1,751 research outputs found
Characteristics of outdoor falls among older people: A qualitative study
Background Falls are a major threat to older people’s health and wellbeing. Approximately half of falls occur in outdoor environments but little is known about the circumstances in which they occur. We conducted a qualitative study to explore older people’s experiences of outdoor falls to develop understanding of how they may be prevented. Methods We conducted nine focus groups across the UK (England, Wales, and Scotland). Our sample was from urban and rural settings and different environmental landscapes. Participants were aged 65+ and had at least one outdoor fall in the past year. We analysed the data using framework and content analyses. Results Forty-four adults aged 65 – 92 took part and reported their experience of 88 outdoor falls. Outdoor falls occurred in a variety of contexts, though reports suggested the following scenarios may have been more frequent: when crossing a road, in a familiar area, when bystanders were around, and with an unreported or unknown attribution. Most frequently, falls resulted in either minor or moderate injury, feeling embarrassed at the time of the fall, and anxiety about falling again. Ten falls resulted in fracture, but no strong pattern emerged in regard to the contexts of these falls. Anxiety about falling again appeared more prevalent among those that fell in urban settings and who made more visits into their neighbourhood in a typical week. Conclusions This exploratory study has highlighted several aspects of the outdoor environment that may represent risk factors for outdoor falls and associated fear of falling. Health professionals are recommended to consider outdoor environments as well as the home setting when working to prevent falls and increase mobility among older people
Proximity to Sports Facilities and Sports Participation for Adolescents in Germany
Objectives - To assess the relationship between proximity to specific sports facilities and participation in the corresponding sports activities for adolescents in Germany.
Methods - A sample of 1,768 adolescents aged 11–17 years old and living in 161 German communities was examined. Distances to the nearest sports facilities were calculated as an indicator of proximity to sports facilities using Geographic Information Systems (GIS). Participation in specific leisure-time sports activities in sports clubs was assessed using a self-report questionnaire and individual-level socio-demographic variables were derived from a parent questionnaire. Community-level socio-demographics as covariates were selected from the INKAR database, in particular from indicators and maps on land development. Logistic regression analyses were conducted to examine associations between proximity to the nearest sports facilities and participation in the corresponding sports activities.
Results - The logisitic regression analyses showed that girls residing longer distances from the nearest gym were less likely to engage in indoor sports activities; a significant interaction between distances to gyms and level of urbanization was identified. Decomposition of the interaction term showed that for adolescent girls living in rural areas participation in indoor sports activities was positively associated with gym proximity. Proximity to tennis courts and indoor pools was not associated with participation in tennis or water sports, respectively.
Conclusions - Improved proximity to gyms is likely to be more important for female adolescents living in rural areas
Quantum control of proximal spins using nanoscale magnetic resonance imaging
Quantum control of individual spins in condensed matter systems is an
emerging field with wide-ranging applications in spintronics, quantum
computation, and sensitive magnetometry. Recent experiments have demonstrated
the ability to address and manipulate single electron spins through either
optical or electrical techniques. However, it is a challenge to extend
individual spin control to nanoscale multi-electron systems, as individual
spins are often irresolvable with existing methods. Here we demonstrate that
coherent individual spin control can be achieved with few-nm resolution for
proximal electron spins by performing single-spin magnetic resonance imaging
(MRI), which is realized via a scanning magnetic field gradient that is both
strong enough to achieve nanometric spatial resolution and sufficiently stable
for coherent spin manipulations. We apply this scanning field-gradient MRI
technique to electronic spins in nitrogen-vacancy (NV) centers in diamond and
achieve nanometric resolution in imaging, characterization, and manipulation of
individual spins. For NV centers, our results in individual spin control
demonstrate an improvement of nearly two orders of magnitude in spatial
resolution compared to conventional optical diffraction-limited techniques.
