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The effects of knee joint angle on
neuromuscular activity during
electrostimulation in healthy older adults

James P Gavin1, Meryl Cooper2 and Thomas W Wainwright2

Abstract

Introduction: Electrostimulation devices stimulate the common peroneal nerve, producing a calf muscle-pump action

to promote venous circulation. Whether knee joint angle influences calf neuromuscular activity remains unclear. Our aim

was to determine the effects of knee joint angle on lower limb neuromuscular activity during electrostimulation.

Methods: Fifteen healthy, older adults underwent 60 min of electrostimulation, with the knee joint at three different

angles (0�, 45� or 90� flexion; random order; 20 min each). Outcome variables included electromyography of the

peroneus longus, tibialis anterior and gastrocnemius medialis and lateralis and discomfort.

Results: Knee angle did not influence tibialis anterior and peroneus longus neuromuscular activity during electrostimula-

tion. Neuromuscular activity was greater in the gastrocnemius medialis (p¼ 0.002) and lateralis (p¼ 0.002) at 90�, than 0�

knee angle. Electrostimulation intensity was positively related to neuromuscular activity for each muscle, with a knee

angle effect for the gastrocnemius medialis (p¼ 0.05).

Conclusion: Results suggest that during electrostimulation, knee joint angle influenced gastrocnemii neuromuscular

activity; increased gastrocnemius medialis activity across all intensities (at 90�), when compared to 0� and 45� flexion;

and did not influence peroneus longus and tibialis anterior activity. Greater electrostimulation-evoked gastrocnemii activity

has implications for producing a more forceful calf muscle-pump action, potentially further improving venous flow.
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Introduction

Reduced mobility following surgery, such as hip or
knee arthroplasty, presents a risk of deep vein throm-
bosis (DVT) in patients.1 Clot formation arising from
venous stasis2 and lower limb muscle inactivity3 can be
prevented by mechanical counter-measures (i.e. com-
pression stockings/devices). Although commonly used,
the bulk and discomfort of mechanical devices can
result in poor compliance.4 In contrast, neuromuscular
electrostimulation devices offer a non-invasive, prac-
tical and economical alternative to reduce the risk of
venous thromboembolism.5,6

Electrostimulation devices stimulate the common
peroneal nerve to induce an involuntary, isometric
muscle contraction of calf extensor muscles (i.e. tibialis
anterior and peroneus longus) and an additional stretch
of the flexor gastrocnemii muscles. The passive stretch
compresses the antagonist gastrocnemii, as the muscle is

pulled in a distal direction during dorsiflexion.7

The passive motion of the flexor gastrocnemii acts as
the calf muscle pump to promote venous circulation by
raising intramuscular pressure. In healthy adults, 5min
periods of lower leg electrostimulation has been shown
to enhance venous volume (flow up to 100%) and vel-
ocity, with minimal discomfort at maximum stimula-
tion intensity.8 Recently, Zhang et al.7 trialled an
electrostimulation device by modelling venous stasis
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in healthy adults using an automated tourniquet. Short
periods (10min) of electrostimulation were shown to (i)
augment calf muscle-pump action and (ii) reduce DVT-
associated rises in blood volume and tissue deoxygen-
ation. Alongside reduced limb volume, others have
shown reduced venous transit-time and venous ambula-
tory pressure in the young.9 Clinically, stimulating lower
limb venous circulation with electrostimulation can also
reduce limb volume oedema in orthopaedic,10 diabetic
and cardiovascular disease patients.11 During electrosti-
mulation, the activated tibialis anterior becomes an
agonist, and the medial gastrocnemius an antagonist.
Force and EMG recordings indicate that electrostimula-
tion intensity relates directly to ankle dorsiflexion (and
muscle-pump) force.7 This involuntarily stretches the
gastrocnemii, reducing the muscle anatomical cross-sec-
tional area and subsequently venous diameter to eject
blood to a greater extent than voluntary contraction
alone.12

