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We present a review of properties of ultracold atomic Fermi-Bose mixtures in inhomogeneous and random
optical lattices. In the strong interacting limit and at very low temperatures, fermions form, together with
bosons or bosonic holes, composite fermions. Composite fermions behave as a spinless interacting Fermi gas,
and in the presence of local disorder they interact via random couplings and feel effective random local

potential. This opens a wide variety of possibilities of realizing various kinds of ultracold quantum disordered
systems. In this paper we review these possibilities, discuss the accessible quantum disordered phases, and
methods for their detection. The discussed quantum phases include Fermi glasses, quantum spin glasses,
“dirty” superfluids, disordered metallic phases, and phases involving quantum percolation.
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I. INTRODUCTION

A. Disordered systems

Since the discovery of the quantum localization phenom-
enon by Anderson in 1958 [1], disordered and frustrated sys-
tems have played a central role in condensed matter physics.
They have been involved in some of the most challenging
open questions concerning many body systems (cf. [2-4]).
Quenched (i.e., frozen on the typical time scale of the con-
sidered systems) disorder determines the physics of various
phenomena, from transport and conductivity, through local-
ization effects and metal-insulator transition (cf. [5]), to spin
glasses (cf. [6-8]), neural networks (cf. [9]), percolation
[10,11], high T, superconductivity (cf. [12]), or quantum
chaos [13]. One of the reasons why disordered systems are
very hard to describe and simulate is related to the fact that,
usually, in order to characterize the system, one should cal-
culate the relevant physical quantities averaged over a par-
ticular realization of the disorder. Analytical approaches re-
quire the averaging of, for instance, the free energy, which
(being proportional to the logarithm of the partition function
in the canonical ensemble) is a very highly nonlinear func-
tion of the disorder. Averaging requires then the use of spe-
cial methods, such as the replica trick (cf. [6]), or supersym-
metry method [14]. In numerical approaches this demands
either simulating very large samples to achieve “self-
averaging,” or numerous repetitions of simulations of small
samples. Obviously, this difficulty is particularly important
for quantum disordered systems. Systems which are not dis-
ordered but frustrated (i.e., unable to fulfill simultaneously
all the constrains imposed by the Hamiltonian), lead very
often to similar difficulties, because quite often they are char-
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acterized at low temperature by an enormously large number
of low energy excitations (cf. [15]). It is thus desirable to ask
whether atomic, molecular physics, and quantum optics may
help to understand such systems. In fact, very recently, it has
been proposed how to overcome the difficulty of quenched
averaging by encoding quantum mechanically in a superpo-
sition state of an auxiliary system, all possible realizations of
the set of random parameters [16]. In this paper we propose
a more direct approach to the study of disorder: direct real-
ization of various disordered models using cold atoms in
optical lattices.

B. Disordered ultracold atomic gases

In recent years there has been enormous progress in the
studies of ultracold weakly interacting [17], as well as
strongly correlated, atomic gases. In fact, present experimen-
tal techniques allow one to design, realize, and control in the
laboratory various types of ultracold interacting Bose or
Fermi gases, as well as their mixtures. Such ultracold gases
can be transferred to optical lattices and form a, practically
perfect, realization of various Hubbard models [18]. This ob-
servation, suggested in the seminal theory paper by Jaksch et
al. [19] in 1998, and confirmed then by the seminal experi-
ments of Greiner et al. [20], has triggered enormous interest
in the studies of strongly correlated quantum systems in the
context of atomic and molecular lattice gases.

It soon became clear that one can introduce local disorder
and/or frustration to such systems in a controlled way using
various experimentally feasible methods. Local quasidisor-
der potentials may be created by superimposing superlattices
incommensurable with the main one to the system. Although
strictly speaking such a superlattice is not disordered, its ef-
fects are very similar to those induced by the genuine ran-
dom potentials [21-23]. Controlled local truly random poten-
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tials can be created by placing a speckle pattern on the main
lattice [24,25]. As shown in Ref. [21], for a system of
strongly correlated bosons located in such a disordered lat-
tice, both methods should permit one to achieve an
Anderson-Bose glass [26], provided that the correlation
length of the disorder L, is much smaller than the size of
the system. Unfortunately, it is difficult to have L smaller
than a few microns using speckles. Thus, L, is typically
larger than the condensate healing length [,,,=1/\87na,
where 7 is the condensate density, and a the atomic scatter-
ing length. Due to this fact, i.e., due to the effects resulting
from the nonlinear interactions, it is difficult to achieve the
Anderson localization regime with weakly interacting Bose-
Einstein condensates (BECs) [27,28]. We have shown, how-
ever, that quantum localization should be experimentally fea-
sible using the quasidisorder created by several lasers with
incommensurable frequencies [29]. Random local disorder
appears also, naturally, in magnetic microtraps and atom
chips as a result of roughness of the underlying surface ([30],
for theory see [31,32]).

One can also create disorder using a second atomic spe-
cies, by rapidly quenching it from the superfluid to the local-
ized Mott phase. After such a process, different lattice sites
are populated by a random number of atoms of the second
species, which act effectively as random scatterers for the
atoms of the first species [33]. Last, but not least it is pos-
sible to use Feschbach resonances in fluctuating or inhomo-
geneous magnetic fields in order to induce a type of disorder
that corresponds to random, or at least inhomogeneous, non-
linear interaction couplings [34] (for theory in one-
dimensional (1D) systems see [35,36]). It has been also been
proposed [37] that tunneling induced interactions in systems
with local disorder results in controllable disorder on the
level of next-neighbor interactions. That opens a possible
path for the realization of quantum spin glasses [37]. As we
have already mentioned, several experimental groups have
already achieved [27-29], or are soon going to realize
[33,34] disordered potentials using these methods. It is worth
mentioning here a very recent attempt to create controlled
disorder using optical tweezers methods [38].

There are also several ways to realize nondisordered but
frustrated systems with atomic lattice gases. One is to create
such gases in “exotic” lattices, such as the Kagomé lattice
[39], another is to induce and control the nature and range of
interactions by adjusting the external optical potentials, such
as, for instance, proposed in Ref. [40]. Another example of
such a situation is provided for instance by atomic gases in a
two-dimensional lattice interacting via dipole-dipole interac-
tions with dipole moment polarized parallel to the lattice
[41].

Finally, there are also several ideas concerning the possi-
bility of realizing various types of complex systems using
atomic lattice gases or trapped ion chains. Particularly inter-
esting here are the possibilities of producing long range in-
teractions (falling off as inverse of the square, or cube of the
distance) [42], systems with several metastable energy
minima, and last, but not least systems in designed external
magnetic [43], or even non-Abelian gauge fields [44].
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C. Quantum information with disordered systems

One important theoretical aspect that should be consid-
ered in this context deals with the role of entanglement in
quantum statistical physics in general (where it concerns
quantum phase transitions, entanglement correlation length,
and scaling [45]), and characterization of various types of
distributed entanglement. This aspect is particularly interest-
ing in theoretical and experimental studies of disordered sys-
tems. The question which one is tempted to ask is, to what
extent can one realize quantum information processing in (i)
disordered systems, (ii) nondisordered systems with long
range interactions, and (iii) nondisordered frustrated systems.

At the first sight, the answer to this question is negative.
Disordered quantum information processing sounds like con-
tradictio in adjecto. But, one should not neglect the possible
advantages offered by the systems under investigation. First,
such systems have typically a significant number of (local)
energy minima, as, for instance, happens in spin glasses.
Such metastable states might be employed to store informa-
tion distributed over the whole system, as in neural network
models. The distributed storage implies redundancy similar
to the one used in error correcting protocols [46]. Second, in
the systems with long range interactions the stored informa-
tion is usually robust: metastable states have large basins of
attraction thermodynamically, and destruction of a part of the
system does not destroy the metastable states (for the pre-
liminary studies see Refs. [47,48]). Third, and perhaps the
most important aspect for the present paper, is that atomic
ultracold gases offer a unique opportunity to realize special
purpose quantum computers (quantum simulators) to simu-
late quantum disordered systems. The importance of the ex-
perimental realizations of such quantum simulators will
without doubts forward our understanding of quantum disor-
dered systems enormously. In particular, we can think about
large scale quantum simulations of the Hubbard model for
spin 1/2 fermions with disorder, which lies at the heart of the
present-day-understanding of high 7. superconductivity. The
impact of this possibility for physics and technology is hard
to overestimate. Fourth, very recently, several authors have
used the ideas of quantum information theory to develop
novel algorithms for efficient simulations of quantum sys-
tems on classical computers [49]. Applications of these novel
algorithms to disordered systems are highly desired.

D. Fermi-Bose mixtures

The present paper deals with the above formulated ques-
tions, which lie at the frontiers of modern theoretical physics,
and concern not only atomic, molecular, and optical (AMO)
physics and quantum optics, but also condensed matter phys-
ics, quantum field theory, quantum statistical physics, and
quantum information. This interdisciplinary theme is one of
the most hot current subjects of the physics of ultracold
gases. In particular, we present here the study of a specific
example of disordered ultracold atomic gases: Fermi-Bose
(FB) mixtures in optical lattices in the presence of additional
inhomogeneous and random potentials.

In the absence of disorder and in the limit of strong atom-
atom interactions such systems can be described in terms of
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composite fermions consisting of a bare fermion, or a fer-
mion paired with one boson (bosonic hole), or two bosons
(bosonic holes), etc. [50]. The physics of Fermi-Bose mix-
tures in this regime has been studied by us recently in a
series of papers [52-54]; for contributions of other groups to
the studies of FB mixtures in traps and in optical lattices see
Ref. [55] and for the studies of strongly correlated FB mix-
tures in lattices see Ref. [63], respectively. In particular, the
validity of the effective Hamiltonian for fermionic compos-
ites in 1D was studied using exact diagonalization and the
density matrix renormalization group method in Ref. [64].
The effects of inhomogeneous trapping potential on FB lat-
tice mixtures has been for the first time discussed by Cramer
et al. [65]. The physics of disordered FB lattice mixtures was
studied by us in Ref. [37], which has essentially demon-
strated that this system may serve as a paradigm fermionic
system to study a variety of disordered phases and phenom-
ena: from Fermi glass to quantum spin glass and quantum
percolation.

E. Plan of the paper

The main goal of the present paper is to present the phys-
ics of the disordered FB lattice gas in more detail, and in
particular to investigate conditions for obtaining various
quantum phases and quantum states of interest.

The paper is organized as follows. Section II describes the
“zoology” of disordered systems and disordered phases
known from condensed matter physics. We pay particular
attention to the systems realizable with cold atoms on one
side, and particularly interesting from the other. This latter
phrase means that we consider here the systems that concern
important open questions and challenges of the physics of
disordered systems. In this sense this section is thought as a
list of such challenging open questions that can be perhaps
addressed by the cold gases community. This section is thus
directed to the cold gases experts, and is supposed to moti-
vate and stimulate their interest in the physics of ultracold
disordered systems.

In Sec. III, we introduce the composite fermions formal-
ism, first discussing it for the case of homogeneous lattices,
and then for disordered ones. We derive here the explicit
formulas for the effective Hamiltonian, and for various types
of disorder. One of the results of this section concerns the
generalizations of the results of Ref. [37], that implies that
local disorder on the level of the Fermi-Bose Hubbard model
leads to randomness of the nearest neighbor tunneling and
coupling coefficients for the composite fermions. Obviously,
these tunneling and coupling coefficients arise in effect of
tunneling mediated interactions between the composites.

In Sec. IV, we present our numerical results in the weak
disorder limit, based on the time dependent Gutzwiller an-
satz. These results concern mainly the physics of composites,
the realization of Fermi glass, and the transition from Fermi
liquid to Fermi glass.

The results for the case of strong disorder, spin glasses,
are discussed in Sec. V. The problem of detection of the
phenomena predicted in this paper is addressed in Sec. VI,
whereas we conclude in Sec. VII.
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II. DISORDERED SYSTEMS: THE OLD AND NEW
CHALLENGES FOR AMO PHYSICS

In this section we present a list of problems and chal-
lenges of the physics of disordered systems that may, in our
opinion, be realized and addressed in the context of physics
of ultracold atomic or molecular gases. We concentrate here
mainly on fermionic systems. This section is written on an
elementary level and addressed to nonexperts in the physics
of disordered systems.

A. Anderson localization

One of the most spectacular effects of disorder concerns
single particles. The spectrum of a Hamiltonian of a free
particle in free space or in a periodic lattice is continuous and
the corresponding eigenfunctions are extended (plane waves
or Bloch functions). Introduction of disorder may drastically
change this situation. The basic knowledge about these phe-
nomena comes from the famous scaling theory formulated
by the “gang of four” ([66,5]).

