sets and pre-
dicting for with-held test sets (see script provided in
Additional file 4). The 10-fold cross validation pro-
vides a mean area under the receiver operating
characteristic curve (mean AUC). Odds ratios were
calculated to provide a measure of how the probabil-
ity of infection is predicted to change, for instance
when a species has an omnivorous diet compared to
a species without an omnivorous diet (for calculation
see Additional file 4). Additionally, to allow an ad-
equate evaluation of our results, we simulated the
probability that the parasites will actually be detected
given the sample size and an expected true prevalence
of 0.08213 based on prevalence data previously re-
ported in wild Psittaciformes (Additional file 1: Table
S1). The simulation script is provided in Additional
file 4 and the probabilities of detection for all species
and sample sizes are provided in Additional file 1:
Table S1.

Results
Hemoparasites were present in adult birds of only two
of the 19 species sampled for this study (Table 1). In the
red-fronted parakeet, hemoparasites were detected in
samples from Raoul Island and Little Barrier Island, but
not on Tiritiri Matangi Island (New Zealand; Additional
file 2: Figure S4; Table 1). The red-fronted parakeets
from Raoul Island were infected with hemoparasites
from the genus Plasmodium corresponding to the haplo-
type LIN4 (BELL02, new lineage name in MalAvi
database; identity 100%; prevalence 18%; GenBank acces-
sion number MH238461). The birds from Little Barrier
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Island were infected with two Plasmodium haplotypes,
one that corresponded to LIN4 [102] (identity 100%,
prevalence 5%), and another one which differed in a sin-
gle nucleotide, considering a 312 bp length sequence,
from the haplotype GRW06 [119] (thereafter haplotype
CN73, GenBank accession number MH238460, identity
99.7%, prevalence 5%).
All adult austral parakeets (Enicognathus ferrugineus),

both from Navarino Island and Bariloche, Patagonia
(separated by more than 1500 km; populations 20 and
21 in Additional file 2: Figure S5), were infected with
hemoparasites from the genus Leucocytozoon belonging
to an un-described haplotype (Merino et al. description
in prep.). This new Leucocytozoon haplotype differs 3 to
4% in its sequence with respect to several haplotypes
previously described in birds from the genus Atrix (e.g.
GHOW93-00-55, NSPOWORRO15, BAOW5909, SPO
W7; Merino et al. unpublished data). Compared to the
blood samples, only a third of the austral parakeet liver
samples contained the same Leucocytozoon haplotype
(Table 1).
All other 17 species of Psittaciformes sampled in this

study, covering a wide range of habitats and climates in
the Indo-Malayan, Australasian and Neotropical zoogeo-
graphical regions, were not infected by any of the tested
hemoparasites (Haemoproteus, Plasmodium, Leucocyto-
zoon, Trypanosoma and microfilariae; Table 1). No
pre-fledging nestling or juvenile was infected, including
those from the red-fronted parakeet and austral
parakeet.
The main food items consumed by the 19 parrot spe-

cies that we sampled are provided in Additional file 3:
Table S2. Most parrot diets were herbivorous, except for
the two species in which blood parasites were detected:
the red-fronted parakeet and the austral parakeet which
also consume items of animal origin (Additional file 3:
Table S2). In addition to fruits, flowers and unripe seeds,
red-fronted parakeets consume invertebrates and marine
molluscs and occasionally scavenged animal carrion,
including birds (omnivorous-carrion diet). Austral
parakeets include in their diet larvae of Homoptera, Lepi-
doptera and Hymenoptera (Aditrochus fagicolus) (omni-
vorous-insectivorous diet; Additional file 3: Table S2).
Thus, in our samples, only omnivorous species were in-
fected with hemoparasites.
Fifteen of the 19 parrot species that we sampled (79%)

regularly consume food items that include secondary
metabolites known for their antiparasitic activity, in-
cluding antimalarials, antifungals, leishmanicidals, try-
panocidals, anthelmintics, insecticides and mosquitocidals
(Additional file 3: Table S2). Of the 15 species, those that
consume food with antimalarial or general antiparasitic
properties were free from Haemoproteus, Plasmodium,
Leucocytozoon, Trypanosoma and microfilariae: Philippine