Interestingly, Khanbhai et al.9 reported greater
change in limb volume and venous function with elec-
trostimulation applied in a lying position, when com-
pared to sitting and standing. Standing elevates lower
limb volume13 and venous pressure,14 in comparison to
lying and sitting. In these positions, knee joint angle
(and therefore muscle length) may influence muscle ten-
sion of the bi-articular gastrocnemii prior to innerv-
ation.15 Furthermore, altering muscle length (via joint
angle) during electrostimulation is recommended to
promote spatial motor unit recruitment.16 Clinical
observations from our group support a visible twitch
response during electrostimulation when seated (�90�

knee joint angle), but little visible twitch with the knee
extended (�0� knee joint angle) in orthopaedic patients.
Receiving electrostimulation whilst lying may be pref-
erable to standing, in terms of gravitational pressure
influencing peripheral haemodynamics. However, the
common peroneal nerve becomes displaced from the
fibular head by approximately 17mm when standing
or sitting with 0� knee flexion, when compared to sitting
with 90� knee flexion.17 It is reasonable to assume that
if an individual is upright and unable to sit whilst
receiving electrostimulation, they will experience less
calf muscle activation (and potentially muscle-pump
action). This proof-of-concept study will assess the
impact of knee joint position on the neuromuscular
responses of calf muscles during electrostimulation.
A subsequent study will incorporate haemodynamic,
alongside neuromuscular assessments, with post-opera-
tive orthopaedic patients.

What is not clearly understood is whether knee joint
angle influences the neuromuscular activity of the lower
leg muscles, particularly the gastrocnemii co-contrac-
tion (and therefore the effectiveness muscle-pump
action) during electrostimulation. This pilot study

aimed to assess the effect of seated, knee joint angle
on the neuromuscular activity of the (i) gastrocnemii
(co-contractor muscle pump) and (ii) peroneus longus
and tibialis anterior (innervated) muscles during electro-
stimulation in healthy, older adults.

Methods

Participants

Fifteen community-dwelling, older adults (Table 1)
were recruited by advertisement from Dorset, UK.
Sample size estimation was based upon a minimum of
n¼ 12, as deemed adequate for a pilot study,18 whereby
data will inform the power analyses of a follow-up,
clinical-cohort study. Volunteers were initially screened
by the completion of an online pre-test health question-
naire, followed by a telephone-call by an investigator to
further discuss eligibility. Table 2 details inclusion and
exclusion criteria, which served to limit confounding
variables and provide a control to compare future
age-matched, orthopaedic cohorts with. Eligible volun-
teers provided written informed consent and completed
a Physical Activity Scale for the Elderly questionnaire19

on the day of experimental testing. The experimental
protocol was approved by the Bournemouth University
Research Ethics Committee (Ref: 8029) and accepted
on the International Standard Randomised Controlled
Trial Number Register on http://isrctn.org (Ref
number: ISRCTN28232918).

Experimental protocol

Participants visited the laboratory once to undergo
60min of lower leg transcutaneous electrostimulation,
with knee joint at three different angles (20min adminis-
trations each (Figure 1)). Online software (sealedenvelo-
pe.com) was used to randomly allocate electrostimulation
joint angle order (0� first, n¼ 4; 45� first, n¼ 5; 90� first,
n¼ 6); no order effect was found for knee joint angle on

Table 1. Demographic characteristics of recruited older adults.

Male Female All

N 7 8 15

Age (years) 62� 3 70� 9 66� 8

Height (cm) 174.2� 6.7 163.1� 5.4 168.3� 8.2

Weight (kg) 79.0� 9.4 67.7� 15.9 73.0� 14.1

BMI (kg/m2) 26.0� 2.2 25.2� 4.6 25.6� 3.6

Stimulation intensity

(level 1–7)