The scaling theory predicts that in 1D infinitesimally
small disorder leads to exponential localization of all eigen-
functions. The localization length (defined as the width of the
exponentially localized states) is a function of the ratio be-
tween the potential and the kinetic (tunneling) energies of the
eigenstate and the disorder strength. For the case of discrete
systems with constant tunneling rates and local disorder dis-
tributed according to a Lorentzian distribution (Lloyd’s
model, cf. [13]) the exact expression for the localization
length is known. In general, an exact relation between the
density of states and the range of localization in 1D has been
provided by Thouless [67]. Hard core bosons with strong
repulsion in 1D chains, described by the XY model in a ran-
dom transverse field, can be mapped using the Wigner-
Jordan transformation to 1D noninteracting fermions in a
random local potential, which in turn maps the bosonic prob-
lem onto the problem of Anderson localization [68].

In 2D, following the scaling theory, it is believed that
localization occurs also for arbitrarily small disorder, but its
character interpolates smoothly between algebraic for weak
disorder, and exponential for strong disorder. There are, how-
ever, no rigorous arguments to support this belief, and sev-
eral controversies arose about this subject over the years. It
would be evidently challenging to shed more light on this
problem using cold atoms in disordered lattices.

3D scaling theory predicts a critical value of disorder,
above which every eigenfunction exponentially localizes,
and this fact has found strong evidence in numerical
simulations.

In the area of AMO physics, effects of disorder have been
studied in the context of weak localization of light in random
media [69], which is believed to be a precursor of Anderson
localization, and in the form of the so-called dynamical lo-
calization, that inhibits diffusion over the energy levels lad-
der in periodically driven quantum chaotic systems, such as
kicked rotor [70], microwave driven hydrogenlike atom (see
[13] and references therein), or cold atoms kicked by optical
lattices [71].
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It is also worth mentioning at this point the existing large
literature on unusual band structure and conductance proper-
ties in systems with incommensurate periodic potentials [72].
The famous Harper’s equation describing electron’s hopping
in a cos(-) potential in 1D [73] may have, depending on the
strength of the potential, only localized, or only extended
states due to the, so-called, Aubry self-duality. In more com-
plicated cases without self-dual property, and/or in higher
dimensions coexistence of localized and extended states is
very frequent.

B. Localization in Fermi liquids

The effects of disorder in electronic gases (i.e., Fermi
gases with repulsive interactions) were in the center of inter-
est over many decades. Originally, it was believed that weak
disorder should not modify essentially the Fermi liquid qua-
siparticle picture of Landau. Altshuler and Aronov [74], and
independently Fukuyama [75], have shown, however, that
even weak disorder leads to surprisingly singular corrections
to electronic density of states near the Fermi surface, and to
transport properties.

As we discussed above, for sufficient disorder in 3D all
states are localized, and the standard Fermi liquid theory is
not valid. One can use then a Fermi-liquid-like theory using
localized quasiparticle states. The system enters then an in-
sulating Fermi glass state [76], termed often also as Ander-
son insulator, in which most of the interaction effects are
included in the properties of the Landau’s quasiparticles.

In 1994 Shepelyansky [77] stimulated further discussion
about the role of interactions by considering two interacting
particles (TIP) in a random potential. He argued that two
repulsing or attracting particles can propagate coherently on
a distance much larger than the one-particle localization
length. Several groups have tried to study these effects of
interplay between the disorder and (repulsive) interactions in
more detail in the regime when Fermi liquid becomes un-
stable as the Mott insulator state is approached by increasing
the interactions. Numerical studies performed for spinless
fermions with nearest-neighbor (NN) interactions in a disor-
dered mesoscopic ring; for spin 1/2 electrons in a ring, de-
scribed by the half-filled Hubbard-Anderson model; for spin-
less fermions with Coulomb repulsion (reduced to NN
repulsion) in 2D, etc. ([78,79]) show that as interactions be-
come comparable with disorder, delocalization takes places.
In a 1D ring it leads to the appearance of persistent currents,
in 2D the delocalized state exhibits also an ordered flow of
persistent currents, which is believed to constitute a novel
quantum phase corresponding to the metallic phase observed
in experiments, for instance, with a gas of holes in GaAs
heterostructures for the similar range of parameters.

Another intensive subject of investigation concerns metal
(Fermi liquid)-insulator transition driven by disorder in 3D.
Theoretical description of this phenomenon goes back to the
seminal works of Efros and Shklovskii [80] and McMillan
[81]. In this context, particularly impressive are the recent
results of experiments on disordered alloys, such as amor-
phous NbSi [82], where the evidence for scaling and quan-
tum critical behavior was found. Weakly doped semiconduc-
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tors provide a good model of a disordered solid, and their
critical behavior at the metal-insulator transition has been
intensively studied (cf. [83]). Very interesting results con-
cerning in particular various forms of electronic glass: from
Fermi glass, with negligible effects of Coulomb repulsion, to
Coulomb glass [84], dominated by the electronic correlations
were obtained in the group of Dressel [85].

Although there exists experimental evidence for delocal-
ization, enhanced persistent currents, and novel metallic
phases at the frontier between the Fermi glass and Mott in-
sulator, the further experimental models that physics of cold
atoms might provide are highly welcomed. Especially, since
the cold atoms Hubbard toolbox should allow one to design
with great fidelity the models studied by theorists: spinless
fermions extended Hubbard model in 1D, 2D, and 3D, and
spin 1/2 Hubbard model in a disordered potential, or even
more exotic systems such as Fermi systems with SU(N) “fla-
vor” symmetry [86]. Perhaps a less ambitious, but still inter-
esting challenge is to use ultracold atomic gases to create
both Fermi glass and a fermionic Mott insulator, and inves-
tigate their properties in detail.

C. Localization in Bose systems

At this point it is also worth mentioning the existing lit-
erature on the influence of repulsive interactions on Ander-
son localization in bosonic systems. In the weakly interacting
case, one observes at low temperatures the phenomenon of
Bose-Einstein condensation (BEC), but to the eigenstates of
the random potential (which are Anderson localized). Strong
nonlinear interactions tend, however, to destroy the localiza-
tion effects by introducing screening of disorder by the non-
linear mean field potential [87,88]. This happens as soon as
the disorder localization length, L, becomes larger than the
healing length, /,,,,. Such destruction of localization by weak
nonlinearity occurs also in the context of chaos, as discussed
in 1993 by Shepelyansky [89]. Several experiments, aiming
at observation of localization with BECs have been recently
performed with elongated condensates in the presence of a
speckle pattern and 1D optical lattices [27-29]. In particular,
transport suppression has been observed in the Orsay and
Lens experiments, whereas, as we have shown in the Han-
nover setup [29], conditions for Anderson localization can be
achieved using additional incommensurate superlattices. As
the nonlinearity (i.e., number of atoms) grows the condensate
wave function becomes a superposition of exponentially lo-
calized modes of comparably low energies. Overlapping of
those modes signifies the onset of the screening regime. We
believe that similar effects hold in the strongly interacting
limit in optical lattices, when they occur at the crossover
from the Anderson glass (in the weak interacting regime) to
Bose glass (in the strong interacting regime) behavior (see
[21], and also [90]).

D. Localization in superconductors

Obviously, the effects of disorder on superconductivity
were studied practically from the very beginning of the
theory of superconductors. Already in the late 1950’s Ander-
son and Gorkov considered “dirty” superconductors [91].
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For a weak disorder, Bardeen-Cooper-Schrieffer (BCS)
theory is still valid, but must be modified; the critical tem-
perature is reduced by the localization effects [92].

The situation is more complex in the case of strong dis-
order. For example, in 2D superconductors the superconduct-
ing state exists only for sufficiently small values of the dis-
order. This state is often termed a superconducting vortex
glass. Cooper pairs in this state condense and form a delo-
calized “Bose” condensate. This condensate contains a large
number of quantum vortices that are immobile and localized
in the random potential energy minima associated with dis-
order [93]. As disorder grows, the system enters the insulat-
ing phase, which is a Bose glass of Copper pairs (for general
theory see [26]). Finally, for even stronger values of the dis-
order the system enters the insulating Fermi glass phase,
when the Cooper pairs break down. Obviously, this picture
becomes even more complex at the BCS-BEC crossover.

Superconductor-insulator transition has been recently in-
tensively studied in thin metal films on Ge or Sb substrates,
that induce disorder on the atomic scale. For not too thin
films, transition to superconduting state occurs via
Kosterlitz-Thouless-Berezinsky mechanism, whereas for ul-
trathin films localization effects suppress superconductivity
[94,95]. In particular, scaling behavior and scaling exponent
were studied in thin bismuth films [96].

As before, the physics of cold gases might contribute here
significantly to our understanding of the influence of
quenched disorder on the phenomenon of superconductivity.

E. Localization and percolation

Percolation is a classical phenomenon that is very closely
related to localization [2]. Percolation provides a very gen-
eral paradigm for a lot of physical problems ranging from
disordered electric devices [97], forest fires, and epidemics
[10,98], to ferromagnetic ordering [8]. In lattices, one con-
siders site and bond percolation, and asks the following
question: given a probability of filling a lattice site (filling a
bond), and given a layer of the lattice of linear width L, does
a percolating cluster of filled sites (bonds) that connects the
walls of the layer exist?

Obviously, a percolating medium with a percolating clus-
ter of empty sites is an example of a medium consisting of
randomly distributed scatterers. One has to expect that
Anderson localization will occur if quantum waves will
propagate and scatter in such a medium. An interplay be-
tween percolation and localization has been a subject of in-
tensive studies in recent years. On one hand, when a classical
flow is possible, the quantum one might be suppressed due to
the destructive interferences and Anderson mechanism. On
the other hand, quantum mechanics offers a possibility of
tunneling through the classically forbidden regions, and may
thus allow for a classically forbidden flow. It turns out that
this latter mechanism is very weak, and one typically ob-
serves three regimes of localization-delocalization behavior:
classical localization below the percolation limit, quantum
localization above the percolation limit, and quantum delo-
calization sufficiently above the percolation limit [99,100].
Quantum percolation plays a role of mechanism responsible
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for quantum Hall effect [101]. Obviously, interactions in the
presence of quantum percolation introduce additional com-
plexity into the phenomenon.

Atomic Fermi-Bose mixtures and atomic gases in general
offer an interesting possibility to study quantum percolation
in a controlled way. One should stress that quenching atoms
as random scatterers in a lattice (below percolation thresh-
old) would be one of the methods itself to generate random
local potentials.

F. Random field Ising model

Particularly interesting are those disordered systems, in
which arbitrarily small disorder causes large qualitative ef-
fects, with Anderson localization in 1D and, most presum-
ably, in 2D being paradigm examples. Other examples are
provided by classical systems that exhibit long range order at
the lower critical dimension. In such systems, addition of an
arbitrary small local potential (magnetic field), that has a
distribution assuming the same symmetry as the considered
model, destroys long range order.

The first example of such behavior has been shown by
Imry and Ma [102], using the domain wall argument; it con-
cerns random field Ising model in 2D, for which magnetiza-
tion vanishes in a random magnetic field in the Ising spin
direction with symmetric distribution (Z, symmetry). This
result was soon after proven rigorously [103], and even gen-
eralized to XY, Heisenberg, or Potts models (provided that
the corresponding “field” assumes the same symmetry as the
model, i.e., U(1), SU(2), etc. [104]).

One should note that most of the above discussed effects
concern abstract spin models, and have no direct experimen-
tal realizations in condensed matter systems. Cold atoms of-
fer here a unique possibility of both feasible realization of
classical models, and of studying quantum effects in those
systems. Equally interesting in this context could be spin
models in which the random magnetic field breaks the sym-
metry, such as, for instance, XY model in 2D in the random
field directed in, say, the X direction. Such field breaks the
U(l) symmetry and changes the universality class of the
model to the Ising class. Simultaneously, it prevents sponta-
neous magnetization in the X direction. In effect, the system
attains the macroscopic magnetization in the Y direction
[105]. We have recently studied these kinds of systems and
proved this result at 7=0 rigorously. We expect in fact finite
T transition (as in Ising model), but a detailed analysis of that
case goes beyond the scope of the present paper [106].

