118 research outputs found
Casimir effect for massless minimally coupled scalar field between parallel plates in de Sitter spacetime
Casimir effect for massless minimally coupled scalar field is studied. An
explicit answer for de Sitter spacetime is obtained and analized. Cosmological
implications of the result are discussed.Comment: 7 pages, 2 figure
Radiative Corrections to the Aharonov-Bohm Scattering
We consider the scattering of relativistic electrons from a thin magnetic
flux tube and perturbatively calculate the order , radiative
correction, to the first order Born approximation. We show also that the second
order Born amplitude vanishes, and obtain a finite inclusive cross section for
the one-body scattering which incorporates soft photon bremsstrahlung effects.
Moreover, we determine the radiatively corrected Aharonov-Bohm potential and,
in particular, verify that an induced magnetic field is generated outside of
the flux tube.Comment: 14 pages, revtex, 3 figure
Heavy quarkonium: progress, puzzles, and opportunities
A golden age for heavy quarkonium physics dawned a decade ago, initiated by
the confluence of exciting advances in quantum chromodynamics (QCD) and an
explosion of related experimental activity. The early years of this period were
chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in
2004, which presented a comprehensive review of the status of the field at that
time and provided specific recommendations for further progress. However, the
broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles
could only be partially anticipated. Since the release of the YR, the BESII
program concluded only to give birth to BESIII; the -factories and CLEO-c
flourished; quarkonium production and polarization measurements at HERA and the
Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the
deconfinement regime. All these experiments leave legacies of quality,
precision, and unsolved mysteries for quarkonium physics, and therefore beg for
continuing investigations. The plethora of newly-found quarkonium-like states
unleashed a flood of theoretical investigations into new forms of matter such
as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the
spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b},
and b\bar{c} bound states have been shown to validate some theoretical
approaches to QCD and highlight lack of quantitative success for others. The
intriguing details of quarkonium suppression in heavy-ion collisions that have
emerged from RHIC have elevated the importance of separating hot- and
cold-nuclear-matter effects in quark-gluon plasma studies. This review
systematically addresses all these matters and concludes by prioritizing
directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K.
Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D.
Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A.
Petrov, P. Robbe, A. Vair
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
Identification of a Negative Allosteric Site on Human α4β2 and α3β4 Neuronal Nicotinic Acetylcholine Receptors
Acetylcholine-based neurotransmission is regulated by cationic, ligand-gated ion channels called nicotinic acetylcholine receptors (nAChRs). These receptors have been linked to numerous neurological diseases and disorders such as Alzheimer's disease, Parkinson's disease, and nicotine addiction. Recently, a class of compounds has been discovered that antagonize nAChR function in an allosteric fashion. Models of human α4β2 and α3β4 nicotinic acetylcholine receptor (nAChR) extracellular domains have been developed to computationally explore the binding of these compounds, including the dynamics and free energy changes associated with ligand binding. Through a blind docking study to multiple receptor conformations, the models were used to determine a putative binding mode for the negative allosteric modulators. This mode, in close proximity to the agonist binding site, is presented in addition to a hypothetical mode of antagonism that involves obstruction of C loop closure. Molecular dynamics simulations and MM-PBSA free energy of binding calculations were used as computational validation of the predicted binding mode, while functional assays on wild-type and mutated receptors provided experimental support. Based on the proposed binding mode, two residues on the β2 subunit were independently mutated to the corresponding residues found on the β4 subunit. The T58K mutation resulted in an eight-fold decrease in the potency of KAB-18, a compound that exhibits preferential antagonism for human α4β2 over α3β4 nAChRs, while the F118L mutation resulted in a loss of inhibitory activity for KAB-18 at concentrations up to 100 µM. These results demonstrate the selectivity of KAB-18 for human α4β2 nAChRs and validate the methods used for identifying the nAChR modulator binding site. Exploitation of this site may lead to the development of more potent and subtype-selective nAChR antagonists which may be used in the treatment of a number of neurological diseases and disorders
Museum and herbarium collections for biodiversity research in Angola
The importance of museum and herbarium collections is especially great
in biodiverse countries such as Angola, an importance as great as the challenges
facing the effective and sustained management of such facilities. The interface that
Angola represents between tropical humid climates and semi-desert and desert
regions creates conditions for diverse habitats with many rare and endemic species.