This scanning-field-gradient microscope enables a wide range of applications
including materials characterization, spin entanglement, and nanoscale
magnetometry.Comment: 7 pages, 4 figure
CMB Telescopes and Optical Systems
The cosmic microwave background radiation (CMB) is now firmly established as
a fundamental and essential probe of the geometry, constituents, and birth of
the Universe. The CMB is a potent observable because it can be measured with
precision and accuracy. Just as importantly, theoretical models of the Universe
can predict the characteristics of the CMB to high accuracy, and those
predictions can be directly compared to observations. There are multiple
aspects associated with making a precise measurement. In this review, we focus
on optical components for the instrumentation used to measure the CMB
polarization and temperature anisotropy. We begin with an overview of general
considerations for CMB observations and discuss common concepts used in the
community. We next consider a variety of alternatives available for a designer
of a CMB telescope. Our discussion is guided by the ground and balloon-based
instruments that have been implemented over the years. In the same vein, we
compare the arc-minute resolution Atacama Cosmology Telescope (ACT) and the
South Pole Telescope (SPT). CMB interferometers are presented briefly. We
conclude with a comparison of the four CMB satellites, Relikt, COBE, WMAP, and
Planck, to demonstrate a remarkable evolution in design, sensitivity,
resolution, and complexity over the past thirty years.Comment: To appear in: Planets, Stars and Stellar Systems (PSSS), Volume 1:
Telescopes and Instrumentatio
The effects of knee joint angle on neuromuscular activity during electrostimulation in healthy older adults
Introduction
Electrostimulation devices stimulate the common peroneal nerve, producing a calf muscle-pump action to promote venous circulation. Whether knee joint angle influences calf neuromuscular activity remains unclear. Our aim was to determine the effects of knee joint angle on lower limb neuromuscular activity during electrostimulation.
Methods
Fifteen healthy, older adults underwent 60 min of electrostimulation, with the knee joint at three different angles (0°, 45° or 90° flexion; random order; 20 min each). Outcome variables included electromyography of the peroneus longus, tibialis anterior and gastrocnemius medialis and lateralis and discomfort.
Results
Knee angle did not influence tibialis anterior and peroneus longus neuromuscular activity during electrostimulation. Neuromuscular activity was greater in the gastrocnemius medialis (p = 0.002) and lateralis (p = 0.002) at 90°, than 0° knee angle. Electrostimulation intensity was positively related to neuromuscular activity for each muscle, with a knee angle effect for the gastrocnemius medialis (p = 0.05).
Conclusion
Results suggest that during electrostimulation, knee joint angle influenced gastrocnemii neuromuscular activity; increased gastrocnemius medialis activity across all intensities (at 90°), when compared to 0° and 45° flexion; and did not influence peroneus longus and tibialis anterior activity. Greater electrostimulation-evoked gastrocnemii activity has implications for producing a more forceful calf muscle-pump action, potentially further improving venous flow
High energy emission from microquasars
The microquasar phenomenon is associated with the production of jets by X-ray
binaries and, as such, may be associated with the majority of such systems. In
this chapter we briefly outline the associations, definite, probable, possible,
and speculative, between such jets and X-ray, gamma-ray and particle emission.Comment: Contributing chapter to the book Cosmic Gamma-Ray Sources, K.S. Cheng
and G.E. Romero (eds.), to be published by Kluwer Academic Publishers,
Dordrecht, 2004. (19 pages
Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector
Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
Performance of the CMS Cathode Strip Chambers with Cosmic Rays
The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device
in the CMS endcaps. Their performance has been evaluated using data taken
during a cosmic ray run in fall 2008. Measured noise levels are low, with the
number of noisy channels well below 1%. Coordinate resolution was measured for
all types of chambers, and fall in the range 47 microns to 243 microns. The
efficiencies for local charged track triggers, for hit and for segments
reconstruction were measured, and are above 99%. The timing resolution per
layer is approximately 5 ns
Regulation of the co-evolved HrpR and HrpS AAA+ proteins required for Pseudomonas syringae pathogenicity.
Published versio
The need of dermatologists, psychiatrists and psychologists joint care in psychodermatology
The mind-skin connection has been studied since the nineteenth century. The last 40 years have set the development of new research areas which allowed the clarifying of how these two dimensions interact. The diseases that involve skin and mind constitute the field of psychodermatology and require that specialists in dermatology, psychiatry and psychology together and integrated take part in it, since skin, nervous system and mind are simultaneously affected. This paper aims to expose how psychodermatoses are currently conceptualized and the need of integration of these three specialties for conveniently treating the patients
- …