G. Spin glasses: Parisi’s theory and the “droplet” model

Spin glasses are spin systems interacting via random cou-
plings, that can be both ferro- or antiferromagnetic. Such
variations of the couplings lead typically to frustration. Spin
glass models may thus exhibit many local minima of the free
energy. For this reason, spin glasses remain one of the chal-
lenges of the statistical physics and, in particular, the ques-
tion of the nature of their ordering is still open. According to
Parisi’s picture, the spin glass phase consists of very many
pure thermodynamic phases. The order parameter of a spin
glass becomes thus a function characterizing the probability
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of overlaps between the distinct pure phases [6]. According
to the so-called “droplet” picture, developed by Huse-Fisher
and Bray-Moore [7,107] there are (for Ising spin glasses) just
two pure phases (up to Z, symmetry), and what frustration
does is to change very significantly the spectrum of excita-
tions (domain walls, droplets) close to the equilibrium. While
the Parisi’s picture (related also to the replica symmetry
breaking) is most presumably valid for long range spin glass
models, such as Sherrington-Kirkpatrick model [108], the
“droplet” model is formulated as a scaling theory, and has a
lot of numerical support for short range models, such as the
Edwards-Anderson [109] model. For more details of these
two pictures relevant for our actual study see Sec. V.

III. DYNAMICS OF COMPOSITE FERMIONS IN THE
STRONG COUPLING REGIME

In this section we begin our detailed discussion of the low
temperature physics of the Fermi-Bose mixtures. In particu-
lar we consider a mixture of ultracold bosons (b) and spin-
less (or spin-polarized) fermions (f), for example 'Li-°Li or
87Rb-*°K, trapped in an optical lattice. In the following, we
will first consider the case of an homogeneous optical lattice,
where all lattice sites are equivalent, and we will review
previous results focusing on the formation of composite fer-
mions and the quantum phase diagram [52]. Second, we shall
extend the analysis to the case of inhomogeneous optical
lattices. We consider on-site inhomogeneities consisting of a
harmonic confining potential and/or diagonal disorder. In all
cases considered below, the temperature is assumed to be
low enough and the potential wells deep enough so that only
quantum states in the fundamental Bloch band for bosons or
fermions are populated. Note that this requires that the filling
factor for fermions py, is smaller than 1, i.e., the total number
of fermions, Ny, is smaller than the total number of lattice
sites N.

In the tight-binding regime, it is convenient to project
wave functions on the Wannier basis of the fundamental
Bloch band, corresponding to wave functions well localized
in each lattice site [110,111]. This leads to the Fermi-Bose
Hubbard (FBH) Hamiltonian [8,12,19,63]:

. 1%
Hegp=— X [Jyb]b;+ Jifif;+ Hel+ 2 Eni(ni -1)
@ i

+ Unm; | + 2 [- :u})ni - #{mi], (1)

where bj, b, fT, and f; are bosonic and fermionic creation-
annihilation operators of a particle in the ith localized Wan-
nier state of the fundamental band and ni:bjbi, m;= f:ff,» are
the corresponding on-site number operators. The FBH model
describes: (i) nearest-neighbor (NN) boson (fermion) hop-
ping, with an associated negative energy, —Jy(—=J;); (ii) on-
site boson-boson interactions with an energy V, which is sup-
posed to be positive (i.e., repulsive) in the reminder of the
paper; (iii) on-site boson-fermion interactions with an energy
U, which is positive (negative) for repulsive (attractive) in-
teractions; and (iv) on-site energy due to interactions with a

PHYSICAL REVIEW A 72, 063616 (2005)

possibly inhomogeneous potential, with energies —,u}’ and
—,u,f; eventually, —,ul-’ and —,uf also contain the chemical po-
tentials in grand canonical description. For the sake of sim-
plicity, we shall focus, in the following, on the case of equal
hopping for fermions and bosons, J,=J;=J and we shall as-
sume the strong coupling regime, i.e., V,U>J. Generaliza-
tion to the case Jy, # J; is just straightforward.

A. Quantum phases in homogeneous optical lattices

Before turning to inhomogeneous optical lattices, let us
briefly review here the results presented in [52] for homoge-
neous lattices at zero temperature, when all sites are transla-
tionally equivalent. In the limit of vanishing hopping (J=0)
with finite repulsive boson-boson interaction V, and in the
absence of interactions between bosons and fermions
(U=0), the bosons are in a Mott insulator (MI) phase with
exactly 77=[2?]+1 bosons per site, where @°=u’/V and [x]
denotes the integer part of x. In contrast, the fermions can be
in any set of Wannier states, since for vanishing tunneling,
the energy is independent of their configuration. The situa-
tion changes when the interparticle interactions between
bosons and fermions, U, are turned on. In the following, we
define a=U/V and we consider the case of a bosonic MI
phase with 77 bosons per site. The presence of a fermion in
site i may attract —s >0 bosons or equivalently expel s<n
boson(s) depending on the sign of U. The on-site energy gain
in attracting —s bosons or expelling s bosons from site i is
AE;=(V/2)s(s—=27i+1)—Us+u’s. Minimizing AE; it clearly
appears energetically favorable to expel s=[a—a’]+i
bosons. Within the occupation number basis, excitations cor-
respond to having 7—s+1 bosons in a site with a fermion,
instead of 7—s and, therefore, the corresponding excitation
energy is ~V. In the following, we assume that the tempera-
ture is smaller than V so that the population of the above-
mentioned excitations can be neglected. It follows that tun-
neling of a fermion is necessarily accompanied by the
tunneling of —s bosons (if s<<0) or opposed-tunneling of s
bosons (if s=0). The dynamics of our Fermi-Bose mixture
can thus be regarded as the one of composite fermions made
of one fermion plus —s bosons (if s<<0) or one fermion plus
s bosonic holes (if s=0). The annihilation operators of the
composite fermions are [52]

i)l
F,= u(b:f)sfi for s bosonic holes, (2)

n!

F.= 1] ~ﬁ! (by)~f; for —s bosons. (3)
(m-9)!

These operators are fermionic in the sub-Hilbert space gen-
erated by |n—ms,m> with m=0,1 in each lattice. Note that
within the picture of fermionic composites, the vacuum state
corresponds to the MI phase with 77 boson per site. At this
point, different composite fermions appear depending on the
values of a, 77, and " as detailed in Fig. 1 [52]. The different
composites are denoted by Roman numbers I, 11, III, etc,
which denote the total number of particles that form the cor-
responding composite fermion. Additionally, a bar over a Ro-
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FIG. 1. (Color online) Quantum phase diagrams of Fermi-Bose
mixtures in a homogeneous optical lattice as functions of " and
a=U/V, for p;=0.4 and J/V=0.02. Roman numbers denote the
total number of particles that form the composite and a bar means
that the composite is formed by bosonic holes rather than bosons.
(a) Diagram of composites where the filled small (blue) dots sym-
bolize fermions, large (red) dots symbolize bosons, and empty (red)
dots, bosonic holes. The subindex A (R) indicates attractive (repul-
sive) composites interactions. (b) Detailed quantum phase diagram
of fermionic composites. The subindices denote here different
phases: DW (density wave), FL (fermi liquid), SF (superfluid), and
FD (fermionic domains). The strongly correlated phases for small
but finite J are surrounded by characteristic lobs [53], beyond which
bosons become superfluid. Therefore there are thin regions of
bosonic superfluid between the various composite phases [112]. The
general explanation of the figure appears in Sec. IIl A while the
numerical calculations of some of the possible phases are reported,
for the case of sites B, in Sec. IV B. A detailed explanation of the
phases exhibited by composites I (B sites), composites I (A sites),
and composites 11 (C sites) in the presence of disorder can be found
in Secs. III C-III E, respectively.

man number indicates composite fermions formed by one
bare fermion and bosonic holes, rather than bosons. For the
sake of simplicity, we shall consider only bosonic MI phases
with 77=1 boson per site (i.e., 0<@’<1) in the following
parts of this paper [113].

If a—@a°>0, a fermion in site i pushes the boson out
of the site. We will call the sites with this property B-sites.
This notation will become particularly important in the
presence of disorder (local /). The composites, in this case,
correspond to one fermion plus one bosonic hole [this phase
is called II in Fig. 1(a)]. If -1 <a—a°<0, we have bare
fermions as composites (this corresponds to phase /). The
sites with this property will be called A-sites. Finally,
if 2<a- ,ab<—1, the composites are made of one
fermion plus one boson (phase II). The sites with the latter
property will be called C-sites. Because all sites are equiva-
lent for the fermions, the ground state is highly
[N!/(N)!(N=Ny)!]-degenerated, so the manifold of ground
states is strongly coupled by fermion or boson tunneling. We
assume now that the tunneling rate J is small but finite. Us-
ing time-dependent degenerate perturbation theory [114], we
derive an effective Hamiltonian [12] for the fermionic com-
posites:
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Hy=—dur 2, (F;}.F,‘ +He) + K 2 MM ;- Bt M,
(i.j) (i.j) i

(4)

where M,»=F:fF ; and g is the chemical potential, whose
value is fixed by the total number of composite fermions.
The nearest neighbor hopping for the composites is de-
scribed by —d.; and the nearest neighbor composite-
composite interactions are given by K., which may be re-
pulsive (>0) or attractive (<0). This effective model is
equivalent to that of spinless interacting fermions. The inter-
action coefficient K. originates from second order terms in
perturbative theory and can be written in the general form:

92

Kesr= T{(2ﬁ—s)(ﬁ+ 1) s(es) - B9+ D

l+s—a

_(ﬁ—s+l)ﬁ_i] )

l-5s+a sa

This expression is valid in all the cases but when s=0 the last
term (1/sa) should not be taken into account. d g originates
from (|s|+1)-th order terms in perturbative theory and thus
presents different forms in different regions of the phase dia-
gram of Fig. 1. For instance in region I, d.y=J, in region
Il d.z=2J%/U, and in region II, d z=4J%/|U|.

The physics of the system is determined by the ratio
K./ dogr and the sign of K. In Fig. 1(a), the subindex A/R
denotes attractive (K +<<0)/repulsive (K.+>0) composites
interactions. Figure 1(b) shows the quantum phase diagram
of composites for fermionic filling factor p;=0.4 and tunnel-
ing J/V=0.02. As an example, let us consider the case of
repulsive interactions between bosons and fermions, a>0.
Once the fermion-bosonic hole composites /I have been cre-
ated (a> [1°), the relation Kg/d.=—2(a—1) applies. Con-
sequently, if one increases the interactions between bosons
and fermions adiabatically, the system evolves through dif-
ferent quantum phases. For i°<a <1, the interactions be-
tween composite fermions are repulsive and of the same or-
der of the tunneling; the system exhibits delocalized metallic
phases. For a==1, the interactions between composite fermi-
ons vanish and the system shows up the properties of an
ideal Fermi gas. Growing further the repulsive interactions
between bosons and fermions, the interactions between com-
posite fermions become attractive. For 1 <« <2, one expects
the system to show superfluidity, and for «>2 fermionic
insulator domains are predicted.

In the reminder of the paper, we shall generalize these
results to the case of inhomogeneous optical lattices. We
shall assume diagonal inhomogeneities, i.e., site-dependent
local energies (,u}”t depends on site i but the tunneling rate J
and interactions U and V do not). Diagonal inhomogeneities
may account for (i) overall trapping potential (usually har-
monic), which is usually underlying in experiments on ultra-
cold atoms, and (ii) disorder that may be introduced in dif-
ferent ways in ultracold samples (see Sec. VI for details).
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B. Composites in disordered lattices: Effective Hamiltonian

In this section we include on-site energy inhomogeneities
in the optical lattice and we derive a generalized effective
Hamiltonian for the composite fermions. Strictly speaking, in
the presence of disorder the hopping terms should depend on
the site under consideration. Nevertheless, for weak enough
disorder one can assume site independent tunneling for both
bosons or fermions [21]. In the following we will restrict
ourselves to the case where the hopping rates of bosons and
fermions are equal and site-independent, J;,=J;=J and to the
strong coupling regime, V,U>J, where the tunneling can be
considered as a perturbation, as in Sec. III A.

For homogeneous lattices (see Sec. IIT A), following the
lines of Refs. [51,52], we have used the method of degener-
ate second order perturbation theory to derive the effective
Hamiltonian (4) by projecting the wave function onto the
multiply degenerated ground state of the system in the ab-
sence of tunneling.

In the inhomogeneous case, this approach cannot be ap-
plied since even for J=0 there exists a well-defined single
ground state determined by the values of the local chemical
potentials. Nevertheless, in general, there will be a manifold
of many states with similar energies. The differences of en-
ergy inside a manifold are of the order of the difference of
chemical potential in different sites, whose random distribu-
tion is bounded, i.e., OS,&E’, ,ZI;$ 1. Moreover, the lower
energy manifold is separated from the exited states by a gap
given by the boson-boson interaction, V. Therefore one can
apply a form of quasidegenerate perturbation theory by pro-
jecting onto the manifold of near-ground states [114].

