1,401 research outputs found
REQUESTOR: Mr. Neil Hudgins on behalf of the Coastal Bend Groundwater Conservation District and the Coastal Plains Groundwater Conservation District. DESCRIPTION OF REQUEST:
Mr. Hudgins requested maps of water levels, water-level changes, and water budgets for Matagorda and Wharton counties using the northern part of the Gulf Coast aquifer Groundwater Availability Model (GAM) developed by the U. S. Geological Surve
Disordered ultracold atomic gases in optical lattices: A case study of Fermi-Bose mixtures
We present a review of properties of ultracold atomic Fermi-Bose mixtures in
inhomogeneous and random optical lattices. In the strong interacting limit and
at very low temperatures, fermions form, together with bosons or bosonic holes,
{\it composite fermions}. Composite fermions behave as a spinless interacting
Fermi gas, and in the presence of local disorder they interact via random
couplings and feel effective random local potential. This opens a wide variety
of possibilities of realizing various kinds of ultracold quantum disordered
systems. In this paper we review these possibilities, discuss the accessible
quantum disordered phases, and methods for their detection. The discussed
quantum phases include Fermi glasses, quantum spin glasses, "dirty"
superfluids, disordered metallic phases, and phases involving quantum
percolation.Comment: 29 pages and 11 figure
<i>Trypanosoma brucei</i> DHRF-TS revisited:characterisation of a bifunctional and highly unstable recombinant dihydrofolate reductase-thymidylate synthase
<div><p>Bifunctional dihydrofolate reductase–thymidylate synthase (DHFR-TS) is a chemically and genetically validated target in African trypanosomes, causative agents of sleeping sickness in humans and nagana in cattle. Here we report the kinetic properties and sensitivity of recombinant enzyme to a range of lipophilic and classical antifolate drugs. The purified recombinant enzyme, expressed as a fusion protein with elongation factor Ts (Tsf) in ThyA<sup>-</sup> <i>Escherichia coli</i>, retains DHFR activity, but lacks any TS activity. TS activity was found to be extremely unstable (half-life of 28 s) following desalting of clarified bacterial lysates to remove small molecules. Stability could be improved 700-fold by inclusion of dUMP, but not by other pyrimidine or purine (deoxy)-nucleosides or nucleotides. Inclusion of dUMP during purification proved insufficient to prevent inactivation during the purification procedure. Methotrexate and trimetrexate were the most potent inhibitors of DHFR (<i>K</i><sub>i</sub> 0.1 and 0.6 nM, respectively) and FdUMP and nolatrexed of TS (<i>K</i><sub>i</sub> 14 and 39 nM, respectively). All inhibitors showed a marked drop-off in potency of 100- to 1,000-fold against trypanosomes grown in low folate medium lacking thymidine. The most potent inhibitors possessed a terminal glutamate moiety suggesting that transport or subsequent retention by polyglutamylation was important for biological activity. Supplementation of culture medium with folate markedly antagonised the potency of these folate-like inhibitors, as did thymidine in the case of the TS inhibitors raltitrexed and pemetrexed.</p></div
How to screen for non-adherence to antihypertensive therapy
The quality of assessment of non-adherence to treatment in hypertensive is poor. Within this review, we discuss the different methods used to assess adherence to blood-pressure-lowering medications in hypertension patients. Subjective reports such as physicians’ perceptions are inaccurate, and questionnaires completed by patients tend to overreport adherence and show a low diagnostic specificity. Indirect objective methods such as pharmacy database records can be useful, but they are limited by the robustness of the recorded data. Electronic medication monitoring devices are accurate but usually track adherence to only a single medication and can be expensive. Overall, the fundamental issue with indirect objective measures is that they do not fully confirm ingestion of antihypertensive medications. Detection of antihypertensive medications in body fluids using liquid chromatography–tandem mass spectrometry is currently, in our view, the most robust and clinically useful method to assess non-adherence to blood-pressure-lowering treatment. It is particularly helpful in patients presenting with resistant, refractory or uncontrolled hypertension despite the optimal therapy. We recommend using this diagnostic strategy to detect non-adherence alongside a no-blame approach tailoring support to address the perceptions (e.g. beliefs about the illness and treatment) and practicalities (e.g. capability and resources) influencing motivation and ability to adhere
Potent and selective chemical probe of hypoxic signaling downstream of HIF-α hydroxylation via VHL inhibition
Chemical strategies to using small molecules to stimulate hypoxia inducible factors (HIFs) activity and trigger a hypoxic response under normoxic conditions, such as iron chelators and inhibitors of prolyl hydroxylase domain (PHD) enzymes, have broad-spectrum activities and off-target effects. Here we disclose VH298, a potent VHL inhibitor that stabilizes HIF-α and elicits a hypoxic response via a different mechanism, that is the blockade of the VHL:HIF-α protein-protein interaction downstream of HIF-α hydroxylation by PHD enzymes. We show that VH298 engages with high affinity and specificity with VHL as its only major cellular target, leading to selective on-target accumulation of hydroxylated HIF-α in a concentration- and time-dependent fashion in different cell lines, with subsequent upregulation of HIF-target genes at both mRNA and protein levels. VH298 represents a high-quality chemical probe of the HIF signalling cascade and an attractive starting point to the development of potential new therapeutics targeting hypoxia signalling
Mutations in HYAL2, Encoding Hyaluronidase 2, Cause a Syndrome of Orofacial Clefting and Cor Triatriatum Sinister in Humans and Mice.
