11 research outputs found

    Actions of Trace Amines in the Brain-Gut-Microbiome Axis via Trace Amine-Associated Receptor-1 (TAAR1)

    Get PDF
    Trace amines and their primary receptor, Trace Amine-Associated Receptor-1 (TAAR1) are widely studied for their involvement in the pathogenesis of neuropsychiatric disorders despite being found in the gastrointestinal tract at physiological levels. With the emergence of the "brain-gut-microbiome axis," we take the opportunity to review what is known about trace amines in the brain, the defined sources of trace amines in the gut, and emerging understandings on the levels of trace amines in various gastrointestinal disorders. Similarly, we discuss localization of TAAR1 expression in the gut, novel findings that TAAR1 may be implicated in inflammatory bowel diseases, and the reported comorbidities of neuropsychiatric disorders and gastrointestinal disorders. With the emergence of TAAR1 specific compounds as next-generation therapeutics for schizophrenia (Roche) and Parkinson's related psychoses (Sunovion), we hypothesize a therapeutic benefit of these compounds in clinical trials in the brain-gut-microbiome axis, as well as a potential for thoughtful manipulation of the brain-gut-microbiome axis to modulate symptoms of neuropsychiatric disease

    Precise mapping of the magnetic field in the CMS barrel yoke using cosmic rays

    Get PDF
    This is the Pre-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2010 IOPThe CMS detector is designed around a large 4 T superconducting solenoid, enclosed in a 12 000-tonne steel return yoke. A detailed map of the magnetic field is required for the accurate simulation and reconstruction of physics events in the CMS detector, not only in the inner tracking region inside the solenoid but also in the large and complex structure of the steel yoke, which is instrumented with muon chambers. Using a large sample of cosmic muon events collected by CMS in 2008, the field in the steel of the barrel yoke has been determined with a precision of 3 to 8% depending on the location.This work is supported by FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)

    Environmental Toxicants and Infant Mortality in the USA

    No full text
    Despite enjoying a high standard of living, the United States ranks 46th among nations reporting infant survival rates to the World Health Organization. Among factors that increase infant mortality are&nbsp; environmental toxicants. Toxic metals such as mercury, aluminum, and lead interact synergistically with fluoride compounds to produce metal fluoride complexes (e.g., AlF3 and AlF4−). Such toxicants act as biophosphate mimetics disrupting biological signaling processes governing development, immune defenses, and ordinary maintenance systems. Sources for the metals include mother’s mercury amalgams, mercury and aluminum in injected medicines, and lead contaminated drinking water. All of them are made even more toxic by fluorides as evidenced recently by water contamination in Flint, Michigan. Fluorides interact with other toxins increasing their harmful impact. Among the interactants are glyphosate and phosphate containing fertilizers that end up in the food and water because of their widespread use in agriculture. The negative synergy for neonates in the U.S. is increased by the hepatitis B injection containing both mercury and aluminum, and infant formula contaminated with aluminum and the glyphosate in genetically modified soy milk reconstituted with water containing fluoride, aluminum, lead, and other toxic substances. The harmful interactions of such chemicals are associated with rising infant mortality in the U.S. We propose, therefore, a modest but urgent policy change: under TSCA §5, silicofluoride addition to public water supplies should be suspended. </p

    Phonological simplifications, apraxia of speech and the interaction between phonological and phonetic processing

    Get PDF
    Research on aphasia has struggled to identify apraxia of speech (AoS) as an independent deficit affecting a processing level separate from phonological assembly and motor implementation. This is because AoS is characterized by both phonological and phonetic errors and, therefore, can be interpreted as a combination of deficits at the phonological and the motoric level rather than as an independent impairment. We apply novel psycholinguistic analyses to the perceptually phonological errors made by 24 Italian aphasic patients. We show that only patients with relative high rate (>10%) of phonetic errors make sound errors which simplify the phonology of the target. Moreover, simplifications are strongly associated with other variables indicative of articulatory difficulties - such as a predominance of errors on consonants rather than vowels -but not with other measures - such as rate of words reproduced correctly or rates of lexical errors. These results indicate that sound errors cannot arise at a single phonological level because they are different in different patients. Instead, different patterns: (1) provide evidence for separate impairments and the existence of a level of articulatory planning/programming intermediate between phonological selection and motor implementation; (2) validate AoS as an independent impairment at this level, characterized by phonetic errors and phonological simplifications; (3) support the claim that linguistic principles of complexity have an articulatory basis since they only apply in patients with associated articulatory difficulties