As it is described in Ref. [114] and briefly summarized in
Appendix A, we construct an effective Hamiltonian that de-
scribes the slow, low-energy perturbation induced within the
manifold of unperturbed ground states by means of a unitary
transformation applied to the total Hamiltonian (1). By de-
noting with P the projector on the manifold and Q=1-P its
complement, the expression of the effective Hamiltonian can
be written as

1
(out|Hogliny = (out|Hy|in) + {out|PH,,P|in) — E(out|PH,-mQ

1
X + H,,P|in). 6
s v Jemarin. ©
As second order theory can only connect states that differ on
one set of two adjacent sites, the effective Hamiltonian H g
can only contain nearest-neighbor hopping and interactions
as well as on-site energies u; [37]:
Hye= 2 [~ diijFj +Hel+ X KM ;M ; + > aM,,
(i.j) (i) i
)

where M, F; are defined as in Eq. (4). The explicit calcula-
tion of the coefficients d;;, K;;, and w; depends on the con-
crete type of composites. In the three following sections we
address the cases of fermion-bosonic hole composites (1),
bare fermion composites (), and fermion-boson composites

().
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C. Fermion-Bosonic hole composites

In this section, we assume that all sites are B-sites, i.e.,
a— ﬁ?>0, so that composite fermions /I are created. This
means that each site contains either one boson or one fer-
mion plus a bosonic hole. Thus the manifold of low lying
states comprises all possible configurations of N; fermions on
an N-site lattice, with no fermion occupied sites filled by
bosons.

Within the manifold of ground states, a fermion jump
from site i to site j can only occur if the boson that was
initially in site j jumps back to site i into the hole the fermion
leaves behind. Therefore the number operator for fermions
and bosons are related with the number operator of compos-
ites, i.e., M;=m;=1-n;. Note that the composite model is
expressed in terms of the composite fermionic operators
F i=b:«L f; and thus M;= fjf,-bibj. To determine the coefficients
in Eq. (7), one looks at two adjacent sites with indices i and
j and uses a vector notation |1,,1;) which would correspond
to one boson on site i and one fermion on site j. In the
composite fermion picture this would be denoted as |0, 1)¢,
i.e., one composite fermion on site j and no composite fer-
mion on site 7. With this notation tunneling rates and nearest-
neighbor interactions are calculated from Eq. (6) as

(o g ol 1o, 1) ”2( 1
fs Lol Leffl tbs L/ — VvV a—AZ

1 1 1 )
+ + +
a+A}’j a—Afj a+Afj

= “(1,0[F[F}0,1)", (8)
(o 1yl Hol 1, 19) = 1’—2< 2
b> blfeffl To> 1o/ = 7 5, l—Ag
2 2 2 )
+ o+ o+ o
1+Aij 1—Aij 1+Aij
= %0,0[(1 = M)(1 -M}|0,0), (9)
(o 1yl Hol 1 1) ”2< 2 2 )
s s == +
PR o v a - AL T at Al
= C<190 Ml(l _M]) 130>L‘9 (10)

(Lo 1| Heg 1, 1) 1—J2( L )
s 1] i s Lf, -~ +
o T o v ar AL T a- AL

“«(1,0|M (1 - M,)|1,0)°. (11)

Summing these terms up yields the coefficients for Eq. (7):

d —J—2< L ) (12)
i~y a?— (AZ)Z a?— (Azfj)z ’
K - .]_2< 4 2a 2a > (13)
v = (AN - (A P (AP
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FIG. 2. (Color online) Tunneling, d;;, and nearest- nelghbor cou-
plings, Kj;, of type II composites as a function of dlsorder A
for different boson-fermion interactions, a, in the case ,u 0

4 1 1
(A% a-AY  a+Al

b f &
/7«1':,“«1'_#1‘"'; 21
(i.j)

(14)

with Afb— b - ﬁjf’b. Here, (i,j) represents all neighbor sites
of i. We shall now consider separately two limiting cases: (i)
w=0 and uP=pw,;V, and (i) ui=pul=pw,V.

1. Case where (/=0

In the first case, we assume that the on-site energy for
fermions vanishes. We assume also that all sites are B-sites,
ie., a— ﬁb>0 everywhere. In this case, the hopping ampli-
tudes d;; are always positive, although may vary quite sig-
mﬁcantly with disorder, especially when A? ;= a. As shown
in Fig. 2, for a>1, K;;<0 and we deal with attractive (al-
though random) interactions. For a<1, K;;=0 and the inter-
actions between composites are repulsive. For a<<1, but
close to 1, K;; might take positive or negative values for A
small or Ab =a. In this case, the qualitative character of
mteracnons may be controlled by inhomogeneity [37]. At
low temperatures the physics of the system will depend on
the relation between s and a.

(a) Small disorder limit. For small disorder, we may ne-
glect the contributions of A to d;;=d and K;;=K, and keep
only the leading disorder contrlbutlon in ,u,, i.e., the first
term in Eq. (14). Note that the latter contribution is relevant
in 1D and 2D leading to Anderson localization of single
particles [66]. When K/d<<1 the system will then be in the
Fermi glass phase, i.e., Anderson localized (and many-body
corrected) single particle states will be occupied according to
the Fermi-Dirac rules [76]. For repulsive interactions and
K/d>1, the ground state will be a Mott insulator and the
composite fermions will be pinned for large filling factors. In
particular, for filling factor py;=1/2, one expects the ground
state to be in the form of a checkerboard. For intermediate
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Mott Insulator
(Checker-board
for p=1/2)

Fermi

Glass Metallic
Phases

Domain
insulator “Dirty”

superfluid

FIG. 3. (Color online) Schematic phase diagram of type 11 fer-
mionic composites for low disorder (A <1, a) and vanishing fer-
mionic on-site energy (,u =0)asa functlon of the ratio between NN
interactions and tunneling for the composites.

values of K/d, with K>0, delocalized metallic phases with
enhanced persistent currents are possible [78]. Similarly, for
attractive interactions (K<0) and |K|/d<1 one expects
competition between pairing of fermions and disorder, i.e., a
“dirty” superfluid phase while for |K|/d>1, the fermions
will form a domain insulator. Figure 3 shows a schematic
representation of expected disordered phases of the type IT
fermionic composites for small disorder, and vanishing fer-
mionic on-site chemical potential.

(b) Spin glass limit. Another interesting limit corresponds
to the case A'l?]-z a=1. Such a situation can be achieved by
combining a superlattice potential with a spatial period twice
as large as the one of the lattice (which alone induces
|A |=1) and a random potential to induce site-to-site fluctua-
tlons The tunneling becomes then nonresonant and can be
neglected in Eq. (7), while the couplings K;; fluctuate
strongly as shown in Fig. 2. We end up then with the (fermi-
onic) Ising spin glass model [37] described by the Edwards-
Anderson model with s;=2M;—1=+1. This case is studied in
more detail in Sec. V.

2. Case where p;{: ,_Lf

Let us now consider that the chemical potential is equal
for bosons and fermions at each lattice site, ,uf: ,u}’: V. All
sites are still assumed to be B-sites.

The effective interactions are for @>1 always negative,
and therefore the composites experience random attractive
interactions (as in the previous case), while for a<1,
K;;>0, and therefore we deal with random repulsive inter-
actions. For a=1, the interactions between composites van-
ish for all the values of the amplitude of the disorder.

In this case the sign of the interactions between compos-
ites is governed by the interactions between bosons and fer-
mions alone. Note that this is not possible when one consid-
ers only disorder for the bosons. Figure 4 shows the
tunneling and the nearest-neighbor couplings for different
values of a. We expect here the appearance of similar
phases, as in the previously discussed case.

D. Bare Fermion composites

In this section we now assume that all sites are A-sites and
correspond to type / fermionic composites, i.e., —1 < a—ﬁ}’
< 0. This means that composite fermions reduce to bare fer-
mions (F;=f;) flowing on the top of a MI phase with =1
boson per site. Each site now contains one boson plus even-
tually one fermion. From application of perturbation theory
as described in Sec. III B [see Eq. (6)], one finds that the
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FIG. 4. (Color online) Tunneling, d;;, and nearest-neighbor cou-
plings, Kj;, of type II composites as a function of disorder AZ-, and
for different boson-fermion interactions, «, in the case ,uf: ,u?
=V

coefficients of the effective Hamiltonian (7) are

bm (15)

. J_z( 8 4(1 + @) 41-a) )

L T e N (PO
(16)

_ J? 4 1 4
T

VipL1-@h? AL 1-(a-AY)?
(17)

We observe that the inhomogeneities for fermions (site-
dependent ,uf) neither perturb the effective tunneling, nor the
effective interaction parameter, while ﬁiZ—Mf up to correc-
tions of the order of O(J?/V) for type I composite (bare)
fermions. In this case, composite tunneling d;; originates
from the first order term, while the nearest-neighbor interac-
tion originates from second order perturbation. It should be
noted that in the case of type I composites, the hopping d;;
and interaction K;; parameters in Eq. (7) do not depend on
the sign of the fermion-boson interaction a.

The couplings K;; are always positive, and for a=0,
K;j= O(a?), and both the repulsive interactions and disorder
are very weak, leading to an almost ideal Fermi liquid be-
havior at low temperature. For finite «, and A521—|a,
however, the fluctuations of K;; might be quite large as
shown in Fig. 5. Note that for |a| = 1, this will occur even for
small disorder. It is interesting to note that the dynamics of
type I composites in our system resembles quantum bond
percolation. As suggested from Fig. 5, one can assume in a
somehow simplified view that the interaction parameter K;;
takes either very large, or zero values. The lattice decom-
poses into two sublattices (see Fig. 6): a “weak” bond sub-
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FIG. 5. (Color online) Ratio of nearest-neighbor coupling and
tunneling Kj;/d;; as a function of disorder A:?j for =0.7 and J/V
=0.01 in the case of type I composite fermions.

lattice (corresponding to K;;<<d;) in which fermions flow as
in an almost ideal Fermi liquid, and a “strong” sublattice
(corresponding to K;;>d;;), where only one fermion per
bond is allowed (M;M;=0 for all nearest neighbors in the
“strong” cluster). Therefore we see that the physics of bond
percolation [10,97] will play a role. For p>p,, where p is
the density of weak bonds and p,=0.50 (in two-dimensional
square lattices) and p.=0.25 (in three-dimensional cubic lat-
tices), the weak bond sublattice will be percolating, i.e., there
exists a large cluster of weak bonds which spans the lattice
from one side to the other. The question arises as to deter-
mine the quantum bond percolation threshold pg, i.e., for
which minimal value of p, the eigenstates of the quantum gas
will be delocalized over the extension of the system. Al-
though it is clear that po> p,, it is still an open question to
determine the exact value for the quantum percolation
threshold pq [99,115-118]. Therefore experimental realiza-
tion of our system may be of considerable interest for ad-
dressing this general question.

E. Fermion-Boson composites

We finally consider in this section the case, when all sites
are C-sites, so that type II composites corresponding to
2<a- ﬂ?<—1 are formed. The composites are made of
one fermion and one boson. This means that each lattice site

I — strong
bond
e
‘ |
weak | Y

bond J

FIG. 6. (Color online) Schematic representation of connecting
bonds in type I composite systems. The bonds are separated in two
types: (i) the weak bonds in which two composites do not interact
and (ii) the strong bonds where only one composite can stay. The
short lines represent the bonds and the crossing points of the bonds
are the lattice sites.
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FIG. 7. (Color online) Tunneling, d;;, and nearest- nelghbor cou-
plings, Kjj, of type /I composites as a function of dlsorder A and
for different boson-fermion interactions, a, in the case ,u 0

is populated by either one boson or one fermion plus two
bosons. Tunneling as well as nearest-neighbor interaction of
composites arise from second order terms in perturbative
theory [see Sec. III B and Eq. (6) for details]. Along the lines
of Sec. III B, we find the following expressions:

d~—J—2< ef 2 ) (18)
TV e - (AD? T o= (A])*)
« _—J2( 16 2|a] 8|af
! 1-(A%? Jaf - (AD)?  |af - (AD)?
6(2-|a)) )
—— 19
(2-la)® - (AD)? 19
- o, L { 4 4
M= Iu’ qu V(, r (A )2 |a|+AE)]
3 1
_|a|_A‘,;.‘|a|+A{,.]' 20

Different scenarios also arise in this case In the follow-
ing, we shall con51der the case ,u =0 and ,u[ =u;V. The other
extreme case, ,ul ,u,l =u;V, leads to qualitatively similar
conclusions.

