15 research outputs found

    Mapping inequalities in exclusive breastfeeding in low- and middle-income countries, 2000–2018

    Get PDF
    Exclusive breastfeeding (EBF)-giving infants only breast-milk for the first 6 months of life-is a component of optimal breastfeeding practices effective in preventing child morbidity and mortality. EBF practices are known to vary by population and comparable subnational estimates of prevalence and progress across low- and middle-income countries (LMICs) are required for planning policy and interventions. Here we present a geospatial analysis of EBF prevalence estimates from 2000 to 2018 across 94 LMICs mapped to policy-relevant administrative units (for example, districts), quantify subnational inequalities and their changes over time, and estimate probabilities of meeting the World Health Organization's Global Nutrition Target (WHO GNT) of ≥70% EBF prevalence by 2030. While six LMICs are projected to meet the WHO GNT of ≥70% EBF prevalence at a national scale, only three are predicted to meet the target in all their district-level units by 2030.This work was primarily supported by grant no. OPP1132415 from the Bill & Melinda Gates Foundation. Co-authors used by the Bill & Melinda Gates Foundation (E.G.P. and R.R.3) provided feedback on initial maps and drafts of this manuscript. L.G.A. has received support from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brasil (CAPES), Código de Financiamento 001 and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (grant nos. 404710/2018-2 and 310797/2019-5). O.O.Adetokunboh acknowledges the National Research Foundation, Department of Science and Innovation and South African Centre for Epidemiological Modelling and Analysis. M.Ausloos, A.Pana and C.H. are partially supported by a grant from the Romanian National Authority for Scientific Research and Innovation, CNDS-UEFISCDI, project no. PN-III-P4-ID-PCCF-2016-0084. P.C.B. would like to acknowledge the support of F. Alam and A. Hussain. T.W.B. was supported by the Alexander von Humboldt Foundation through the Alexander von Humboldt Professor award, funded by the German Federal Ministry of Education and Research. K.Deribe is supported by the Wellcome Trust (grant no. 201900/Z/16/Z) as part of his international intermediate fellowship. C.H. and A.Pana are partially supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CNDS-UEFISCDI, project no. PN-III-P2-2.1-SOL-2020-2-0351. B.Hwang is partially supported by China Medical University (CMU109-MF-63), Taichung, Taiwan. M.Khan acknowledges Jatiya Kabi Kazi Nazrul Islam University for their support. A.M.K. acknowledges the other collaborators and the corresponding author. Y.K. was supported by the Research Management Centre, Xiamen University Malaysia (grant no. XMUMRF/2020-C6/ITM/0004). K.Krishan is supported by a DST PURSE grant and UGC Centre of Advanced Study (CAS II) awarded to the Department of Anthropology, Panjab University, Chandigarh, India. M.Kumar would like to acknowledge FIC/NIH K43 TW010716-03. I.L. is a member of the Sistema Nacional de Investigación (SNI), which is supported by the Secretaría Nacional de Ciencia, Tecnología e Innovación (SENACYT), Panamá. M.L. was supported by China Medical University, Taiwan (CMU109-N-22 and CMU109-MF-118). W.M. is currently a programme analyst in Population and Development at the United Nations Population Fund (UNFPA) Country Office in Peru, which does not necessarily endorses this study. D.E.N. acknowledges Cochrane South Africa, South African Medical Research Council. G.C.P. is supported by an NHMRC research fellowship. P.Rathi acknowledges support from Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, India. Ramu Rawat acknowledges the support of the GBD Secretariat for supporting the reviewing and collaboration of this paper. B.R. acknowledges support from Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal. A.Ribeiro was supported by National Funds through FCT, under the programme of ‘Stimulus of Scientific Employment—Individual Support’ within the contract no. info:eu-repo/grantAgreement/FCT/CEEC IND 2018/CEECIND/02386/2018/CP1538/CT0001/PT. S.Sajadi acknowledges colleagues at Global Burden of Diseases and Local Burden of Disease. A.M.S. acknowledges the support from the Egyptian Fulbright Mission Program. F.S. was supported by the Shenzhen Science and Technology Program (grant no. KQTD20190929172835662). A.Sheikh is supported by Health Data Research UK. B.K.S. acknowledges Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal for all the academic support. B.U. acknowledges support from Manipal Academy of Higher Education, Manipal. C.S.W. is supported by the South African Medical Research Council. Y.Z. was supported by Science and Technology Research Project of Hubei Provincial Department of Education (grant no. Q20201104) and Outstanding Young and Middle-aged Technology Innovation Team Project of Hubei Provincial Department of Education (grant no. T2020003). The funders of the study had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. The corresponding author had full access to all the data in the study and had final responsibility for the decision to submit for publication. All maps presented in this study are generated by the authors and no permissions are required to publish them