4� 1 5� 2 5� 2

PASE score 218� 79 136� 59 174� 79

Note: Values are mean� SD. BMI: body mass index; PASE: the Physical

Activity Scale for the Elderly; SD: standard deviation.
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neuromuscular activity for each muscle (p> 0.1). Each
20min bout was separated by 60 s rests. Pilot testing
(n¼ 3 (males), age 56� 2 years) confirmed no fatigue
effect from monitoring EMG signals during three,
25min electrostimulation bouts. Instruction was given

to arrive hydrated, having maintained habitual physical
activity levels in the preceding 48h (Appendix 1). Upon
arrival at the laboratory, the experimental protocol was
re-explained, body mass was then recorded using digital
scales (Seca Ltd, Birmingham, UK) and height with a
stadiometer (Holtain Ltd, Crymych, UK). All subsequent
measures and electrostimulation treatments refer to the
non-dominant limb.

Once the electrostimulation device was fitted accord-
ing to manufacturer instructions (full knee extension
(0�); Firstkind Limited, Bucks, UK) and stimulation
intensity determined, four EMG sensors were placed
on the lower limb with the participant lying prone,
and for the tibialis anterior lying supine.
Electrostimulation was administered with participants
seated upright (hip joint at �90�) in an adjustable iso-
kinetic dynamometer chair (Humac Norm, Cybex
International Inc., NY, USA) to replicate clinical
administration. The lateral femoral epicondyle of the
tested limb was aligned to the rotational axis of
the dynamometer and the ankle joint was secured to
the lever-arm. Participants were guided to extension
and flexion limits by the investigator to determine
knee joint range of motion (0� ¼ full extension); the
lever-arm was then mechanically set to the first knee
joint angle (0�, 45� or 90�). Lower limb neuromuscular
activity was recorded for 20min throughout electrosti-
mulation. Participant discomfort was self-reported in
the final 60 s only, so as not to interfere with EMG

Table 2. Inclusion and exclusion criteria for participation.

Inclusion

Age Between 55 years and 85 years

Health Good general health (PASE score >70; norm

103� 64 (Washburn et al.19)

Cognitive Able to understand the participant informa-

tion and informed consent sheets; willing to

follow the protocol requirements

Exclusion

Age <55 years

Health Recently undergone surgery and/or suffered

illness

Medical history Neuromuscular, haematological and/or car-

diovascular disorders; fitted with a pace-

maker; history or signs of previous

superficial or DVT/pulmonary embolism;

varicosities, ulceration or erosion around

lower leg

BMI Chronic obesity (BMI> 40 kg/m2)

DVT: deep-vein thrombosis; BMI: body mass index; PASE: the Physical

Activity Scale for the Elderly.
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Figure 1. Schematic of the experimental protocol to examine the effect of leg position on electrostimulation. Leg position order was

randomised. Black arrows indicate beginning (0–1 min), middle (9–10 min) and end (19–20 min) time-points for electromyography

(EMG) root mean square (RMS) analysis; discomfort was assessed in the end time-point, only grey arrows indicate the mid time-point

(9–10 min).
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sensor recordings and summatively assess perceived dis-
comfort for each 20min bout. The procedure above
was then repeated for 20min in the second knee angle
and 20min in the third knee angle. Instruction was
given to relax both lower limbs throughout the entire
electrostimulation period.

Electrical stimulator

A small (186mm� 31mm), non-invasive electrostimu-
lation device (gekoTM T2, Firstkind Limited, Bucks,
UK) was attached horizontally below the fibula head
on the lateral–posterior aspect of the knee, according to
the manufacturer’s instructions for use. The device
stimulates the common peroneal nerve, which leads to
isometric contraction of the peroneus longus and tibialis
anterior muscles of the lower leg. Seven stimulation
intensities can be selected (50, 70, 100, 140, 200, 280
and 400 ms), to deliver a 27 mA pulse current (200 V–
5 kV load impedance), at a 1Hz repetition rate.
Hereafter, electrostimulation intensities are referred to
as levels 1 to 7. Participant stimulation intensity (or
level) was determined based upon (i) maximal stimula-
tion effect (slight visible dorsiflexion/eversion move-
ment) and (ii) patient comfort. To investigate a
potential staircase effect20 for knee joint angle on elec-
trostimulation neuromuscular activity, stimulation
intensity was increased from the participant’s pre-
scribed level up to maximum (level 7) at 10 s intervals
at the end of each 20min period (Figure 1).