cockatoo (Cacatua haematuropygia), blue and yellow
macaw (Ara ararauna), blue-throated macaw (Ara glauco-
gularis), blue-crowned conure (Thectocercus acuticauda-
tus), brown-throated conure (Eupsittula pertinax), nanday
conure (Aratinga nenday), burrowing parrot (Cyanoliseus
patagonus), blue-winged parrotlet (Forpus xanthoptery-
gius), yellow-chevroned parakeet (Brotogeris chiriri),
red-tailed Amazon (Amazona brasilensis), and blue-
fronted Amazon (Amazona aestiva) (Table 1, and
Additional file 3: Table S2). None of the species found in-
fected (red-fronted parakeets, austral parakeets) con-
sumed any food item with antimalarial or general
antiparasitic properties (Table 1, and Additional file 3:
Table S2). However, red-fronted parakeets consumed a
food item known for the presence of secondary
metabolites with anthelmintic activity (Additional file 3:
Table S2). In addition, all 19 studied parrot species con-
sumed items that contained secondary metabolites known
for their antimicrobial activity, and 17 species (89%) in-
volved items with antioxidant properties (Additional file 3:
Table S2). To a lesser extent, some parrots consumed food
items containing secondary metabolites recognized for their
e.g. antiinflammatory, anticarcinogenic, analgesic, expector-
ant, or antipyretic effects (Additional file 3: Table S2).
When the data corresponding to the Psittaciformes

sampled in this study were combined with the data from
24 studies previously investigating blood parasites in
wild parrots (Additional file 4), we found that 7 of 58
herbivorous wild parrots (12%) were reported to be in-
fected with Haemoproteus, Plasmodium or microfiliaria.
In contrast, 7 of 10 omnivorous wild parrots (70%) were
reported to be infected with Leucocytozoon, Haemopro-
teus or Plasmodium (Additional file 1: Table S1). Model
selection revealed that the four best models included
diet, whereas the second best included diet and habitat,
the third best included diet and screening method,
and the fourth best included diet and climate (Additional
file 4). The model-averaged coefficients (7.5, SE = 3.7;
P = 0.04) and the odds ratio (OR = 1882.6) suggested a
strong positive relationship between omnivorous diets and
hemoparasite infestation), but a weaker relationship with
forest habitat (OR = 0.5), non-tropical climate (OR = 0.8),
and non-PCR-based screening method (OR = 0.8). The
10-fold cross-validation showed for our diet model a high
predictive power and a good balance between sensitivity
and specificity (mean AUC = 0.9).

Discussion
Two clear patterns emerged from our results. First, our
results appear to support the hypothesis that parrots
engaging into self-medication are free from hemopara-
sites. All the studied parrots that regularly consume at
least one food item known for its secondary metabolites
with antimalarial, trypanocidal or general antiparasitic
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properties were indeed free from Haemoproteus, Plas-
modium, Leucocytozoon, Trypanosoma and microfilariae
(Table 1). Moreover, no food items with antimalarial or
even general antiparasitic properties were consumed by
red-fronted parakeets, which were infected with Plasmo-
dium haplotypes, or by austral parakeets, found infected
with Leucocytozoon. These results suggest that
self-medication in parrots may be more widespread than
previously thought. Nevertheless, some species that do
not regularly incorporate antiparasitic metabolites in
their diets were also free from blood parasites [e.g. New
Caledonian rainbow lorikeet (Trichoglossus haematodus
deplanchii), Forbes’ parakeet (Cyanoramphus forbesi),
New Caledonian parakeet (Cyanoramphus saisseti),
horned parakeet (Eunymphicus cornutus), Ouvéa
parakeet (Eunymphicus uvaeensis) and white-eyed con-
ure (Psittacara leucophtalmus)]. In the case of the
white-eyed conure, available data on their diet are lim-
ited (Additional file 3: Table S2) and thus, we may have
missed food items that could provide this species with
antiparasitic protection. In the case of the Forbes’ para-
keet from Mangere Island, the lack of necessary vectors
previously reported [120] could explain the results. Add-
itionally, small sample sizes could have played a role in
at least three of these species (Table 1). Possible sam-
pling bias should be considered when interpreting our
findings and should steer future work to assess how
these patterns hold following additional surveys, particu-
larly among poorly sampled parrot species such as the
New Caledonian parakeet, horned parakeet, Ouvéa para-
keet and orange-fronted parakeet (Aratinga canicularis).
Nevertheless, results from previous studies lend support
to our primary conclusions by demonstrating that some
animals deliberately consume food items with prophylac-
tic or therapeutic activity against pathogens or parasites
[59–68]. These include a wide range of species such as
wood ants (Formica paralugubris) engaging in social
prophylaxis, therapeutic self-medication in the woolly
bear caterpillar (Grammia incorrupta), or prophylactic
self-medication in the Ethiopian baboon (Papio anubis
[61]). In birds, great bustards increase their mating suc-
cess and thus fitness by consuming blister beetles
(Meloidae), which are known to contain secondary me-
tabolites with antimicrobial and pathogen-limiting activ-
ity ([62] but see [121]). Some bird species have been
reported to be toxic, including the European quail
(Coturnix coturnix), several New Guinea species from
the genus Pitohui, the North-American ruffed grouse
(Bonasa umbellus), the spur-winged goose (Plectropterus
gambensis) from Benin, and some Australian bronzew-
ings from the genus Phaps [122]. The toxicity is pro-
duced by batrachotoxin, cantharidin, andromedotoxin
and alkaloids contained in the skin and feathers, which
have been suggested to protect the birds against

