1,579 research outputs found

    Galactic chemical evolution of heavy elements: from Barium to Europium

    Get PDF
    We follow the chemical evolution of the Galaxy for elements from Ba to Eu, using an evolutionary model suitable to reproduce a large set of Galactic (local and non local) and extragalactic constraints. Input stellar yields for neutron-rich nuclei have been separated into their s-process and r-process components. The production of s-process elements in thermally pulsing asymptotic giant branch stars of low mass proceeds from the combined operation of two neutron sources: the dominant reaction 13C(alpha,n)16O, which releases neutrons in radiative conditions during the interpulse phase, and the reaction 22Ne(alpha,n)25Mg, marginally activated during thermal instabilities. The resulting s-process distribution is strongly dependent on the stellar metallicity. For the standard model discussed in this paper, it shows a sharp production of the Ba-peak elements around Z = Z_sun/4. Concerning the r-process yields, we assume that the production of r-nuclei is a primary process occurring in stars near the lowest mass limit for Type II supernova progenitors. The r-contribution to each nucleus is computed as the difference between its solar abundance and its s-contribution given by the Galactic chemical evolution model at the epoch of the solar system formation. We compare our results with spectroscopic abundances of elements from Ba to Eu at various metallicities (mainly from F and G stars) showing that the observed trends can be understood in the light of the present knowledge of neutron capture nucleosynthesis. Finally, we discuss a number of emerging features that deserve further scrutiny.Comment: 34 pages, 13 figures. accepted by Ap

    Uncertainties and Systematic Effects on the estimate of stellar masses in high z galaxies

    Full text link
    We discuss the uncertainties and the systematic effects that exist in the estimates of the stellar masses of high redshift galaxies, using broad band photometry, and how they affect the deduced galaxy stellar mass function. We use at this purpose the latest version of the GOODS-MUSIC catalog. In particular, we discuss the impact of different synthetic models, of the assumed initial mass function and of the selection band. Using Charlot & Bruzual 2007 and Maraston 2005 models we find masses lower than those obtained from Bruzual & Charlot 2003 models. In addition, we find a slight trend as a function of the mass itself comparing these two mass determinations with that from Bruzual & Charlot 2003 models. As consequence, the derived galaxy stellar mass functions show diverse shapes, and their slope depends on the assumed models. Despite these differences, the overall results and scenario remains unchanged. The masses obtained with the assumption of the Chabrier initial mass function are in average 0.24 dex lower than those from the Salpeter assumption, at all redshifts, causing a shift of galaxy stellar mass function of the same amount. Finally, using a 4.5 um-selected sample instead of a Ks-selected one, we add a new population of highly absorbed, dusty galaxies at z\simeq 2-3 of relatively low masses, yielding stronger constraints on the slope of the galaxy stellar mass function at lower masses.Comment: 5 pages, 4 figures, proceedings of the conference "Probing Stellar Populations out to the Distant Universe", Cefalu (Italy), September 7 - 19, 2008. To be published in the AIP Conf. Proc. Serie

    Intermediate-mass star models with different helium and metal contents

    Get PDF
    We present a comprehensive theoretical investigation of the evolutionary properties of intermediate-mass stars. The evolutionary sequences were computed from the Zero Age Main Sequence up to the central He exhaustion and often up to the phases which precede the carbon ignition or to the reignition of the H-shell which marks the beginning of the thermal pulse phase. The evolutionary tracks were constructed by adopting a wide range of stellar masses (33\leq\msun15\leq15) and chemical compositions. In order to account for current uncertainties on the He to heavy elements enrichment ratio, the stellar models were computed by adopting at Z=0.02 two different He contents (Y=0.27, 0.289) and at Z=0.04 three different He contents (Y=0.29, 0.34, and 0.37). To supply a homogeneous evolutionary scenario which accounts for young Magellanic stellar systems the calculations were also extended toward lower metallicities (Z=0.004, Z=0.01), by adopting different initial He abundances. We evaluated for both solar (Z=0.02) and super-metal-rich (SMR, Z=0.04) models the transition mass MupM^{up} between the stellar structures igniting carbon and those which develop a full electron degeneracy inside the CO core. This evolutionary scenario allows us to investigate in detail the properties of classical Cepheids. In particular, we find that the range of stellar masses which perform the blue loop during the central He-burning phase narrows when moving toward metal-rich and SMR structures.Comment: 25 pages, 10 figures (4 postscript + 6 gif files), 7 postscript tables. accepted for publication on ApJ (November 2000