Perceived discomfort

Participants self-reported lower limb discomfort during
electrostimulation for each knee joint angle. The same
investigator presented a 10 cm Visual Analogue Scale
(VAS), ranging from 0 (no discomfort/pain) to 10
(extreme discomfort/pain); participants marked per-
ceived discomfort on the 0 to 10 cm scale. A Verbal
Rating Score (VRS) was also used, ranging from 1
(no sensation) to 7 (very severe discomfort) that aligned
to the stimulation levels. Participants circled perceived
sensation.

Electromyography (EMG) recording, normalisation
and processing

Peroneus longus, tibialis anterior, gastrocnemius medialis
and gastrocnemius lateralis EMG were recorded via
SX230-1000 bipolar sensors from a portable
Biometrics PS850 system (DataLOG, Biometrics Ltd,
Newport, UK) during electrostimulation (Figure 2).
The skin was shaved, cleansed and gently abraded to
reduce sensor-to-skin impedance. Sensors were placed
over the respective muscle bellies according to surface
electromyography for the non-invasive assessment of
muscles (SENIAM) recommendations,21 and the refer-
ence electrode was strapped over the lateral malleolus
of the tested limb. To limit electrostimulation artefacts
in the raw electromyogram (EMG) signal, recording
sensors were positioned orthogonal to the stimulation

Figure 2. Left leg showing the EMG sensor placements for the tibialis anterior (TA), peroneus longus (PL) (left figure), and the

gastrocnemius lateralis (GL), gastrocnemius medialis (GM) and reference electrode (REF) affixed to the lateral malleolus (right figure).
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electrode and at an inter-electrode distance of �2.5 cm.
Raw signals were sampled at 1000Hz by each amplifier-
embedded sensor (10mm diameter, 20mm inter-elec-
trode distance; bandwidth¼ 20–460Hz; common
mode rejection ratio¼>96 dB (typically 110 Db);
input impedance¼>10,000,000MV), and processed
with a second-order Butterworth filter (band-
width¼ 10–350Hz) to remove DC offset. The root
mean square (RMS) was then calculated using a
0.25 s moving window (overlap of 50% window
length). EMG data were manually checked for stimu-
lation artefacts by overlaying the RMS envelope on to
the raw EMG signal (DataLOG software v. 7.5,
Biometrics Ltd, Newport, UK). For RMS analysis, at
each knee joint angle, 5 s capture periods were used at
the end of the following time-points: 0–1min, 9–10min
and 19–20min (nine capture periods in total).

Prior to each 20min period, the investigator
increased the electrical stimulation intensity in a
sequential, step-wise manner every 15 s from the
lowest (1 (50 ms intensity)) to the highest (7 (400ms
intensity)) setting, whilst measuring muscle activity at
respective knee angles. This was used to assess the
relationship between stimulation intensity and muscle
activity for each participant, at each knee angle.
Maximum RMS was determined for a 1 s interval
around the peak torque evoked from the participant’s
maximum voluntary contraction for each muscle.
Joint torque was measured for each muscle using the
same isokinetic dynamometer used to secure knee joint
angle. In a prone position, participants produced
three, 3–5 s maximal voluntary isometric contractions
(60 s rests), with verbal encouragement provided by
the investigator. Subsequent RMS data were normal-
ised by dividing by the maximum RMS value and then
multiplying by 100 to provide percentage of RMS
maximum.7,22

Statistical analysis

Shapiro–Wilk tests confirmed neuromuscular activity
data were non-normally distributed; non-parametric
tests were used to analyse RMS for each muscle.
One-way, repeated measures Friedman’s analyses of
variance (ANOVAs) were used to compare (i) RMS
activity and (ii) discomfort (VAS and VRS) between
knee joint angle (0�, 45� and 90�) for each muscle.
Paired Wilcoxon Signed-Rank tests identified angle-
specific differences. Mixed-design ANOVAs (within-
group, repeated measures on levels (7) and degrees
(3)) tested whether there was an electrostimulation
intensity effect on RMS activity, dependent upon
knee joint angle. Relationship between stimulation
intensity and neuromuscular activity (normalised
RMS) at each knee angle was determined by

Spearman’s correlation (based upon group mean
(n¼ 15) for each stimulation intensity).