    Global, regional, and national mortality among young people aged 10–24 years, 1950–2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Summary: Background Documentation of patterns and long-term trends in mortality in young people, which reflect huge changes in demographic and social determinants of adolescent health, enables identification of global investment priorities for this age group. We aimed to analyse data on the number of deaths, years of life lost, and mortality rates by sex and age group in people aged 10–24 years in 204 countries and territories from 1950 to 2019 by use of estimates from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019. Methods We report trends in estimated total numbers of deaths and mortality rate per 100 000 population in young people aged 10–24 years by age group (10–14 years, 15–19 years, and 20–24 years) and sex in 204 countries and territories between 1950 and 2019 for all causes, and between 1980 and 2019 by cause of death. We analyse variation in outcomes by region, age group, and sex, and compare annual rate of change in mortality in young people aged 10–24 years with that in children aged 0–9 years from 1990 to 2019. We then analyse the association between mortality in people aged 10–24 years and socioeconomic development using the GBD Socio-demographic Index (SDI), a composite measure based on average national educational attainment in people older than 15 years, total fertility rate in people younger than 25 years, and income per capita. We assess the association between SDI and all-cause mortality in 2019, and analyse the ratio of observed to expected mortality by SDI using the most recent available data release (2017). Findings In 2019 there were 1·49 million deaths (95% uncertainty interval 1·39–1·59) worldwide in people aged 10–24 years, of which 61% occurred in males. 32·7% of all adolescent deaths were due to transport injuries, unintentional injuries, or interpersonal violence and conflict; 32·1% were due to communicable, nutritional, or maternal causes; 27·0% were due to non-communicable diseases; and 8·2% were due to self-harm. Since 1950, deaths in this age group decreased by 30·0% in females and 15·3% in males, and sex-based differences in mortality rate have widened in most regions of the world. Geographical variation has also increased, particularly in people aged 10–14 years. Since 1980, communicable and maternal causes of death have decreased sharply as a proportion of total deaths in most GBD super-regions, but remain some of the most common causes in sub-Saharan Africa and south Asia, where more than half of all adolescent deaths occur. Annual percentage decrease in all-cause mortality rate since 1990 in adolescents aged 15–19 years was 1·3% in males and 1·6% in females, almost half that of males aged 1–4 years (2·4%), and around a third less than in females aged 1–4 years (2·5%). The proportion of global deaths in people aged 0–24 years that occurred in people aged 10–24 years more than doubled between 1950 and 2019, from 9·5% to 21·6%. Interpretation Variation in adolescent mortality between countries and by sex is widening, driven by poor progress in reducing deaths in males and older adolescents. Improving global adolescent mortality will require action to address the specific vulnerabilities of this age group, which are being overlooked. Furthermore, indirect effects of the COVID-19 pandemic are likely to jeopardise efforts to improve health outcomes including mortality in young people aged 10–24 years. There is an urgent need to respond to the changing global burden of adolescent mortality, address inequities where they occur, and improve the availability and quality of primary mortality data in this age group