predators and parasites [122]. Also, parrots have been
shown to use plants for prophylactic reasons. Previous
studies on monk parakeets and red-fronted parakeets
described the use of plants known for their insecti-
cidal activity, which protect their nests from parasites
[94, 95, 123, 124]. Furthermore, red-fronted parakeets
chew leaves of these plants, mix the chopped material
with preen oil and spread the mixture on their feathers to
repel insects [95]. Thus, our results add further evidence
in favour of prophylactic anti-parasite self-medication as a
wider than previously thought behaviour in both verte-
brates and invertebrates, and increase our understanding
of why certain food items are taken regardless being poi-
sonous or with little nutritional value [61–63, 97–99].
Even more, anti-parasite self-medication can be related to
human food consumption and health. For instance, the in-
crease in disease in honeybees (Apis mellifera) as a conse-
quence of agricultural practices that interfere with the
ability of bees to self-medicate [61]. Research on animal
self-medication has the potential to trigger the discovery
of new secondary metabolites contained in the food items
consumed by animals. Some of these secondary metabo-
lites may have pharmacological properties and therefore,
could contribute to human health care. [63]. However, it is
important to mention that to fully test prophylactic
anti-parasite self-medication in parrots, further work, par-
ticularly experimental research, should be conducted. It
would also be necessary to investigate species living in the
same or close regions/habitats to those infected in order
to test if they are free of parasites when ingesting antipara-
sitic substances, i.e. that they are exposed to the same vec-
tors but remain uninfected. Alternatively, infection by
blood parasites in these species could be lethal, making
the discovery of infected birds unlikely.
The second interesting pattern that we observed is

that the two infected parrot species (red-fronted and
austral parakeets) regularly consume omnivorous diets.
This contrasts with the non-infected species, which are
all herbivorous (Additional files 1: Table S1 and
Additional file 3: Table S2). Furthermore, when we com-
bined our data with data from previous studies, the
strong positive relationship between omnivorous diets
and hemoparasite infestation was confirmed. Our results
are in fully agreement with a previous wide-ranging
study including 246 species of wild Neotropical birds,
which found that species with omnivorous diets had
higher prevalence of Plasmodium, whereas insectivores
had higher prevalence of microfilariae than birds with a
different feeding behaviour [20]. More recently, Naqvi et
al. [125] found that the prevalences of Haemoproteus,
Plasmodium, and Leucocytozoon in chickens were higher
in free-ranging individuals that also feed on carrion.
Therefore, the consumption of carrion and its associated
scavenging behaviour by red-fronted parakeets or the
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consumption of insect larvae by austral parakeets could
increase their exposure to pathogen transmitting vectors.
However, our review of previous studies on parrots did
not show a full association between the diet consumed
and the presence of hemoparasites: 70% of omnivorous
wild parrots were reported to be infected, while only
12% of herbivorous were also reported as infected
(Additional file 1: Table S1). This could mean that at
least a second factor is involved, probably including the
intake of antiparasitic secondary metabolites or differ-
ences in the habitats or climates used, e.g. [20], as our
other results suggested. Sampling effort bias could also
be a reason for the lack of a full association between the
diet consumed and the presence of hemoparasites, re-
inforcing the need of more studies on the foraging ecol-
ogy of parrots. Nevertheless, several studies on parrots
found that the importance of food items of animal origin
has been largely overlooked and that probably more par-
rot species than currently known have omnivorous diets
at least during some parts of the year [98, 126–137].
Further studies investigating hemoparasites in other par-
rot species considering their diet might provide the
necessary dataset to fully test this hypothesis. Lastly, an
omnivorous diet could reduce the amount of plant ma-
terial consumed by a given animal, reducing the intake
of secondary metabolites with antiparasitic, antimicro-
bial, antiinflammatory, anticarcinogenic, analgesic, ex-
pectorant or antipyretic activities, and thus have a
negative impact on health.
Our comparative analyses including previously pub-