Data were expressed as mean and standard devi-
ation. Non-normal data were expressed as mean, with
95% confidence intervals (CIs), and the Friedman’s
ANOVA test statistic represented as Chi-squared (�2).
Effect sizes (Cohen’s d) were calculated to determine
meaningful differences (small¼ 0.2, moderate¼ 0.5,
large, 0.8) and statistical significance set as p< 0.05.

Results

Anthropometry and discomfort

There were no significant differences in anthropometri-
cal measures following 60min of electrostimulation
(p> 0.05), when compared to baseline measures.
There were no significant differences in values of dis-
comfort (VAS and VRS) during electrostimulation at
each knee joint angle (p> 0.05; Table 3).

Neuromuscular activity and knee joint angle

During electrostimulation, knee joint angle did not
affect RMS activity of the tibialis anterior
(�2(2)¼ 1.857, p¼ 0.4, d¼ 0.07; Figure 3(a)) and pero-
neus longus (�2(2)¼ 3.0, p¼ 0.2, d¼ 0.08; Figure 3(b)).
However, knee angle did influence gastrocnemius med-
ialis RMS activity (�2(2)¼ 12.0, p¼ 0.002, d¼ 0.54),
with greater RMS activity at 90� knee joint angle,
when compared to 0� (p¼ 0.003, d¼ 1.07) and 45�

(p¼ 0.003, d¼ 1.06; Figure 3(c)) angles. Knee joint
angle influenced gastrocnemius lateralis RMS activity
(�2(2)¼ 16.714, p¼ 0.0001, d¼ 0.49), with greater
RMS activity at 90� knee joint angle, when compared
to 0� (p¼ 0.002, d¼ 0.99) and 45� (p¼ 0.002, d¼ 1.31;
Figure 3(d)) angles. Gastrocnemius lateralis RMS activ-
ity was greater at 45� knee joint angle, when compared
to 0� (p¼ 0.02, d¼ 0.27) angle.

Table 3. Perceived discomfort VAS and VRS during electrosti-

mulation at each leg position.

Discomfort scale Male Female All

VAS (0–10) 0� 1.7� 0.8 2.3� 0.7 2.0� 0.8

45� 1.9� 0.7 2.0� 0.5 1.9� 0.6

90� 1.6� 0.8 1.8� 0.7 1.7� 0.7

VRS (1–7) 0� 2.1� 0.4 2.3� 0.7 2.2� 0.6

45� 2.3� 0.5 2.0� 0.5 2.1� 0.5

90� 2.1� 0.4 2.0� 0.4 2.1� 0.5

Values are mean� SD. VAS: Visual Analogue Scale; VRS: Verbal Rating

Score; SD: standard deviation.
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Joint angle-dependent effect on electrostimulation
intensity

When increasing the electrostimulation intensity from
minimum (level 1) to maximum (level 7), knee joint
angle did not affect tibialis anterior RMS activity
(p¼ 0.27, d¼ 0.09), although there was a linear trend
(p¼ 0.004, d¼ 0.48; Figure 4(a)). Peroneus longus RMS
activity was influenced by electrostimulation intensity
and knee joint angle (p¼ 0.02, d¼ 0.21; quadratic
trend: p¼ 0.01, d¼ 0.41; Figure 4(b)), with greater
effect at 90� knee joint angle than at 45� (p¼ 0.05).
Gastrocnemius medialis RMS activity showed an inter-
action effect (intensity� knee joint angle) (p¼ 0.01,
d¼ 0.15; quadratic trend: p¼ 0.05, d¼ 0.26), with
greater effect at 90� knee joint angle than at 0� and
45� angles (see Figure 4(c)). The gastrocnemius lateralis
was influenced by intensity only (p¼ 0.001, d¼ 0.52;
quadratic trend: p¼ 0.03, d¼ 0.32; Figure 4d). There
was a positive relationship between electrostimulation
intensity and RMS activity for each muscle (n¼ 15;