    The performance of the CMS muon detector in proton-proton collisions at √s = 7 TeV at the LHC

    Get PDF
    The performance of all subsystems of the CMS muon detector has been studied by using a sample of proton-proton collision data at √s = 7 TeV collected at the LHC in 2010 that corresponds to an integrated luminosity of approximately 40 pb-1. The measured distributions of the major operational parameters of the drift tube (DT), cathode strip chamber (CSC), and resistive plate chamber (RPC) systems met the design specifications. The spatial resolution per chamber was 80–120 μm in the DTs, 40–150 μm in the CSCs, and 0.8–1.2 cm in the RPCs. The time resolution achievable was 3 ns or better per chamber for all 3 systems. The efficiency for reconstructing hits and track segments originating from muons traversing the muon chambers was in the range 95–98%. The CSC and DT systems provided muon track segments for the CMS trigger with over 96% efficiency, and identified the correct triggering bunch crossing in over 99.5% of such events. The measured performance is well reproduced by Monte Carlo simulation of the muon system down to the level of individual channel response. The results confirm the high efficiency of the muon system, the robustness of the design against hardware failures, and its effectiveness in the discrimination of backgrounds

    The performance of the CMS muon detector in proton-proton collisions at root s=7 TeV at the LHC

    No full text
    The performance of all subsystems of the CMS muon detector has been studied by using a sample of proton-proton collision data at root s = 7TeV collected at the LHC in 2010 that corresponds to an integrated luminosity of approximately 40 pb(-1). The measured distributions of the major operational parameters of the drift tube (DT), cathode strip chamber (CSC), and resistive plate chamber (RPC) systems met the design specifications. The spatial resolution per chamber was 80-120 mu m in the DTs, 40-150 mu m in the CSCs, and 0.8-1.2 cm in the RPCs. The time resolution achievable was 3 ns or better per chamber for all 3 systems. The efficiency for reconstructing hits and track segments originating from muons traversing the muon chambers was in the range 95-98%. The CSC and DT systems provided muon track segments for the CMS trigger with over 96% efficiency, and identified the correct triggering bunch crossing in over 99.5% of such events. The measured performance is well reproduced by Monte Carlo simulation of the muon system down to the level of individual channel response. The results confirm the high efficiency of the muon system, the robustness of the design against hardware failures, and its effectiveness in the discrimination of backgrounds

    Precise Mapping of the Magnetic Field in the CMS Barrel Yoke using Cosmic Rays

    Get PDF
    This is the Pre-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2010 IOPThe CMS detector is designed around a large 4 T superconducting solenoid, enclosed in a 12 000-tonne steel return yoke. A detailed map of the magnetic field is required for the accurate simulation and reconstruction of physics events in the CMS detector, not only in the inner tracking region inside the solenoid but also in the large and complex structure of the steel yoke, which is instrumented with muon chambers. Using a large sample of cosmic muon events collected by CMS in 2008, the field in the steel of the barrel yoke has been determined with a precision of 3 to 8% depending on the location.This work is supported by FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)

    Precise Mapping of the Magnetic Field in the CMS Barrel Yoke using Cosmic Rays

    Get PDF
    This is the Pre-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2010 IOPThe CMS detector is designed around a large 4 T superconducting solenoid, enclosed in a 12 000-tonne steel return yoke. A detailed map of the magnetic field is required for the accurate simulation and reconstruction of physics events in the CMS detector, not only in the inner tracking region inside the solenoid but also in the large and complex structure of the steel yoke, which is instrumented with muon chambers. Using a large sample of cosmic muon events collected by CMS in 2008, the field in the steel of the barrel yoke has been determined with a precision of 3 to 8% depending on the location.This work is supported by FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)
    corecore