lished studies also show that parrots living in forests
have a higher probability of being infected with hemo-
parasites than those living in open (non-forested) habi-
tats. Individuals from the two species infected in our
samples, the red-fronted parakeet and the austral para-
keet belonged to wild populations that inhabit forests
(Table 1). This result is in line with previous research
showing that avian species breeding in forested habitats
have higher hemoparasite prevalences, as revealed for in-
stance in Spanish raptors [70]. Similarly, as a recent re-
view [47] describes, a lower avian malaria prevalence in
the olive sunbird (Cyanomitra olivacea) was associated
with deforestation in Ghana while the prevalence was
higher in the intact forested areas of Cameron. It has
been shown that habitats like forests influence the para-
site prevalence in the insect vectors, or even the pres-
ence of the vectors, which in turn can influence the
transmission to avian hosts [47–50, 54, 70]. Moreover,
vector abundance appears to be lower in open habitats
and areas that are under anthropogenic impact [70]. In
contrast, potential dipteran vectors abound in the sector
of northern Patagonia, where the austral parakeet popu-
lation was investigated, and in the islands of New
Zealand, where the red-fronted parakeet was investigated

[138, 139]. Also, previous research on the hemoparasites
of southern Chile showed that Haemoproteus, Plasmo-
dium and Leucocytozoon were present in up to 13% of the
sampled birds from the Nothofagus forest in Navarino
[46], where our second austral parakeet population was
sampled, thus suggesting that the necessary vectors were
present.

Conclusions
The consumption of food items known for their second-
ary metabolites with antimalarial, trypanocidal or general
antiparasitic properties appeared to be linked to the ab-
sence of hemoparasites. Furthermore, our results suggest
that prophylactic anti-parasite self-medication could be
a widespread behaviour in animals. On the other hand, a
relationship between the consumption of omnivorous di-
ets and hemoparasite infestation also appeared to be a
more frequent pattern than previously thought. Conse-
quently, both factors acting together may be a valid
explanation for the absence of hemoparasites reported
in a number of vertebrate species. This result has the
potential to trigger new lines of research in search of
the mechanism driving hemoparasite infections, such
as the investigation of other species living sympatrically
with those infected to test if they are free of parasites
when ingesting antiparasitic secondary metabolites.
This study also highlights a considerable deficit in ne-
cessary data on food items consumed. More of such
data will allow more definite links between hemopara-
site infections and diets.

Additional files

Additional file 1: Table S1. Hemoparasites in wild Psittaciformes.
Malaria parasites (Plasmodium), related intracellular haemosporidians
(Haemoproteus and Leucocytozoon), the unicellular parasitic flagellate
protozoans (Trypanosoma), and microfilaria reported in wild populations
of Psittaciformes. The probability of detection for adults is based on a
simulation (see Additional file 4) of the probability that the parasites will
actually be detected given the sample size and an expected true prevalence
based on the prevalences observed in wild Psittaciformes. The habitat and
climate classification follow the references in Table 1. (XLSX 34 kb)

Additional file 2: Figure S1. Locations of the sampled population at
Rasa I., Palawan, Philippines, in the Indo-Malayan zoogeographical region.
Figure S2. Locations of the sampled populations in New Caledonia,
Australasian zoogeographical region. Figure S3. Locations of the
sampled population in the Chatham Is., Australasian zoogeographical
region. Figure S4. Locations of the sampled populations in New Zealand,
Australasian zoogeographical region. Figure S5. Locations of the sampled
populations in the Neotropical zoogeographical region. (PDF 1271 kb)

Additional file 3: Table S2. Main food items consumed by the
Psittaciformes species in the localities where the blood parasite sampling
was carried out. Details on the species, main food items and parts
consumed are provided. The presence of secondary metabolites with
antimalarial/general antiparasitic plant secondary metabolites,
anthelmintic, antimicrobial, and antioxidant properties is indicated.
Source references are provided. (XLSX 29 kb)

Additional file 4: Scripts and combined dataset to analyse the presence
of hemoparasites in Psittaciformes. Analyses and the combined dataset
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for the effects of diet, habitat, climate, screening method (as factors) and
species (as a random variable) on the presence of parasites in the studied
individuals using a binomial General Lineal Mixed-Effects Model and
model averaging based on Akaike information criterion (AIC) with R.
Scripts for the 10-fold cross validation and the calculations of parasite
detection probability are also provided. (TXT 34 kb)
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AIC: Akaike information criterion; AUC: Area under the curve; BLAST: Basic
local alignment search tool; NA: Missing data; OR: Odds ratios;
PCR: Polymerase chain reaction; pf: Pre-fledging
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