Museum and herbarium collections are essential foundations for scientific studies,
providing references for identifying the components of this diversity, as well as
serving as repositories of material for future study. In this review we summarise the
history and current status of museum and herbarium collections in Angola and of
information on the specimens from Angola in foreign collections. Finally, we provide
examples of the uses of museum and herbarium collections, as well as a roadmap
towards strengthening the role of collections in biodiversity knowledge
generationinfo:eu-repo/semantics/publishedVersio
A Novel Bocavirus Associated with Acute Gastroenteritis in Australian Children
Acute gastroenteritis (AGE) is a common illness affecting all age groups worldwide, causing an estimated three million deaths annually. Viruses such as rotavirus, adenovirus, and caliciviruses are a major cause of AGE, but in many patients a causal agent cannot be found despite extensive diagnostic testing. Proposing that novel viruses are the reason for this diagnostic gap, we used molecular screening to investigate a cluster of undiagnosed cases that were part of a larger case control study into the etiology of pediatric AGE. Degenerate oligonucleotide primed (DOP) PCR was used to non-specifically amplify viral DNA from fecal specimens. The amplified DNA was then cloned and sequenced for analysis. A novel virus was detected. Elucidation and analysis of the genome indicates it is a member of the Bocavirus genus of the Parvovirinae, 23% variant at the nucleotide level from its closest formally recognized relative, the Human Bocavirus (HBoV), and similar to the very recently proposed second species of Bocavirus (HBoV2). Fecal samples collected from case control pairs during 2001 for the AGE study were tested with a bocavirus-specific PCR, and HBoV2 (sequence confirmed) was detected in 32 of 186 cases with AGE (prevalence 17.2%) compared with only 15 controls (8.1%). In this same group of children, HBoV2 prevalence was exceeded only by rotavirus (39.2%) and astrovirus (21.5%) and was more prevalent than norovirus genogroup 2 (13.4%) and adenovirus (4.8%). In a univariate analysis of the matched pairs (McNemar's Test), the odds ratio for the association of AGE with HBoV2 infection was 2.6 (95% confidence interval 1.2–5.7); P = 0.007. During the course of this screening, a second novel bocavirus was detected which we have designated HBoV species 3 (HBoV3). The prevalence of HBoV3 was low (2.7%), and it was not associated with AGE. HBoV2 and HBoV3 are newly discovered bocaviruses, of which HBoV2 is the thirdmost-prevalent virus, after rotavirus and astrovirus, associated with pediatric AGE in this study
Classical tests of General Relativity in thick branes
Classical tests of General Relativity in braneworld scenarios have been
investigated recently with the purpose of posing observational constraints on
parameters of some models of infinitely thin brane. Here we consider the motion
of test particles in a thick brane scenario that corresponds to a regularized
version of the Garriga-Tanaka solution, which describes a black hole solution
in RSII model, in the weak field regime. By adapting a mechanism previously
formulated in order to describe the confinement of massive tests particles in a
domain wall (that simulates classically the trapping of the Dirac field in a
domain wall), we study the influence of the brane thickness on the
four-dimensional (4D) path of massless particles. Although the geometry is not
warped and, therefore, the bound motion in the transverse direction is not
decoupled from the movement in the 4D-world, we can find an explicit solution
for the light deflection and the time delay, if the motion in the fifth
direction is a high frequency oscillation. We verify that, owing to the
transverse motion, the light deflection and the time delay depend on the energy
of the light rays. This feature may lead to the phenomenon of gravitational
rainbow. We also consider the problem from a semi-classical perspective,
investigating the effects of the brane thickness on the motion of the zero-mode
in the 4D-world
Cancer Genomics Identifies Regulatory Gene Networks Associated with the Transition from Dysplasia to Advanced Lung Adenocarcinomas Induced by c-Raf-1
Background: Lung cancer is a leading cause of cancer morbidity. To improve an understanding of molecular causes of disease a transgenic mouse model was investigated where targeted expression of the serine threonine kinase c-Raf to respiratory epithelium induced initialy dysplasia and subsequently adenocarcinomas. This enables dissection of genetic events associated with precancerous and cancerous lesions. Methodology/Principal Findings: By laser microdissection cancer cell populations were harvested and subjected to whole genome expression analyses. Overall 473 and 541 genes were significantly regulated, when cancer versus transgenic and non-transgenic cells were compared, giving rise to three distinct and one common regulatory gene network. At advanced stages of tumor growth predominately repression of gene expression was observed, but genes previously shown to be upregulated in dysplasia were also up-regulated in solid tumors. Regulation of developmental programs as well as epithelial mesenchymal and mesenchymal endothelial transition was a hall mark of adenocarcinomas. Additionaly, genes coding for cell adhesion, i.e. the integrins and the tight and gap junction proteins were repressed, whereas ligands for receptor tyrosine kinase such as epi- and amphiregulin were up-regulated. Notably, Vegfr- 2 and its ligand Vegfd, as well as Notch and Wnt signalling cascades were regulated as were glycosylases that influence cellular recognition. Other regulated signalling molecules included guanine exchange factors that play a role in an activation of the MAP kinases while several tumor suppressors i.e. Mcc, Hey1, Fat3, Armcx1 and Reck were significantly repressed. Finally, probable molecular switches forcing dysplastic cells into malignantly transformed cells could be identified. Conclusions/Significance: This study provides insight into molecular pertubations allowing dysplasia to progress further to adenocarcinoma induced by exaggerted c-Raf kinase activity
- …