    Global age-sex-specific fertility, mortality, healthy life expectancy (HALE), and population estimates in 204 countries and territories, 1950-2019 : a comprehensive demographic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background Accurate and up-to-date assessment of demographic metrics is crucial for understanding a wide range of social, economic, and public health issues that affect populations worldwide. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 produced updated and comprehensive demographic assessments of the key indicators of fertility, mortality, migration, and population for 204 countries and territories and selected subnational locations from 1950 to 2019. Methods 8078 country-years of vital registration and sample registration data, 938 surveys, 349 censuses, and 238 other sources were identified and used to estimate age-specific fertility. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate age-specific fertility rates for 5-year age groups between ages 15 and 49 years. With extensions to age groups 10-14 and 50-54 years, the total fertility rate (TFR) was then aggregated using the estimated age-specific fertility between ages 10 and 54 years. 7417 sources were used for under-5 mortality estimation and 7355 for adult mortality. ST-GPR was used to synthesise data sources after correction for known biases. Adult mortality was measured as the probability of death between ages 15 and 60 years based on vital registration, sample registration, and sibling histories, and was also estimated using ST-GPR. HIV-free life tables were then estimated using estimates of under-5 and adult mortality rates using a relational model life table system created for GBD, which closely tracks observed age-specific mortality rates from complete vital registration when available. Independent estimates of HIV-specific mortality generated by an epidemiological analysis of HIV prevalence surveys and antenatal clinic serosurveillance and other sources were incorporated into the estimates in countries with large epidemics. Annual and single-year age estimates of net migration and population for each country and territory were generated using a Bayesian hierarchical cohort component model that analysed estimated age-specific fertility and mortality rates along with 1250 censuses and 747 population registry years. We classified location-years into seven categories on the basis of the natural rate of increase in population (calculated by subtracting the crude death rate from the crude birth rate) and the net migration rate. We computed healthy life expectancy (HALE) using years lived with disability (YLDs) per capita, life tables, and standard demographic methods. Uncertainty was propagated throughout the demographic estimation process, including fertility, mortality, and population, with 1000 draw-level estimates produced for each metric. Findings The global TFR decreased from 2.72 (95% uncertainty interval [UI] 2.66-2.79) in 2000 to 2.31 (2.17-2.46) in 2019. Global annual livebirths increased from 134.5 million (131.5-137.8) in 2000 to a peak of 139.6 million (133.0-146.9) in 2016. Global livebirths then declined to 135.3 million (127.2-144.1) in 2019. Of the 204 countries and territories included in this study, in 2019, 102 had a TFR lower than 2.1, which is considered a good approximation of replacement-level fertility. All countries in sub-Saharan Africa had TFRs above replacement level in 2019 and accounted for 27.1% (95% UI 26.4-27.8) of global livebirths. Global life expectancy at birth increased from 67.2 years (95% UI 66.8-67.6) in 2000 to 73.5 years (72.8-74.3) in 2019. The total number of deaths increased from 50.7 million (49.5-51.9) in 2000 to 56.5 million (53.7-59.2) in 2019. Under-5 deaths declined from 9.6 million (9.1-10.3) in 2000 to 5.0 million (4.3-6.0) in 2019. Global population increased by 25.7%, from 6.2 billion (6.0-6.3) in 2000 to 7.7 billion (7.5-8.0) in 2019. In 2019, 34 countries had negative natural rates of increase; in 17 of these, the population declined because immigration was not sufficient to counteract the negative rate of decline. Globally, HALE increased from 58.6 years (56.1-60.8) in 2000 to 63.5 years (60.8-66.1) in 2019. HALE increased in 202 of 204 countries and territories between 2000 and 2019. Interpretation Over the past 20 years, fertility rates have been dropping steadily and life expectancy has been increasing, with few exceptions. Much of this change follows historical patterns linking social and economic determinants, such as those captured by the GBD Socio-demographic Index, with demographic outcomes. More recently, several countries have experienced a combination of low fertility and stagnating improvement in mortality rates, pushing more populations into the late stages of the demographic transition. Tracking demographic change and the emergence of new patterns will be essential for global health monitoring. Copyright (C) 2020 The Author(s). Published by Elsevier Ltd.Peer reviewe

    The global burden of cancer attributable to risk factors, 2010-19: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF

    Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF

    Five insights from the Global Burden of Disease Study 2019

    Get PDF
    The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 provides a rules-based synthesis of the available evidence on levels and trends in health outcomes, a diverse set of risk factors, and health system responses. GBD 2019 covered 204 countries and territories, as well as first administrative level disaggregations for 22 countries, from 1990 to 2019. Because GBD is highly standardised and comprehensive, spanning both fatal and non-fatal outcomes, and uses a mutually exclusive and collectively exhaustive list of hierarchical disease and injury causes, the study provides a powerful basis for detailed and broad insights on global health trends and emerging challenges. GBD 2019 incorporates data from 281 586 sources and provides more than 3.5 billion estimates of health outcome and health system measures of interest for global, national, and subnational policy dialogue. All GBD estimates are publicly available and adhere to the Guidelines on Accurate and Transparent Health Estimate Reporting. From this vast amount of information, five key insights that are important for health, social, and economic development strategies have been distilled. These insights are subject to the many limitations outlined in each of the component GBD capstone papers.Peer reviewe

    Measuring universal health coverage based on an index of effective coverage of health services in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background Achieving universal health coverage (UHC) involves all people receiving the health services they need, of high quality, without experiencing financial hardship. Making progress towards UHC is a policy priority for both countries and global institutions, as highlighted by the agenda of the UN Sustainable Development Goals (SDGs) and WHO's Thirteenth General Programme of Work (GPW13). Measuring effective coverage at the health-system level is important for understanding whether health services are aligned with countries' health profiles and are of sufficient quality to produce health gains for populations of all ages. Methods Based on the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019, we assessed UHC effective coverage for 204 countries and territories from 1990 to 2019. Drawing from a measurement framework developed through WHO's GPW13 consultation, we mapped 23 effective coverage indicators to a matrix representing health service types (eg, promotion, prevention, and treatment) and five population-age groups spanning from reproductive and newborn to older adults (≥65 years). Effective coverage indicators were based on intervention coverage or outcome-based measures such as mortality-to-incidence ratios to approximate access to quality care; outcome-based measures were transformed to values on a scale of 0–100 based on the 2·5th and 97·5th percentile of location-year values. We constructed the UHC effective coverage index by weighting each effective coverage indicator relative to its associated potential health gains, as measured by disability-adjusted life-years for each location-year and population-age group. For three tests of validity (content, known-groups, and convergent), UHC effective coverage index performance was generally better than that of other UHC service coverage indices from WHO (ie, the current metric for SDG indicator 3.8.1 on UHC service coverage), the World Bank, and GBD 2017. We quantified frontiers of UHC effective coverage performance on the basis of pooled health spending per capita, representing UHC effective coverage index levels achieved in 2019 relative to country-level government health spending, prepaid private expenditures, and development assistance for health. To assess current trajectories towards the GPW13 UHC billion target—1 billion more people benefiting from UHC by 2023—we estimated additional population equivalents with UHC effective coverage from 2018 to 2023. Findings Globally, performance on the UHC effective coverage index improved from 45·8 (95% uncertainty interval 44·2–47·5) in 1990 to 60·3 (58·7–61·9) in 2019, yet country-level UHC effective coverage in 2019 still spanned from 95 or higher in Japan and Iceland to lower than 25 in Somalia and the Central African Republic. Since 2010, sub-Saharan Africa showed accelerated gains on the UHC effective coverage index (at an average increase of 2·6% [1·9–3·3] per year up to 2019); by contrast, most other GBD super-regions had slowed rates of progress in 2010–2019 relative to 1990–2010. Many countries showed lagging performance on effective coverage indicators for non-communicable diseases relative to those for communicable diseases and maternal and child health, despite non-communicable diseases accounting for a greater proportion of potential health gains in 2019, suggesting that many health systems are not keeping pace with the rising non-communicable disease burden and associated population health needs. In 2019, the UHC effective coverage index was associated with pooled health spending per capita (r=0·79), although countries across the development spectrum had much lower UHC effective coverage than is potentially achievable relative to their health spending. Under maximum efficiency of translating health spending into UHC effective coverage performance, countries would need to reach 1398pooledhealthspendingpercapita(US1398 pooled health spending per capita (US adjusted for purchasing power parity) in order to achieve 80 on the UHC effective coverage index. From 2018 to 2023, an estimated 388·9 million (358·6–421·3) more population equivalents would have UHC effective coverage, falling well short of the GPW13 target of 1 billion more people benefiting from UHC during this time. Current projections point to an estimated 3·1 billion (3·0–3·2) population equivalents still lacking UHC effective coverage in 2023, with nearly a third (968·1 million [903·5–1040·3]) residing in south Asia. Interpretation The present study demonstrates the utility of measuring effective coverage and its role in supporting improved health outcomes for all people—the ultimate goal of UHC and its achievement. Global ambitions to accelerate progress on UHC service coverage are increasingly unlikely unless concerted action on non-communicable diseases occurs and countries can better translate health spending into improved performance. Focusing on effective coverage and accounting for the world's evolving health needs lays the groundwork for better understanding how close—or how far—all populations are in benefiting from UHC. Funding Bill & Melinda Gates Foundation