tibialis anterior: 0�, r¼ 0.96; 45�, r¼ 0.97; 90�,
r¼ 0.94; peroneus longus: 0�, r¼ 0.89; 45�, r¼ 0.81;
90�, r¼ 0.90; gastrocnemius medialis: 0�, r¼ 0.76; 45�,
r¼ 0.78; 90�, r¼ 0.91; gastrocnemius lateralis: 0�,
r¼ 0.87; 45�, r¼ 0.85; 90�, r¼ 0.94; p< 0.001).

Discussion

This proof-of-concept pilot study investigated whether
knee joint angle influenced lower limb neuromuscular
activity during electrostimulation in healthy, older
adults. It is recommended that the joint angle (and
therefore muscle length) remains the same during elec-
trostimulation,15 as the device stimulates the common
peroneal nerve to activate the calf muscle pump to sub-
sequently promote venous circulation in the lower limb.
We examined the muscles responsible for the muscle-
pump action: the peroneus longus, tibialis anterior and
the co-contractor gastrocnemii (lateral and medial
heads) at three different knee joint angles (i.e. 0� (full
extension), 45� and 90� knee flexion). We found that
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during electrostimulation positioning the knee joint at
90� flexion (i) influenced gastrocnemii (ankle plantar-
flexor) muscle activation; (ii) increased gastrocnemius
medialis activation at each stimulation intensity (from
minimum (level 1) to maximum (level 7)), when com-
pared to 0� and 45� knee flexion and (iii) did not affect
activation of the peroneus longus (ankle plantarflexor
and evertor) and the tibialis anterior (ankle dorsiflexor)
muscles.

There was a significant correlation between stimula-
tion intensity and muscle activation for each calf
muscle. The strongest correlation was observed at 90�

knee flexion for the peroneus longus, gastrocnemius med-
ialis and gastrocnemius lateralis (Figure 4(b) to (d)).

When receiving calf electrostimulation seated, our
cohort showed greater gastrocnemius medialis (co-con-
tractor) activity with the knee at 90�, when compared to
partial knee flexion (45�) and knee extension (0�).
A similar joint angle-dependent effect was shown for
the gastrocnemius lateralis, which, in addition, dis-
played greater activity at 45� than at 0� knee flexion
(full extension). The gastrocnemius medialis and latera-
lis are similar in fibre-type composition23 but controlled
by different afferent pathways from the same neural
origin.24 We did not examine neural pathways, but dif-
ferences in gastrocnemius medialis and lateralis neuro-
muscular activity at 45� flexion are likely to derive from
a wider 95% CI for the gastrocnemius lateralis and
therefore a small-to-moderate effect size. Activation

increased for the gastrocnemius medialis by 31.3%
and lateralis by 32.4% during 20min of electrostimula-
tion with the knee at 90� flexion, when compared to 0�

flexion. Varying the knee and ankle joint angles influ-
ences the gastrocnemiimuscle length25 and force-produ-
cing capacity,26 as well as the passive knee flexion
moment.27 As the human gastrocnemii operates on
the ascending limb of the force–length relationship,
passive tension begins to develop at short muscle
lengths (i.e. in 90� knee flexion), before approaching
near-maximum at longer muscle lengths (i.e. 0� knee
extension).28 As a consequence, at longer muscle
lengths, the contribution of the active, contractile com-
ponent becomes near-maximum11 with greater passive
force exerted.2 Therefore, electrostimulation may be
less effective at activating the calf muscle pump with
the knee extended with the gastrocnemii muscle-
tendon unit at a longer muscle length.