Case where I"';[=0

We assume here that the on-site energy for fermions is
,u,, =0. As for Fig. 2, we plot the effective tunneling and
interaction parameter versus inhomogeneity parameter Ab
Fig. 7. The general behavior of d;; and K;; is quahtatlvely the
same as in the case of type Il composites. For type II com-
posites, and for small disorder, we find K/d=1-4|a|+3/(2
—|a]) with 1<|a|<2. The inhomogeneity is now given, for
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type II composites, by ﬂi:—p,?. The regimes, where K<<d
corresponding to an almost ideal Fermi gas (in the absence
of disorder), or to a Fermi glass (in the presence of disorder),
can be reached in the region a=-5/4. The opposite regimes
of strong effective interactions, where K>d appears for
a=-2 and corresponds to repulsive interactions K>0. In
this region, the fermionic checkerboard phase if the filling
factor is 1/2 (for vanishing disorder) and the repulsive Fermi
glass phase (in the presence of disorder) are expected. Here,
no strong attractive interactions reglme occurs since K/d
reaches a minimum of =-0.07 for a= \3/2=2. Therefore, in
contrast to type IT composites, for type IT composites: (i) due
to weakness of attractive interactions, the domain insulator
phase does not appear, and even the “dirty” superfluid phase
may be washed out; and (ii) arbitrary strong repulsive inter-
actions can be used to generate a Mott insulator, which might
be difficult for II composites, where K/d is limited to 2,
suggesting that Fermi liquid, Fermi glass behavior will pre-
vail.

As shown in Fig. 7, the spin glass limit can also be
reached, for example, for a=-1.05 and |Af|~0 9. In this
regime, the tunneling is nonresonant due to strong disorder
and the nearest-neighbor interaction fluctuates strongly from
negative to positive values. See Sec. V for further study of
the spin glass limit.

F. Optical lattices with different types of sites
Sites A and B

Obviously, the situation becomes much more complex
when we deal with different types of sites in the lattice.
Again there are infinitely many possibilities, and the simplest
ones are, for instance: (i) coexistence of A- and B-sites, or
(ii) A- and C-sites, or (iii) A-, B-, and C-sites, etc In the
fo]lowmg we shall consider only the case (i) with uj=0 and
,u,l =u;V, since the other cases lead to qualitatively similar
effects.

Let us assume that the numbers of A- and B-sites are
macroscopic, i.e., of the order of N. More precisely, we will
consider that N, (number of A-sites) and Nz (number of
B-sites) of order N/2. In this case the physics of site perco-
lation [10] will play a role. If N;<Nj the composite fermi-
ons will move within a cluster of B-sites. When N will be
above the classical percolation threshold, this cluster will be
percolating. The expressions Eq. (12) and Eq. (13) will still
be valid, except that they will connect only the B-sites. The
physics of the system will be similar as in the case of type /
composites), but it will occur now on the percolating cluster.
For small disorder, and K/d<<1, the system will be in a
Fermi glass phase in which the interplay between the Ander-
son localization of single particles due to fluctuations of ,u?
and quantum percolation effects, that is randomness of the
B-sites cluster, will occur. For repulsive interactions and
K/d>1, the ground state will be a Mott insulator on the
cluster and the composite fermions will be pinned (in par-
ticular for half-filling of the cluster). It is an open question
whether the delocalized metallic phases with enhanced per-
sistent current of the kind discussed in Ref. [78] might exist
in this case. Similarly, it is an open question whether for
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attractive interactions (K<0) and |K|/d<1 pairing of (per-
haps localized) fermions will take place. In the case of
|K|/d>1, we expect that the fermions will form a domain
insulator on the cluster.

In the spin glass limit A'l?}z a=1, we will deal with the
Edward-Anderson spin glass on the cluster. Such systems are
of interest in condensed matter physics (cf. [11]), and again
questions connected to the nature of spin glass ordering may
be studied in this case.

When N;> Ny, all B-sites will be filled, and the physics
will occur on the cluster of A-sites. For a=0, we will deal
with a gas with very weak repulsive interactions, and no
significant disorder on the random cluster; this is an ideal test
to study quantum percolation at low 7. For finite «, and
A'i’jz 1—a, the interplay between the fluctuating repulsive
K;;’s and quantum percolation might be studied.

IV. NUMERICAL ANALYSIS USING GUTZWILLER
ANSATZ

A. Numerical method

In this section, we present numerical results that give evi-
dences of (i) formation of composite particles in Fermi-Bose
mixtures in optical lattices and (ii) existence of different
quantum phases for various sets of composite tunneling and
interaction parameters and inhomogeneities. We mainly fo-
cus on type /I composites. Mean-field theory provides appro-
priate although not exact properties of Hubbard models [8].
In the following, we consider a variational mean field ap-
proach provided by the Gutzwiller ansatz (GA) [26,119]. In
particular, the GA ansatz has been successfully employed for
bosonic systems to study the superfluid to Mott insulator
transition [19,26] in nondisordered lattices, and the Anderson
and Bose glass transitions in the presence of disorder
[21,26].

Briefly, the Gutzwiller approach neglects site-to-site quan-
tum coherences so that the many-body ground state is written
as a product of N states, each one being localized in a dif-
ferent lattice site. Each localized state is a superposition of
different Fock states |n,m); with exactly n bosons and m
fermions on the ith lattice site:

N [ Nmax
ey =11 (E > gff)m ",m>i), (1)

i=1 n=0 m=0,1

where n,,,, is an arbitrary maximum occupation number of
bosons in each lattice site [120].

The gi”)m are complex coefficients proportional to the am-
plitude of finding n bosons and m fermions in the ith lattice
site, and consequently we can impose, without loss of gen-
erality, these coefficients to satisfy EnEm|gL’)m|2:1. For the
sake of simplicity, we neglect the anticommutation relation
of fermionic creation (f;) and annihilation (f];f ) operators in
different lattice sites. However, Pauli principle applies in
each lattice site (m;<1Vi). Since GA neglects correlations
between different sites, this procedure is expected to be safe
and is commonly used within the Gutzwiller approach [53].

Inserting |iayr) in the Schrodinger equation with the two-
species Fermi-Bose Hamiltonian (1), we were able to deter-

PHYSICAL REVIEW A 72, 063616 (2005)

mine the ground state and to compute the dynamical evolu-
tion of the Fermi-Bose mixture.

1. Ground state calculations

Employing a standard conjugate-gradient downbhill
method [121], we minimize the total energy (i p|Hegul Ve
with Hpgy given by Eq. (1) under the constraint of fixed total
numbers of fermions N; and bosons N, [122]:

(Unael o nae) - Af(<wMFIZ o) = e |

- Ab(<‘/’MF|E ”i| Iir) — Nb)2 — min. (22)

The numerical procedure is as follows: (i) We minimize the
energy of the mixture (eventually) in the presence of smooth
trapping potentials and with nonzero tunneling for bosons
and fermions, but assuming vanishing interactions between
bosons and fermions (U=0). During the minimization the
normalization (2,2,,|g,,.,/*=1) should be imposed. (ii) After
this initial minimization, we ramp up adiabatically the inter-
actions between bosons and fermions using the dynamical
Gutzwiller approach (see below). In this way, we end up with
the ground state of the mixture in the presence of tunneling
J, nonvanishing interactions U and V, and eventually in the
presence of a smooth trapping potential.

This two-step procedure is indeed necessary because in
the presence of interactions between bosons and fermions
finite numbers of bosons and fermions correspond to a saddle
point of Eq. (22), and no true minimum can be found within
direct minimization of the total Hamiltonian [54].

2. Time-dependent calculations

Using the time-dependent variational principle
((mplihd,— Hpgy(t)| ) — min)  with Hamiltonian Hpgy
given by Eq. (1) and eventually time-dependent parameters
Jip, U, 'V, ,u,f’b, we end up with the following dynamical
equation for the Gutzwiller coefficients [54,123]:

10,8\, = {En(n = 1)+ Unm - pfn - M?m}gi’,)m

- * T gl
- Dl = (D) Vi 1gy - (Sl
- (Ef)*gl(’ti,)i?1+l ’ (23)

where

=Y J{E > Vn+ 1g,§{),§gf{31,m], (24)

i)y n m=0,1

M=2 [ Selliefh] (5)
(ij) n
Note that these equations are valid under the hypothesis of
neglecting anticommutation relations for fermionic operators
in different sites. Equations (23)—(25) preserve both normal-
ization of the wave function and the mean particle numbers.
In the following, the dynamical Gutzwiller approach will
be used for (i) computing the ground state of the mixture in
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FIG. 8. Probability of having one fermion and zero boson at
each lattice site for the N=100 sites in a Fermi-Bose mixture with
Np=60, N;=40, J,,/V=J;/V=0.02 and in the presence of harmonic
traps for bosons and fermions characterized by w,=10"7 and
w;=5X 1077, respectively. The interaction between fermions and
bosons is (a) @=0 (independent bosonic MI and Fermi gas), (b)
a=0.5 (Fermi liquid), (¢) a@=1 (ideal Fermi gas), and (d) a=10
(fermionic insulator domain).

the presence of interactions between bosons and fermions
(see above) and (ii) to ramp up adiabatically disorder in the
optical lattice potential.

B. Numerical results

We have considered a 2D optical lattice with N=10X 10
sites to perform the simulations of the different quantum

phases that appear for type /I composites in the presence of a
very shallow harmonic trapping potential [Z’'=w®™' X 1(i)?,
where [(i) is the distance from site i to the central site in cell
size units], with different amplitudes for bosons and fermi-
ons. The harmonic on-site energy simulates shallow mag-
netic or optical trapping. The confining potential is experi-
mentally of vital importance in order to see Mott insulator
phases that require commensurate filling [20,124,125]. It
plays the role of a local chemical potential, and it has been
predicted that it modifies some properties of strongly corre-
lated phases [126]. Additionally, this breaks the equivalence
of all lattice sites and makes it more obvious the different
phases that one can achieve (see below). We first calculate
the ground state of the system considering N,=60 bosons,
N;=40 fermions, J,/V=J;/V=0.02, U=0 in the presence of
harmonic traps characterized by ©®=10"" and w'=5 X 107".

Under these conditions, we find that, as expected, the
bosons are well inside the MI phase with 77=1 boson per site
[19,26]. Due to the very small values of o' and w® neither the
bosons nor the fermions feel significantly the confining trap
as shown in Fig. 8(a).

1. Nondisordered phases

Starting with this ground state we adiabatically grow the
repulsive interactions between bosons and fermions, U,
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keeping the repulsion between bosons, V, constant, i.e.,
growing effectively « in order to create the composites.
Once the composites appear, the only nonzero probabilities
are (i) | 85121,m=0|2 to have one boson and zero fermion (i.e., no
composite), or (ii) |gf,20,m=1|2 to have zero boson and one
fermion (i.e., one composite). This proves the formation of
type II composites [128]. In Fig. 8(b), we show the probabil-
ity of having one composite | g:lo,m: \? (i.e., one fermion and
zero boson) at each lattice site for a=0.5, which corresponds
to repulsive interactions between composites K p=d.=1.6
% 1073, Due to the important value of the composite tunnel-
ing d.g, the ground state is delocalized and corresponds to a
(nonideal) Fermi liquid.

Increasing further the fermion-boson interaction param-
eter, «, the system reaches the point where the interactions
between composites are negligible corresponding to the re-
gion of an ideal Fermi gas phase (a=1). Figure 8(c) dis-
plays the probability of having a composite in each lattice
site in the case where the interactions between composites
exactly vanish, i.e., a=1. Increasing again the interaction
parameter «, one reaches for a>1 the region where the
interactions between composites are attractive (K ;<<0). In
this region, composite fermionic insulator domains are pre-
dicted. Due to the attractive interactions, the probability of
having composite fermions in the center of the trap increases
reaching nearly one for high enough effective attractive in-
teractions as shown in Fig. 8(d).

It is also worth noticing that the energies involving the
composites are at least three orders of magnitude smaller
than the corresponding energies for bosons and fermions
(degs, Kep<<J, U, V). As a consequence, the effect of inhomo-
geneities is much larger for composites than it is for bare
bosons and fermions. This is exemplified in Fig. 8. For no
interaction between bosons and fermions (a=0), the bare
particles are not significantly affected by the harmonic trap
on the 10X 10 lattice [see Fig. 8(a)]. On the contrary, as soon

as composites /7 are created, the harmonic trapping clearly
reflects in inhomogeneous population of the lattice sites [see
Figs. 8(b)-8(d)]. Another important consequence is that large
time scales are necessary in time evolution processes in order
to fulfill the adiabaticity condition.