Orofacial clefting is amongst the most common of birth defects, with both genetic and environmental components. Although numerous studies have been undertaken to investigate the complexities of the genetic etiology of this heterogeneous condition, this factor remains incompletely understood. Here, we describe mutations in the HYAL2 gene as a cause of syndromic orofacial clefting. HYAL2, encoding hyaluronidase 2, degrades extracellular hyaluronan, a critical component of the developing heart and palatal shelf matrix. Transfection assays demonstrated that the gene mutations destabilize the molecule, dramatically reducing HYAL2 protein levels. Consistent with the clinical presentation in affected individuals, investigations of Hyal2-/- mice revealed craniofacial abnormalities, including submucosal cleft palate. In addition, cor triatriatum sinister and hearing loss, identified in a proportion of Hyal2-/- mice, were also found as incompletely penetrant features in affected humans. Taken together our findings identify a new genetic cause of orofacial clefting in humans and mice, and define the first molecular cause of human cor triatriatum sinister, illustrating the fundamental importance of HYAL2 and hyaluronan turnover for normal human and mouse development
Identification of candidate tumour suppressor genes frequently methylated in renal cell carcinoma
Promoter region hyermethylation and transcriptional silencing is a frequent cause of tumour suppressor gene (TSG) inactivation in many types of human cancers. Functional epigenetic studies, in which gene expression is induced by treatment with demethylating agents, may identify novel genes with tumour-specific methylation. We used high-density gene expression microarrays in a functional epigenetic study of 11 renal cell carcinoma (RCC) cell lines. Twenty-eight genes were then selected for analysis of promoter methylation status in cell lines and primary RCC. Eight genes (BNC1, PDLIM4, RPRM, CST6, SFRP1, GREM1, COL14A1 and COL15A1) showed frequent (30% of RCC tested) tumour-specific promoter region methylation. Hypermethylation was associated with transcriptional silencing. Re-expression of BNC1, CST6, RPRM and SFRP1 suppressed the growth of RCC cell lines and RNA interference knock-down of BNC1, SFRP1 and COL14A1 increased the growth of RCC cell lines. Methylation of BNC1 or COL14A1 was associated with a poorer prognosis independent of tumour size, stage or grade. The identification of these epigenetically inactivated candidate RCC TSGs can provide insights into renal tumourigenesis and a basis for developing novel therapies and biomarkers for prognosis and detection. © 2010 Macmillan Publishers Limited.Published versio
Search for Dark Matter and Supersymmetry with a Compressed Mass Spectrum in the Vector Boson Fusion Topology in Proton-Proton Collisions at root s=8 TeV
Peer reviewe
Attenuation of microvascular function in those with cardiovascular disease is similar in patients of Indian Asian and European descent
addresses: Institute of Biomedical and Clinical Science, Peninsula Medical School (Exeter), University of Exeter, UK. [email protected]: PMCID: PMC2823616types: Comparative Study; Journal Article; Multicenter Study; Research Support, Non-U.S. Gov't© 2010 Strain et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Indian Asians are at increased risk of cardiovascular death which does not appear to be explained by conventional risk factors. As microvascular disease is also more prevalent in Indian Asians, and as it is thought to play a role in the development of macrovascular disease, we decided to determine whether impaired microcirculation could contribute to this increased cardiovascular risk in Indian Asians
- …