In our study, to ensure potential changes in gastro-
cnemii neuromuscular activity were attributable to knee
joint angle, and not ankle joint angle, the participant’s
ankle was held in a neutral position (�0�) throughout
electrostimulation. During electrostimulation, we
found greater gastrocnemii neuromuscular activity
with the knee flexed (90�) and the muscle in a shortened
position, when compared to the knee extended (0�) and
the muscle in a lengthened position. This is chiefly
attributable to displacement of the common peroneal
nerve from the fibular head (by �17mm) with the knee
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in 0� flexion,17 which would result in sub-optimal per-
oneus longus and tibialis anterior activation. In add-
ition, stimulating lengthened gastrocnemii, with longer
contractile and/or elastic component would likely affect
muscle activation. For example, as the gastrocnemius is
an agonist in knee flexion, stimulation at 90� flexion
would innervate an already ‘active’ muscle under ten-
sion. As an antagonist in knee extension, gastrocnemii
activation increases during voluntary knee flexion29 but
decreases during voluntary knee extension.30 In a
lengthened position (0�), the stimulation would have
to overcome a stretched gastrocnemii tendon and
greater passive force.27,31 Therefore, a proportion of
muscular tension evoked by electrostimulation would
be attenuated by the Achilles tendon of the gastrocne-
mius, which accounts for �73% of the total muscle-
tendon length change (in contrast, the tibialis anterior
tendon accounts for �45% length change).25

Another possible explanation for the increased
gastrocnemius medialis activity with electrostimulation
at 90� knee flexion arises from neuromuscular propa-
gation. Decreases in contraction time and half-relaxa-
tion time during progressive muscle shortening32 reflect
a requirement for higher excitation rates to produce the
same evoked torque. Greater activation at 90� knee
flexion may indicate a need to increase activation at a
shorter muscle length. However, this seems unlikely,
given that the gastrocnemii muscle is at a favourable
position on the length–tension relationship at 90�

knee angle. Others have reported decreased gastrocne-
mii activation at pronounced knee flexion angles up to
60%,33,34 which disagree with our findings. However, it
should be noted that these studies evoked muscle activ-
ity by maximal voluntary contraction, whilst manipu-
lating ankle angle.

The neuromuscular activity of the tibialis anterior
and peroneus longus during electrostimulation were
not influenced by knee joint angle. Tibialis anterior acti-
vation at 45� (59.3%) and 90� knee flexion (64%)
appeared greater than 0� knee flexion (49.9%) after
the first minute, yet this did not reach significance.
Additional linear trend analyses (p¼ 0.008) indicated
that tibialis anterior neuromuscular activity increased
proportionally from minimum (level 1) to maximum
(level 7) stimulation intensities similarly across each
knee joint angle. However, these findings are unsurpris-
ing given that both are mono-articular muscles and
span only the ankle joint, whereas the bi-articular gas-
trocnemii spans the ankle and knee joints. The tibialis
anterior is composed predominantly of slow twitch,
type I fibres, with slower contraction time,32 which
may also contribute to the electrostimulation-evoked
muscle activation being lower at each knee angle,
when compared to the other muscles (Figure 4(a) to
(d)). Additionally, the common peroneal nerve first

passes the peroneus longus, which when activated, will
oppose force produced by the tibialis anterior.32

Knee joint angle did not influence discomfort, with
the majority of perceptual ratings showing that stimu-
lation involved minimal discomfort, and only the high-
est stimulation setting, level 7 (pulse current: 27 mA;
intensity: 400 ms; repetition rate: 1Hz), reached mild
discomfort. Similar discomfort values have been
reported during percutaneous electrostimulation
administered intermittently (5min stimulation, 10min
rest for 4 h) in healthy adults8 and in hip arthroplasty
patients of similar age.3 Electrostimulation settings
were participant-specific and determined according to
the manufacturer’s instructions which recommend that
the appropriate stimulation intensity should evoke a
visible twitch in the foot. Even at 0� knee flexion, tibi-
alis anterior and gastrocnemius medialis activation
increased by a minimum of �49% maximum with
little discomfort using prescribed settings. As lower
limb blood flow can be increased by a muscle producing
30% of maximal contraction,35 our preliminary results
show promise with regard to electrostimulation at 90�

knee flexion enhancing neuromuscular activity, and
potentially venous blood flow, with minimal
discomfort.