2. Disordered phases

We now consider disordered optical lattices for the
bosons. The on-site energy ,LLE’ is assumed to be random with

time-dependent standard deviation {(&})?)—((@z’))>=A(r)

and independent from site to site. For this, we create type II
composites in different regimes (this is controlled by the
value of a as shown before) and we slowly ramp up the
disorder from O to its final value A.

Let us first consider a Fermi gas in the absence of disor-
der [see Fig. 9(b)]. Because of effective tunneling, d;;, the
composite fermions are delocalized although confined near
the center of the effective harmonic potential [(w—w,)
X 1(i)?]. In particular, the population of each lattice site fluc-
tuates around (m;)=0.4 with \{(m;—(m;))?)=0.43. While
slowly increasing the amplitude of disorder, the composite
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FIG. 9. Dynamical crossover from the Fermi gas to the Fermi
glass phases. The parameters are the same as in Fig. 8(c). (a) Vari-
ance of the number of fermions per lattice site as a function of the
amplitude of the disorder A. (b) Probability of having one compos-
ite (one fermion and zero boson) at each lattice site for the N sites
in the absence of disorder and (c) after ramping up adiabatically
diagonal disorder with amplitude A=5X 1074,

fermions become more and more localized in the lattice sites
to form a Fermi glass. Indeed, Fig. 9(a) shows that the fluc-
tuations in composite number are significantly reduced as the
amplitude of the disorder increases. For A=5X 1074, the
composite fermions are pinned in random sites as shown in
Fig. 9(c). As expected, the N; composite fermions populate
the Ny sites with minimal [l?.

It should be noted that in the absence of interactions be-
tween bosons and fermions (i.e., when the composites are
not formed), no effect of disorder is observed. This again
shows the formation of composites with typical energies sig-
nificantly smaller than those of bare particles.

We now consider the Fermi insulator domain phase [see
Fig. 10(b)] with slowly increasing disorder. In the Fermi
insulator domain (in the absence of disorder), the composite
fermions are pinned in the central part of the confining po-
tential. In addition, there is a ring of delocalized fermions
and this gives finite fluctuations on the atom number per site
[\((m;—(m;))*)=0.35]. As shown in Fig. 10(a), while ramp-
ing up the amplitude of disorder, the fluctuations decrease
fast and reach \/((m;—(m;))*)=0.13 for A>10"*. This indi-
cates that the composite fermions are pinned in different lat-
tice sites. This is confirmed in Fig. 10(c) where we plot the
population of the composites fermions in each lattice site for
A=5X10"*. Contrary to what happens for the transition
from Fermi gas to Fermi glass, the composites mostly popu-
late the central part of the confining potential. The reason for
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FIG. 10. Dynamical crossover from the fermionic domain insu-
lator to a disordered insulating phase. The parameters correspond to
Fig. 8(d). (a) Variance of the number of fermions per lattice site as
a function of the amplitude of the disorder. (b) Probability of having
one composite (one fermion and zero boson) in each lattice site in
the absence of disorder and (c) after ramping up adiabatically the
disorder with amplitude A=3 X 107,

that is twofold. First, with our parameters, the attractive in-
teraction between composites is of the order of K=-1.4
X 1073 and can compete with disorder A=3 X 10~*. This ex-
plains the central insulator domain. Second, because tunnel-
ing is small (d=8X 1073) and because disorder breaks the
symmetry of lattice sites in the ring around the domain, the
atoms in this region get pinned. The populated sites match
the lowest ;.

V. SPIN GLASSES

In this section we discuss in more detail the possible re-
alization of the Edwards-Anderson spin glass Fermi-Bose
mixtures as discussed in Sec. III C. Strictly speaking, since
the system is quantum it allows for realization of fermionic
spin glass [129]. The main goal of such an investigation is to
study the nature of the spin glass ordering and to compare
the predictions of the Mézard-Parisi and “droplet” pictures.

Although we work along the lines of the original papers
[6], it is necessary to reformulate the standard Mézard-Parisi
mean field description of our system. The main difference
appears because the Ising spins are coded as presence or
absence of a composite at a given site. This leads to a fixed
magnetization due to the fixed number of particles in the
system. For this we repeat very shortly the Sherrington-
Kirkpatrick calculations [108] here, adapted to our case.
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A. Edwards-Anderson model for composite fermions

The spin glass limit obtained in Sec. III C with large
disorder derives of the composite fermionic model (7) with
vanishing hopping due to strong site-to-site energy fluctua-
tions and NN interactions, K;;. By appropriate choice of
Ag-, K;; fluctuate around mean zero with random positive and
negative values [see Fig. 2(b)]. Replacing the composite
number operators with a classical Ising spin variable
s;:=2M;—1==1, one ends up with the Hamiltonian:

1 1
Hg_ 5= _E Kijsis;+ _E S (26)
4 2%

It describes an (fermionic) Ising spin glass [129], which dif-
fers from the Edwards-Anderson model [6,130] in that it has
an additional random magnetic field &; and, moreover, has to
satisfy the constraint of fixed magnetization value,
m=2N;/N—-1, as the number of fermions in the underlying
FBH model is conserved. It, however, shares the basic char-
acteristics with the Edwards-Anderson model as being a spin
Hamiltonian with random spin exchange terms K;;. In par-
ticular, this provides bond frustration, which in this model is
essential for the appearance of a spin glassy phase. The ex-
perimental study of this limit thus could present a way to
address various open questions of spin glass physics con-
cerning the nature and the ordering of its ground and possi-
bly metastable states (the Mézard-Parisi picture [6] versus
the “droplet” picture [7,107]), broken symmetry, and dynam-
ics in classical (in the absence of hopping) and quantum
(with small, but nevertheless present hopping) spin glasses
[8,131].

For sufficiently large systems, Eq. (26) is well approxi-
mated by assuming K;; and u; to be independent random
variables with Gaussian distribution, with mean O and H,
respectively, and variances K/\N and h, respectively [132].
This approximation will be used in the following calcula-
tions.

Before employing the mean field approach for Edwards-
Anderson-like models in Sec. V E for the Hamiltonian (26),
a very basic outline of the different phases of the short-range
Ising models with bond frustration is given and the two com-
peting physical pictures for the spin glass phase are briefly
summarized in this section.

The experimental observations have led to the identifica-
tion of three equilibrium phases, which are characterized by
two order parameters (for zero external magnetic field):
M :=(s;)7 is the magnetization, i.e., the order parameter for

magnetic ordering, and Qp,:= (si)% is the Edwards-Anderson
order parameter for spin glass ordering. Here, (-); denotes

the Gibbs ensemble average and - the disorder average. The
three phases are (i) an unordered paramagnetic phase, with
M=0 and Qy4=0; (ii) an ordered spin glass phase with
M=0 and Qp,#0 that is separated from the paramagnetic
phase by a second order phase transition [133]; and (iii) de-
pendent on the mean value of K;;, an ordered ferromagnetic
phase with M #0 and Qg,=0. It should be pointed out that
there are additional questions—different from, but of course

connected to the ones discussed in the following—about the
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nature of the equilibrium spin glass state that stem from the
intrinsic problems that are associated in this system with
separating equilibrium from nonequilibrium effects such as
metastability, hysteresis, and others (see [134] and references
therein).

B. Mézard-Parisi picture

The Mézard-Parisi (MP) picture is fundamentally guided
by the results of the mean-field theory. On the level of sta-
tistical physics, the Gibbs equilibrium distribution of the spin
system in the MP picture at temperature 7" and for a particu-
lar disorder configuration K can be written as a unique con-
vex combination of infinitely many pure equilibrium state
distributions [7,135],

PrK= > wrxPr K With > wrg=1, (27)
o o

where the overlap between two pure states is defined as
Qup= Q_lz <si>$,K<Si>[Tg,K’ (28)

where () denotes the size of the system. The mean-field ver-
sion of Q,z emerges naturally from the calculation in the
next section and motivates definition (28).

In the MP picture, the spin glass transition is interpreted
akin to the transition from an Ising paramagnet to a ferro-
magnet. There, the Gibbs distribution is written as a sum of
only two pure states, corresponding to the two possible fully
spin-polarized ferromagnetic ground states. As the tempera-
ture of the system decreases, the Z, symmetry of the system
is broken, and a phase transition to a ferromagnetic phase
occurs, whose equilibrium properties are not described by
the Gibbs state, but by the relevant pure state distribution
alone [6]. Analogously, the spin glass transition is character-
ized by the breaking of the infinite index symmetry, called
replica symmetry breaking in the mean-field case, by which
one pure state distribution p7 ; is chosen and alone describes
the low-temperature properties of the system [6]. However,
unlike the Ising ferromagnet, the pure states of the spin glass
are not related to each other by a symmetry of the Hamil-
tonian, but rather by an accidental, infinite degeneracy of the
ground state caused by the randomness of the bonds and the
frustration effects. This picture can be interpreted as the sys-
tem getting frozen into one particular state out of infinitely
many different ground or metastable states of the system.
These states are all taken to be separated by free energy
barriers, whose height either diverges with the system size or
it is finite but still so large that the decay into a “true” ground
state does not occur on observable time scales. Thus fluctua-
tions around one of these ground states can only sample
excited states within one particular free energy valley. Con-
sequently, Q4 in the spin glass phase must be redefined as
Ora=0 4 the self-overlap of the state, whereas it remains
unchanged for the paramagnetic phase.

C. de Almeida-Thouless plane

Based on the results of mean-field theory, one of the pre-
dictions of the MP picture concerns the order of the infinitely
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many spin glass ground states, which is ultrametric [6,136],
as can be seen from the joint probability distribution of three
different ground state overlaps, Pg(Q,,013,Q053). Upon
choosing independently three pure states 1, 2, and 3 from
the decomposition (27), one should find that with probability
1/4, Q1,=013=0,; and with probability 3/4 two of the
overlaps are equal and smaller than the third. Ultrametricity
then follows from the canonical distance function
D o5=0ps—Qqp- The mean-field theory, both with and with-
out a magnetic field, predicts the existence of a plane in the
space of the Hamiltonian parameters, called the de Almeida-
Thouless (dAT) plane [137], below which the naive ansatz
for the spin glass phase becomes invalid and the system is
characterized by the transition to this ultrametrically ordered
infinite manifold of ground states. It should be pointed out
that the clear occurrence of such a dAT plane in the finite
range Edwards-Anderson model would be an important indi-
cator for the validity of the MP picture in these systems. As
we discuss in Sec. V D, this conclusion has to be drawn with
great care.

D. “Droplet” model

The very applicability of the MP model for finite-range
systems is, however, still unproven. It is both challenged by
a rival theory, the so-called dropler model [107], as well as
by mathematical analysis (cf. [7] and references therein) that
questions the validity of transferring a picture developed for
the infinite-range mean-field case to the short-range model.
Being a phenomenological theory based on scaling argu-
ments and numerical results, the droplet model describes the
ordered spin glass phase below the transition as one of just
two possible pure states, connected by spin-flip symmetry,
analogous to the ferromagnet mentioned above. Conse-
quently there can be no infinite hierarchy of any kind, and
thereby no ultrametricity. Excitations over the ground state
are regions with a fractal boundary—the droplets—in which
the spins are in the configuration of the opposite ground-
state. The free energy of droplets of diameter L is taken to
scale as ~L?, with #<<0 at and below the critical dimension,
which is generally taken to be two. So three is the only
physical dimension where the spin glass transition is stable
with nonzero transition temperature, with 8~ 0.2 in this case.
The free energy barriers for the creation and annihilation of a
droplet scales in 3D as ~L¥, with < <2.

Although there can be no dAT plane in the strict sense in
the droplet-model, for an external magnetic field the system
can be kept from equilibration on experimental time scales
for parameters below a line that scales just like the dAT line.
This phenomenon might mimic the effects of the replica
symmetry breaking in the MP picture (see [107] for further
details).