    Subnational mapping of HIV incidence and mortality among individuals aged 15-49 years in sub-Saharan Africa, 2000-18 : a modelling study

    Get PDF
    Background High-resolution estimates of HIV burden across space and time provide an important tool for tracking and monitoring the progress of prevention and control efforts and assist with improving the precision and efficiency of targeting efforts. We aimed to assess HIV incidence and HIV mortality for all second-level administrative units across sub-Saharan Africa. Methods In this modelling study, we developed a framework that used the geographically specific HIV prevalence data collected in seroprevalence surveys and antenatal care clinics to train a model that estimates HIV incidence and mortality among individuals aged 15-49 years. We used a model-based geostatistical framework to estimate HIV prevalence at the second administrative level in 44 countries in sub-Saharan Africa for 2000-18 and sought data on the number of individuals on antiretroviral therapy (ART) by second-level administrative unit. We then modified the Estimation and Projection Package (EPP) to use these HIV prevalence and treatment estimates to estimate HIV incidence and mortality by second-level administrative unit. Findings The estimates suggest substantial variation in HIV incidence and mortality rates both between and within countries in sub-Saharan Africa, with 15 countries having a ten-times or greater difference in estimated HIV incidence between the second- level administrative units with the lowest and highest estimated incidence levels. Across all 44 countries in 2018, HIV incidence ranged from 2.8 (95% uncertainty interval 2.1-3.8) in Mauritania to 1585.9 (1369.4-1824.8) cases per 100 000 people in Lesotho and HIV mortality ranged from 0.8 (0.7-0.9) in Mauritania to 676.5 (513.6-888.0) deaths per 100 000 people in Lesotho. Variation in both incidence and mortality was substantially greater at the subnational level than at the national level and the highest estimated rates were accordingly higher. Among second-level administrative units, Guija District, Gaza Province, Mozambique, had the highest estimated HIV incidence (4661.7 [2544.8-8120.3]) cases per 100 000 people in 2018 and Inhassunge District, Zambezia Province, Mozambique, had the highest estimated HIV mortality rate (1163.0 [679.0-1866.8]) deaths per 100 000 people. Further, the rate of reduction in HIV incidence and mortality from 2000 to 2018, as well as the ratio of new infections to the number of people living with HIV was highly variable. Although most second-level administrative units had declines in the number of new cases (3316 [81.1%] of 4087 units) and number of deaths (3325 [81.4%]), nearly all appeared well short of the targeted 75% reduction in new cases and deaths between 2010 and 2020. Interpretation Our estimates suggest that most second-level administrative units in sub-Saharan Africa are falling short of the targeted 75% reduction in new cases and deaths by 2020, which is further compounded by substantial within-country variability. These estimates will help decision makers and programme implementers expand access to ART and better target health resources to higher burden subnational areas. Copyright (C) 2021 The Author(s). Published by Elsevier Ltd.Peer reviewe
    corecore