From a clinical perspective, these pilot data from
healthy, older adults suggest that receiving electrosti-
mulation when seated at 90� knee flexion can enhance
gastrocnemii activation, when compared to seated at
45� or 0� knee flexion. The electrostimulation device
stimulates the common peroneal nerve to evoke an
involuntary, isometric contraction of the peroneus
longus and tibialis anterior muscles simultaneously.
The gastrocnemius then undergoes as passive stretch
as the antagonist flexor muscle. This calf muscle-
pump action improves venous blood flow in bed-
rest,36 sitting for prolonged periods8 and during
venous stasis.7 The gastrocnemii contributes a greater
physiological cross-sectional area (96.1 cm2) of the calf
muscle pump than the tibialis anterior (18.5 cm2) and
peroneus longus37 and therefore has greater potential
for force-producing capacity and venous circulation.
However, straightening the leg to 0� knee flexion may
displace the common peroneal nerve from the fibular
head17 and reduce the impact of the calf muscle pump.
Based on our pilot observations, future work should
determine whether receiving electrostimulation seated,
with 90� knee flexion can increase gastrocnemius acti-
vation and, in turn, produce a more forceful muscle-
pump action to enhance venous blood flow in clinical
cohorts (i.e. orthopaedic patients undergoing hip/knee
arthroplasty).

The main limitations of this proof-of-concept pilot
study were that we did not measure electrostimulation-
evoked (i) torque-production or (ii) venous blood flow.
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Ankle torque would have been difficult to assess given
that our experimental aim was to study the potential
influence of knee joint angle on electrostimulation.
Zhanget al.7 assessed electrostimulation-evoked torque
and during isometric ankle dorsiflexion with participants
lying prone. They were able to fix a load cell in this pos-
ition, whereas our dynamometer lever-arm (measuring
torque) was used to fix knee joint angle. Our 20min
electrostimulation periods were too brief to accurately
apply both EMG and Doppler ultrasound to measure
venous blood flow.

Conclusions

This pilot study presents the first observation that knee
joint angle can influence gastrocnemii activation during
seated electrostimulation in healthy, older adults. The
results suggest that receiving electrostimulation when
seated, with the knee flexed at 90�, can augment
increases in gastrocnemii activity shown with the knee
partially flexed (45�) or extended (0�). This could have
implications for an electrostimulation device stimulat-
ing a more forceful calf muscle-pump action and, in
turn, further improving lower limb venous blood flow
with little discomfort.
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Appendix 1

Table 4. Participant physical activities in the 7 days prior to

experimental electrostimulation testing.

Activity

Days

per week

Hours

per day

Sitting 5.83� 0.65 2.90� 1.06

Walk outside home 2.47� 0.92 1.37� 0.86

Light sport/recreational activities 0.73� 1.1 0.73� 0.79

Moderate sport/recreational

activities

0.87� 1.06 0.59� 0.90

Strenuous sport/recreational

activities

1.33� 1.45 0.92� 1.12

Muscle strength/endurance

exercises

0.80� 1.01 0.20� 0.25

Light housework 0.93� 0.26

Heavy housework or chores 0.80� 0.41

Home repairs 0.20� 0.41

Lawn work or yard care 0.40� 0.51

Outdoor gardening 0.53� 0.52

Caring for another person 0.20� 0.41

Volunteering/paid work

(n¼ 12)a
Hours

per week

Hours

per day

29.88� 18.30 4.27� 2.61

Values are mean� SD. Data were collected from the Physical Activities

Scale for the Elderly (PASE). SD: standard deviation.
aThree participants did not volunteer.
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