E. Replica-symmetric solution for fixed magnetization

This section serves to show that the mean-field version of
the effective Hamiltonian (26) with random magnetic field
and magnetization constraint exhibits replica symmetry
breaking just as for the pure Edwards-Anderson model, and
would therefore be a candidate to examine the validity of the
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MP or droplet picture in a realistic short-ranged spin glass
model. Following Sherrington and Kirkpatrick (SK) [6], the
mean-field model is given by

1 1 _
Hgg = ZE Kijsisj+ 52 MiSis (29)
(i.)) i

where the round brackets (-,-) are generally used to denote
sums over all pairs of different indices. This model differs
from Eq. (26) by the long-range spin exchange. As the mean
of w;, H is generally nonzero this model will not exhibit a
phase transition, which, however, is not a concern, as the
number of (quasi-)ground states will be the quantity of inter-
est. Following the analysis of SK, we aim at finding the free
energy, ground state overlap and magnetization constraint.
Then we will use the de Almeida and Thouless approach [6]
to show that the obtained solution is unstable in a certain
parameter region, that lies below the so-called dAT-plane of
stability. The type of instability that emerges is then well-
known to require the replica symmetry breaking solution of
Parisi [6].

As the disorder is quenched (static on experimental time
scales), one cannot average directly over disorder in the par-
tition function as would be done for annealed disorder, but

one must rather average the free energy density, f=—B1n Z
using the “replica trick:” We form # identical copies of the
system (the replicas) and the average is calculated for an
integer n and a finite number of spins N. Then, using the
general formula In x=1im,,_o(x"—1)/n, In Z is obtained from
the analytic continuation of Z" for n— 0. Finally, we take the
thermodynamic limit N —cc. Explicitly, Z" is given by

Z'= > expl- BHsk[sfn]l, (30)

{s?:il}

where Hgg[s{",n] is the sum of n independent and indentical
spin Hamiltonians (29), averaged over the Gaussian disorder,
with Greek indices now numbering the n replicas.

Executing the average over the Gaussian distributions for
K;; and f1; leads to coupling between spin-spin interactions of
different replicas. As the mean-field approach means that the
double sum over the site indices in Eq. (29) can be simplified
into a square using (s%)?=1, one finds:

f_X/ = — (Nn ﬁ)_l eNn(,BK)2/4 e—nz(ﬁK)2/2+n(ﬁh)2/2

<3 gl Y8 (5 00)

{S:vx=tl} 2 a<f i N

+(Bh)? X ESf’ng—BHEES?}—l . (31

a<p i

where the prefactor ¢~ (BK)/2+1(BI)1/2 becomes irrelevant in
the limit n— 0 and is subsequently dropped. As in the stan-
dard procedure, the square of the operator sum Eisfsf is
decoupled by introducing auxiliary operators g, via a
Hubbard-Stratonovitch (HS) transformation [6].
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— 2 ® N 172
f?]: _ (Nn,B)_l eNn(ﬂK) /4f l H dqa/;(_) BK:|
-0 | a<pf 2

N(BK)?
X exp{—%z qiﬂ+N
a<f

Xln( E

{s%==x1}

exp[L(qaﬂn)] “1¢, (32)

where the functional L(q,p) is

L(qap) = B2 2 (K2qup+h)ssP— BHY, s (33)

a<pf @

and the configuration sum of exp[L(an)] now only goes
over the n spins s in L(g,p), the HS transformation having
made it possible to decouple the configuration sum over Nn
spins in Eq. (31) into a N-fold product of n-spin sums. As-
suming that the thermodynamic limit (N— o) can be taken
before n— 0, i.e., that the usual limiting process can be in-
verted, then Eq. (32) can be evaluated by the method of
steepest descent, as the exponent is proportional to N. Ac-
cording to this method, the free energy per spin in the ther-
modynamic limit is the maximum of the ¢, z-dependent func-

tion in the exponent:
(BK)? 1 2
4 1-= 2 qoz,B

1 (a,p)

— Bf = lim max
n—0

1
" 1n< b exp[L(qaﬁ)]> (34)
n
{s%==1}
(with f:=1im, _of") with the self-consistency condition:

af

— = O = = agf 35
=0 4= (35)
and the magnetization:
1 of
=————=(s",=2Ni/N-1 36
m BoH s\ P (36)

where the average ((-)); is defined as
E{so‘:tl} ()exp[l‘(qaﬂ)]
((-)),=1lim

10 ey EXPIL(qqp)]

(37)

The mean-field approach has allowed a decoupling of the
spins and a reduction of the problem to a single-site model
with “Hamiltonian” L[q,g]. For this new problem, the over-
lap parameter emerges naturally, albeit in a self-consistent
manner. To push the calculation further some assumption for
dqp has to be made. Naively, from the requirement that the
result should be independent of the replica-indices, the most
natural choice for ¢ is to consider all identical overlaps be-
tween the replicas, q,z=¢, which is the SK ansatz. Thus the
double sum over the replicas ¥, 5s%” in Eq. (33) can be
written as a square, keeping (s%)?=1 in mind. Another
Hubbard-Stratonovitch transformation with auxiliary vari-
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able z then decouples the square and yields an expression for
the free energy density, which has to be evaluated self-
consistently and in which the limit n—0 can be easily cal-
culated:

(BK)*
4

1 1 ([~ 7
+—In{ = | dzexp|-—
n \N27mJ 2

2 (K2 2
X(exp{— B(K°q+h )}

—ﬁfSK=1iH(1){ [1-(n-1)qg*]

2

x> exp[,B\’qu+h2s—BHs])n)} (38)

s==x1

_ K)?
=pBfk= (ﬁ4) (1 —Q)z—

(Bh)?
2

1 \12 (= ,
+( ) f dze*"* 1n{2 cosh[A(z)]}, (39)

2m

with A(z) = BVK*q+h>—BH. The overlap (35) and the mag-
netization constraint (36) can also be evaluated in the same
way:

1 o0
q= TJ dze—12/2 tanhz[A(Z)], (40)
N2m

—o0

1 o0
m= ?f dze‘zzl2 tanh[A(z)|=2Ng/N-1. (41)
N2 o

A well-known problem with the SK ansatz for g,z is that it
yields negative entropy for low temperatures and thus be-
comes unphysical. This is due to a fundamental technical
problem with the replica trick: For the method of steepest
descent to be valid, the SK solution must be a maximum of
the exponent in Eq. (32) and must stay a maximum as the
replica limit n—0 is taken. But there is no unique way of
choosing the zero-dimensional limit of the matrix ¢,z The
SK solution just corresponds to one possible choice for this
limit. Thus the question arises whether the SK solution for
the free energy is still a good, i.e., maximal choice in the
replica limit.

To answer this question, one proceeds analogous to the de
Almeida and Thouless procedure [137] to analyze the fluc-
tuations around the SK solution, while taking the magnetiza-
tion constraint into account (see Appendix B for details).
Developing Egs. (34) and (36) to second and first order, re-
spectively, around g,5=¢ one finds that in the replica limit
n—0 there is an eigenvalue \, of the matrix Pfl 9 0594 y5
that can have both negative values and respects the con-
straint, yielding the condition
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1 [
dze " sech[A(2)] >0, (42)

!,_
N27J

(BK)?

which is violated for low enough 7/K, H/K, and h/K. The
plane in parameter space below which this happens is the
so-called dAT surface. This instability is rectified by a much
more involved ansatz for g, that breaks the symmetry of the
replicas and leads to the phenomena described in Sec. V A.

Ay

VI. EXPERIMENTAL INSIGHTS

Experimental creation and detection of the phenomena
discussed in this paper poses a major problem and deserves a
lot of creative thinking and separate publications. In this sec-
tion we will just sketch what in our opinion are the most
obvious ways of addressing these problems. In this section
we do not address the questions concerning experimental
realization of ultracold FB mixtures and composite
fermions—these questions are discussed in Ref. [53].

The first question thus to be addressed is what are the best
ways to create quenched disorder in a controlled way. Roth
and Burnett [22] and the authors [21] have suggested that the
use of pseudorandom disorder induced by noncommensurate
optical lattices should work as well as the use of the genuine
random lattices. Indeed the latter can be only (so far)
achieved using speckle radiation, i.e., disorder correlation
length of order of a few microns. If we work with systems of
size of mm’s, such disorder would definitely be enough to
induce localization in 1D or 2D. Unfortunately, the size of
the systems in question is typically of the order of hundred of
microns, and that is one of the reasons why it is difficult to
observe Anderson localization with BECs [27,28].

The analysis performed by us in this context implies
clearly that it will be much easier to achieve the desired
properties of the disorder using pseudodisordered, i.e., over-
lapped incommensurable optical lattices [29]. One should
also stress the equally promising look to the proposals for-
mulated recently to use the optical tweezers techniques [38]
and a random distribution of impurity atoms pinned in dif-
ferent lattice sites [33].

Another variety of problems is related to the detection of
the quantum phases discussed in this paper. Below we list
basic methods that have been already successfully applied to
ultracold atomic gases in optical lattices.

(1) Imaging of the atomic cloud after ballistic expansion.
This (perhaps the most standard method) has been used in
Ref. [20] to distinguish the bosonic SF phase from the MI
phase. It allows for measurement of the quasimomentum dis-
tribution of atoms obtained after initial expansion caused by
interactions [138], i.e., it detects first order coherence (inter-
ference pattern), present, for instance, in the SF phase.

(2) Monitoring the density profile. Using phase contrast
imaging [139] it is possible to perform a direct and nonde-
structive observation of the spatial distribution of the con-
densate in situ. This kind of measurement allows the direct
observation of superfluidity [140] and can be therefore ap-
plied to characterize the fluid and superfluid phases.

(3) Tilting or acceleration of the lattice. This method was
used in Ref. [141] to detect the gap in the MI phase. It
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allows, in principle, to distinguish gapless from gapped
phases, provided the continuum of low energy states can be
achieved via tilting. Fluidity, superfluidity, and in general
extended, nonlocalized excitations should allow one to detect
Bloch oscillations [142].

(4) Absorption of energy via modulation of the lattice.
This method was also designed to detect the gap in the MI
phase [124]. Similarly as tilting, it provides a way of probing
excitations in the systems.

(5) Bragg spectroscopy. This method, one of the first pro-
posed [143], is also a way of probing a certain kind of exci-
tations in the system [144].

(6) Cooper pair spectroscopy. This method is particularly
useful to detect Fermi superfluids [145]. Its theoretical as-
pects are discussed in Ref. [146], while for experiments see
Ref. [147].

(7) Trap shaking and nonlinear dynamics. Yet another
way to probe excitations could correspond to analysis of the
response of the system upon sudden shaking of the trap [32].

(8) Observations of vortices, solitons, etc. This method
provides a direct way to detect superfluidity (for vortices in
Bose superfluid see, for instance, Ref. [148], for vortices in
Fermi superfluid see [149]).

(9) Spatial quantum noise interferometry. The last, but not
the least method discussed here allows for practically direct
measurement of the density-density correlation and second
order coherence. It has been proposed in Ref. [150] (see also
[151]), and used with great success to detect the bosonic
Mott insulator [152] and the Fermi superfluid [153]. It has
capabilities of detecting and measuring relevant properties of
various phases and structures ranging from supersolids,
charge-density wave phases, and even Luttinger liquids in
1D. In the Fourier frequency and momentum domain it cor-
responds to measurements of the dynamic structure factor
(for a discussion in the context of cold gases see Ref. [154]).

There are of course more methods than the ones discussed
above, but combined applications of those discussed should
allow for clear detection and characterization of the quantum
phases discussed in this paper.

Let us start this discussion with ideal Fermi gas, Fermi
liquid, and metallic phases between Fermi glass and glassy
Mott insulator. All of them are fluids, i.e., will respond con-
sequently to perturbations. They are gapless and differ in this
sense from the Fermi superfluids. All of them should lead to
a nontrivial Fermi surface imaging in ballistic expansion.
The difference between ideal and interacting phases is here
rather quantitative, and as such can be measured. Quantities
such as the effective mass can be recovered from the mea-
surements. Influence of disorder on these phases will be seen
as a gradual decrease of their “conducting” properties. A
similar scenario is expected to take place with “dirty” super-
fluids; here measurements of the gap (using any of the exci-
tation probing methods) should reveal a rapid gap decrease
with the increasing disorder.

Disordered and glassy phases, such as Femi glass or
glassy Mott insulator, are more difficult to detect. Obviously
they will tend to give blurred images in the measurement of
the first order coherence. Spatial noise interferometry should
reveal some information about the glassy Mott insulator, es-
pecially in the region of parameters where it will incorporate
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domains of checkerboard phase. Although the glassy phases
are gapless, the states forming the spectral quasicontinuum at
low energies may be very difficult to achieve in simple ex-
citation measurements, since they may lie far away one from
another in the phase space. Probing of one of such states
would thus allow one to study excitations accesible locally in
the phase, which most presumably will be gapped. The char-
acter of excitations, and in particular their spectrum should,
however, be a very sensitive function of how one excites
them, and how one detects them (compare [32]). On the
other hand, the domain insulator phase should be visible by
the “naked eye,” and independent of detection of bosons and
composites. Also, the noise interferometry should reveal in-
formation about the presence of the lattice, similarly as in the
standard Mott insulator phase [152].