    Optical and near-infrared photometry of the Type Ia Supernova 2000E in NGC 6951

    Full text link
    We present optical and near-infrared photometry, along with optical spectra, of the Type Ia supernova SN 2000E in the spiral galaxy NGC 6951. It was discovered by the staff of the Teramo Observatory during the monitoring of the SN 1999el. The observations span a time interval of 234 days in the optical and 134 days in the near-infrared (starting 16 days and 7 days before maximum B light, respectively). Optical spectra are available from 6 days before maximum B light to 122 days after it. SN 2000E exhibits a Dm15(B) = 0.94, thus being classifiable as a slow-declining Type Ia SN and showing the distinctive features of such a class of objects. Spectroscopically, SN 2000E appears as a normal Type Ia SN, like SN 1990N. We could constrain reddening [E(B-V) ~0.5 mag] and distance (mu0 ~32.14 mag) using a number of different methods. The bolometric luminosity curve of SN 2000E, allows a determination of the Ni56 mass amounting to 0.9Msun.Comment: 40 pages, 12 figure

    Measurement of the cross-section and charge asymmetry of WW bosons produced in proton-proton collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector

    Get PDF
    This paper presents measurements of the W+μ+νW^+ \rightarrow \mu^+\nu and WμνW^- \rightarrow \mu^-\nu cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables, submitted to EPJC. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13

    Search for chargino-neutralino production with mass splittings near the electroweak scale in three-lepton final states in √s=13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for supersymmetry through the pair production of electroweakinos with mass splittings near the electroweak scale and decaying via on-shell W and Z bosons is presented for a three-lepton final state. The analyzed proton-proton collision data taken at a center-of-mass energy of √s=13  TeV were collected between 2015 and 2018 by the ATLAS experiment at the Large Hadron Collider, corresponding to an integrated luminosity of 139  fb−1. A search, emulating the recursive jigsaw reconstruction technique with easily reproducible laboratory-frame variables, is performed. The two excesses observed in the 2015–2016 data recursive jigsaw analysis in the low-mass three-lepton phase space are reproduced. Results with the full data set are in agreement with the Standard Model expectations. They are interpreted to set exclusion limits at the 95% confidence level on simplified models of chargino-neutralino pair production for masses up to 345 GeV

    Search for direct stau production in events with two hadronic tau-leptons in root s=13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of the supersymmetric partners ofτ-leptons (staus) in final stateswith two hadronically decayingτ-leptons is presented. The analysis uses a dataset of pp collisions corresponding to an integrated luminosity of139fb−1, recorded with the ATLAS detector at the LargeHadron Collider at a center-of-mass energy of 13 TeV. No significant deviation from the expected StandardModel background is observed. Limits are derived in scenarios of direct production of stau pairs with eachstau decaying into the stable lightest neutralino and oneτ-lepton in simplified models where the two staumass eigenstates are degenerate. Stau masses from 120 GeV to 390 GeV are excluded at 95% confidencelevel for a massless lightest neutralino

    The Type Ia Supernova Rate at z ~0.5 from the Supernova Legacy Survey

    Get PDF
    We present a measurement of the distant Type Ia supernova rate derived from the first two years of the Canada -- France -- Hawaii Telescope Supernova Legacy Survey. We observed four one-square degree fields with a typical temporal frequency of ~ 4 observer-frame days over time spans of from 158 to 211 days per season for each field, with breaks during full moon. We used 8-10 meter-class telescopes for spectroscopic followup to confirm our candidates and determine their redshifts. Our starting sample consists of 73 spectroscopically verified Type Ia supernovae in the redshift range 0.2 < z < 0.6. We derive a volumetric SN Ia rate of r_V(=0.47) = 0.42^{+0.13}_{-0.09} (systematic) +- 0.06 (statistical) X 10^-4 yr^-1 Mpc^3, assuming h = 0.7, Omega_m = 0.3 and a flat cosmology. Using recently published galaxy luminosity functions derived in our redshift range, we derive a SN Ia rate per unit luminosity of r_L(=0.47) = 0.154^{+0.048}_{-0.033} (systematic) ^{+0.039}_{-0.031} (statistical) SNu. Using our rate alone, we place an upper limit on the component of SN Ia production that tracks the cosmic star formation history of 1 SN Ia per 10^3 M_sun of stars formed. Our rate and other rates from surveys using spectroscopic sample confirmation display only a modest evolution out to z=0.55.Comment: 71 pages, 12 figures, accepted for publication in AJ, fixed typos in Eq 3 and

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
    corecore