Finally, a separate problem concerns detection of the fer-
mionic spin glass phase and its properties, as well as distinc-
tion between the possible adequacy of the Parisi versus drop-
let model. Repeated preparation of the system in the lattice
with the same disorder (or even direct comparison and mea-
surement of overlap of replicas [155]) will shed some light
on the latter problem. In many other aspects, response of the
spin glass to excitations will be similar to that of Fermi
glasses and glassy Mott insulator.

VII. CONCLUSIONS

Summarizing, we have studied atomic Fermi-Bose mix-
tures in optical lattices in the strong interacting limit, and in
the presence of an inhomogeneous, or random on-site poten-
tial. We have derived the effective Hamiltonian describing
the low temperature physics of the system, and shown that an
inhomogeneous potential may be efficiently used to control
the nature and strength of (boson mediated) interactions in
the system. Using a random potential, one is able to control
the system in such a way that its physics corresponds to a
wide variety of quantum disordered systems. It is worth
mentioning that the physics discussed in this paper is very
much analogous to the one of Bose-Bose mixtures in the
limit of hard core bosons (when both species exhibit strong
intraspecies repulsion).

We end this section with a general comment on quantum
complex systems. In our opinion quantum degenerate gases
offer an absolutely unique possibility to study various mod-
els of physics of disorder systems, such as Bose and Fermi
glasses, quantum percolating systems, “dirty” superfluids,
domain and Mott insulators, quantum spin glasses, systems
exhibiting localization-delocalization phenomena, etc. The
summary of predictions of this paper is schematically shown
in the following list of quantum phases, obtained for the case
of only one type of sites, and ,uﬁ:O, or ,uf: ,u?:

(1) composites I—Fermi liquid, Fermi glass, quantum
bond percolation;

(2) composites II—ideal Fermi gas, Fermi glass, Fermi
liquid, Mott insulator, fermionic spin glass; and

(3) composites II—domain insulator, “dirty” superfluid,
Fermi glass, metallic phase, Mott insulator, fermionic spin
glass.

Additionally, for the case of lattices with different types of
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sites, physics of quantum site percolation will become rel-
evant. Complex systems such as quantum cellular automata
or neural networks can also be realized in this way. In fact,
we and other authors have several times already stressed the
fascinating possibility of using the ultracold lattice gases as
quantum simulators of complex systems. But, the proposed
systems go beyond just repeating what is known from the
other kinds of physics; they allow one to create novel quan-
tum phases and novel quantum behaviors.
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APPENDIX A: EFFECTIVE HAMILTONIAN TO SECOND
ORDER

The Hamiltonian of our two-species system described in
Sec. III B splits into two components: H, and H;,. The
Hamiltonian H, has known eigenstates that are grouped in
blocks (or manifolds) of states close in energy while the
differences between states from two different blocks are
much larger than the intrablock spacing. In the case of Sec.
III B, this corresponds to the manifold of near-ground states,
separated in energy by terms of order A'i’f, which is separated
from other blocks of higher excited states (two or more
bosons in one site) by terms of the order V. Generally, the
projector on each block space is denoted by P, where « is
the block index, and the ith state in any block is denoted by
|, i). Note that P,HyPz=0 holds for a:# S.

The second component is a Hamiltonian, H,,, that
couples to H, via a factor J, where J is considered to be
small, to form the complete Hamiltonian of the system,
H=Hy+JH,,,. The interaction Hamiltonian is now considered
to introduce couplings between block a and B, i.e.,
P H;Pp#0 for a# (.

Following the technique detailed, e.g., in [114], we con-
struct an effective Hamiltonian, H,, from H such that it
describes the slow, low-energy perturbation-induced tunnel-
ing strictly within each manifold of unperturbed block states,
i.e., P H ;Pg=0 for a# B, and has the same eigenvalues as
H. Tunneling between different blocks is thus neglected, as
this corresponds to fast, high-frequency processes which we
neglect here. Technically, the requirements for H, are

(1) H, is Hermitian, with the same eigenvalues and the
same degeneracies as H. To achieve this, one defines
T:=¢', with S Hermitian, S=S*, and chosen such that:

H,y=THT'. (A1)
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(2) H s does not couple states from different manifolds:

ParHeffPﬁ= 0, aF ﬂ (AZ)

(3) As the first two conditions still allow for an infinite
number of unitary transformations (all UT are still possible,
U being any unitary transformation acting only within the
manifolds), the following additional condition is imposed:

P,SP,=0 for any a. (A3)
Expanding the first condition using the Baker-Hausdorff for-
mula, one obtains:

1
Heyp=H + [iS, H] + 1S, [iS. H])

1
+ ;[iS,[iS,[iS,H]]] + e (A4)
Making a power-series ansatz in S,
S=JS, + S, + PSy+ -+, (A5)

and employing H=Hy+JH,,, one obtains from Eq. (A4) to
second order

Heff_ Hy+ J([lSl,HO] + Hmt)
fff

1

+ 12([1'52,}10] +[i81,Hp] + E[isl’[iShH()]]>(A6)
This is a power series for H,;, with its moments denoted by
Hl,ff, Hif, .., wWhere H generally depends on all S; with
1 <j=<n. This allows for a systematic evaluation of the ma-
j|iS | ,8 J), and consequently delivers matrix
expressions for the H, orp and Hopp

To start with this, one considers the expansions (A6) and
(A5) up to first order, i.e., Heff—Ho+JH1f and S=JS,. Using
the second and th1rd conditions, as well as P, HyPz=0 and
the expression for H ff in Eq. (A6), one finds:

<a’i|iSl |B’]>(Eﬁj - Eai) + <asl|Hint|B’.]> =0 (A7)
—” a# B

NI Eqi—Eg; (A8)
0, a=p0.

Thus the effective Hamiltonian within the o manifold de-
pends only on the interaction term and not on S, i.e.,
Hiﬁla )= H,,la,j). A general result for any n is
Hsz|a, J) is independent of S,, based on the third
condition, and on the observation that S, enters the expres-
sion for H’, only in the commutator with H,, which is diag-
onal in the manifold index.

Thus when continuing to second order, the term [iS,,H,]
in the expression for H can be dropped. Of the two remain-
ing terms defining H> e in Eq. (A6), the second one can be
simplified by observing that according to Eq. (A7) the opera-
tor [iS;,H,] is purely nondiagonal in the manifold index,
with values opposite to those of the nondiagonal part of the
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interaction Hamiltonian. Thus 2[1S1,[1S1,H0]]——2[151,HW
Now inserting the identity between the operators in the still
untreated second term in Hf,ff, [iS|,H;,], one sees that due to
S; being nondiagonal in «, again only the nondlagonal part
of H,, can contribute: [iS,,H,,]=[iS;,H"?]. Therefore one
has

int.

nd
int

H?,=[iS, H"] + [zs [zS H,l]= [lS H™].
eff — 154 int 1» 141014 — 1> nt (A9)

Collecting all terms relevant for Heff|a, J) to second or-
der in J, and introducing the notation Q=2 . .[|v.k)
X(y.k|/(E—E)], one finds

ai5ij

Hip Qi+ QujH,

(A10)

where the identity operator has been inserted in the final
expression for Hgff in formula (A9), and then evaluated using
formula (A8), which naturally leads one to define the opera-
tor Q,; as above. Note that this construction can be general-
ized to arbitrary orders in J in a straightforward manner, as
detailed in [114].

APPENDIX B: STABILITY OF THE SK SOLUTION

The Taylor expansion of Eq. (34) around g,z=¢q yields the
correction —%5}7 to the free energy, with

&f

5]? = E U oq B&I 5
laplysl O9apddyslsx
=C(ap)(y8)

>

[a,B][7.4]

[Sapiv — (BK)X(s"sPs7s9)7K

= (55285 75%)75] 8450 15,

where [-,-] denotes a sum over all distinct index pairs irre-
spective of the order, the index SK denotes evaluation at
dog=9, and, analogous to Eqs (40) and (41),
(s%sPs7s%, | sx=(1/2m) 2 [* dze™> "2 tanh? [A(z)].

If the SK solution really corresponds to a maximum, this
symmetric quadratic form must be positive definite. To check
this, one calculates the eigenvalues of the
%n(n—l)—dimensional matrix G(,p)(y¢ in terms of its three
distinct matrix elements:

P = Gapap = 1= (BK)*(1=(s°")Dlsk,

(B1)

Q = Gapay =~ (BK)* ((sPs7), = (s*P)]) sk

=~ (BK)* ((s%sPs 5%, — (s°P)7) s

As becomes apparent from this, there are just three distinct
classes of transformations that leave G,y invariant: those

R=Gapyye =
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that permute no index acting on the P’s; those that permute a
single index acting on the Q’s; and those that permute two
indices acting on the R’s. Thus there are only three eigens-
paces to distinct eigenvalues and the linearly independent
eigenvectors within each of these eigenspaces can naturally
be chosen by considering a group of vectors that is invariant
under the corresponding permutation transformation.
1. No index permutation

The ansatz for the eigenvalue is trivially given by
8q,p=c, forall (afB), (B2)
which is nondegenerate. With this ansatz, the eigenvalue
equation is

P+2(n—2)Q+%(n—Z)(n—3)R—)\1 c=0 (B3)

from which \; can immediately be read off.

2. Permutation of a single index
Again, the ansatz for the eigenvectors is naturally given
by
foraor B=0, Oq.,z=d for a,B# 6.

(B4)

8qap=c

The ansatz still contains the previous case, as the require-
ment of the eigenvectors (B2) and (B4) being orthogonal still
has to be fulfilled. This yields ¢c=(1-n/2)d and a degeneracy
of n—1 for the eigenvalue. The eigenvalue equation then
becomes

[P+(n-4)Q+(n-3)R-\{]d=0 (B5)
from which \| is again immediately obvious.

3. Permutation of both indices

The ansatz is

0Ggy=C OGpa=90q,,=d for a# 6,v,
dq.p=e for a,B+ 6,v. (B6)
Orthogonality to the previous eigenspaces requires

¢=(2-n), d=(3-n)/2, and results in the final eigenvalue
equation:

[P=20+R-\,]e=0 (B7)
with N\, having degeneracy %n(n—S).

Taking the naive replica limit again the first two eigenval-
ues coincide:

lim A, =lim \| = P—40Q - 3R. (BS)

n—0 n—0

As de Almeida and Thouless report [137], a region in
parameter-space where this limiting value took a negative
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FIG. 11. Almeida-Thouless plane in the reduced variables k7/K,
h/K, and H/K. The constraint on the magnetization (41) has been
effectively neglected for this, as it is a parameter in the experiment
as well.

value could not be found. Thus, calculating N\, explicitly, the
relevant stability condition reads

1 1

A=y - =
T(BK? 2w

f ’ dze~2"? sech’[A(z)]>0. (B9)

Solving the coupled equations (39)—(41) for A,=0 yields the
dAT plane (cf. Fig. 11). Above it, the SK solution is still
valid, and below it \, takes negative value and the SK solu-
tion breaks down.

This can of course only happen if eigenvectors to A\, are
compatible with the magnetization constraint (36). To see
this, one has to check that small fluctuations around g,z=¢
do not lead to a deviation from the value for m, i.e., that

om= 2, 8445=0 (B10)
[wpl 9ap | sk
holds, with
Hs™)p
Iqap | sk
[(KB)* (s — (s (M) ]|k aor B=N\

T [RBA 5Py, — (%P (M) ske @B # N
(B11)

Inserting any eigenvector of A, into Eq. (B10) will, however,
yield the desired result. As is clearly seen from Eq. (B11)
&(s)‘>L/&an evaluated at g,5=¢ is an eigenvector to \{, and
thus om=0 is fulfilled.

The magnetization constraint is thereby compatible with
the instability A, <0, and replica-symmetry breaking is ex-
pected to occur. From the calculations it has become clear
that the presence of the random magnetic field would not
change the occurrence of replica symmetry breaking, and all
properties like infinitely degenerate ground-states and ultra-
metricity would be expected to occur in this model as well,
provided the Mézard-Parisi approach can be applied to the
finite range spin glass at all.
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