585 research outputs found

    The optical/NIR afterglow of GRB 111209A: Complex yet not unprecedented

    Get PDF
    Context. Afterglows of gamma-ray bursts (GRBs) are simple in the most basic model, but can show many complex features. The ultra-long duration GRB 111209A, one of the longest GRBs ever detected, also has the best-monitored afterglow in this rare class of GRBs. Aims. We want to address the question whether GRB 111209A was a special event beyond its extreme duration alone, and whether it is a classical GRB or another kind of high-energy transient. The afterglow may yield significant clues. Methods. We present afterglow photometry obtained in seven bands with the GROND imager as well as in further seven bands with the Ultraviolet/Optical Telescope (UVOT) on-board the Neil Gehrels Swift Observatory. The light curve is analysed by multi-band modelling and joint fitting with power-laws and broken power-laws, and we use the contemporaneous GROND data to study the evolution of the spectral energy distribution. We compare the optical afterglow to a large ensemble we have analysed in earlier works, and especially to that of another ultra-long event, GRB 130925A. We furthermore undertake a photometric study of the host galaxy. Results. We find a strong, chromatic rebrightening event at ≈0.8 days after the GRB, during which the spectral slope becomes redder. After this, the light curve decays achromatically, with evidence for a break at about 9 days after the trigger. The afterglow luminosity is found to not be exceptional. We find that a double-jet model is able to explain the chromatic rebrightening. The afterglow features have been detected in other events and are not unique. Conclusions. The duration aside, the GRB prompt emission and afterglow parameters of GRB 111209A are in agreement with the known distributions for these parameters. While the central engine of this event may differ from that of classical GRBs, there are multiple lines of evidence pointing to GRB 111209A resulting from the core-collapse of a massive star with a stripped envelope

    Bifidobacterium longum CECT 7347 Modulates Immune Responses in a Gliadin-Induced Enteropathy Animal Model

    Get PDF
    Coeliac disease (CD) is an autoimmune disorder triggered by gluten proteins (gliadin) that involves innate and adaptive immunity. In this study, we hypothesise that the administration of Bifidobacterium longum CECT 7347, previously selected for reducing gliadin immunotoxic effects in vitro, could exert protective effects in an animal model of gliadin-induced enteropathy. The effects of this bacterium were evaluated in newborn rats fed gliadin alone or sensitised with interferon (IFN)-γ and fed gliadin. Jejunal tissue sections were collected for histological, NFκB mRNA expression and cytokine production analyses. Leukocyte populations and T-cell subsets were analysed in peripheral blood samples. The possible translocation of the bacterium to different organs was determined by plate counting and the composition of the colonic microbiota was quantified by real-time PCR. Feeding gliadin alone reduced enterocyte height and peripheral CD4+ cells, but increased CD4+/Foxp3+ T and CD8+ cells, while the simultaneous administration of B. longum CECT 7347 exerted opposite effects. Animals sensitised with IFN-γ and fed gliadin showed high cellular infiltration, reduced villi width and enterocyte height. Sensitised animals also exhibited increased NFκB mRNA expression and TNF-α production in tissue sections. B. longum CECT 7347 administration increased NFκB expression and IL-10, but reduced TNF-α, production in the enteropathy model. In sensitised gliadin-fed animals, CD4+, CD4+/Foxp3+ and CD8+ T cells increased, whereas the administration of B. longum CECT 7347 reduced CD4+ and CD4+/Foxp3+ cell populations and increased CD8+ T cell populations. The bifidobacterial strain administered represented between 75–95% of the total bifidobacteria isolated from all treated groups, and translocation to organs was not detected. These findings indicate that B. longum attenuates the production of inflammatory cytokines and the CD4+ T-cell mediated immune response in an animal model of gliadin-induced enteropathy

    Direct Evidence of Two-component Ejecta in Supernova 2016gkg from Nebular Spectroscopy*

    Get PDF
    Spectral observations of the type-IIb supernova (SN) 2016gkg at 300-800 days are reported. The spectra show nebular characteristics, revealing emission from the progenitor star's metal-rich core and providing clues to the kinematics and physical conditions of the explosion. The nebular spectra are dominated by emission lines of [O i] lambda lambda 6300, 6364 and [Ca ii] lambda lambda 7292, 7324. Other notable, albeit weaker, emission lines include Mg I] lambda 4571, [Fe ii] lambda 7155, O I lambda 7774, Ca II triplet, and a broad, boxy feature at the location of H alpha. Unlike in other stripped-envelope SNe, the [O i] doublet is clearly resolved due to the presence of strong narrow components. The doublet shows an unprecedented emission line profile consisting of at least three components for each [O i]lambda 6300, 6364 line: a broad component (width similar to 2000 km s(-1)), and a pair of narrow blue and red components (width similar to 300 km s(-1)) mirrored against the rest velocity. The narrow component appears also in other lines, and is conspicuous in [O i]. This indicates the presence of multiple distinct kinematic components of material at low and high velocities. The low-velocity components are likely to be produced by a dense, slow-moving emitting region near the center, while the broad components are emitted over a larger volume. These observations suggest an asymmetric explosion, supporting the idea of two-component ejecta that influence the resulting late-time spectra and light curves. SN 2016gkg thus presents striking evidence for significant asymmetry in a standard-energy SN explosion. The presence of material at low velocity, which is not predicted in 1D simulations, emphasizes the importance of multidimensional explosion modeling of SNe

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Search for R-parity-violating supersymmetry in events with four or more leptons in sqrt(s) =7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for new phenomena in final states with four or more leptons (electrons or muons) is presented. The analysis is based on 4.7 fb−1 of s=7  TeV \sqrt{s}=7\;\mathrm{TeV} proton-proton collisions delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in two signal regions: one that requires moderate values of missing transverse momentum and another that requires large effective mass. The results are interpreted in a simplified model of R-parity-violating supersymmetry in which a 95% CL exclusion region is set for charged wino masses up to 540 GeV. In an R-parity-violating MSUGRA/CMSSM model, values of m 1/2 up to 820 GeV are excluded for 10 < tan β < 40

    Search for high-mass resonances decaying to dilepton final states in pp collisions at s√=7 TeV with the ATLAS detector

    Get PDF
    The ATLAS detector at the Large Hadron Collider is used to search for high-mass resonances decaying to an electron-positron pair or a muon-antimuon pair. The search is sensitive to heavy neutral Z′ gauge bosons, Randall-Sundrum gravitons, Z * bosons, techni-mesons, Kaluza-Klein Z/γ bosons, and bosons predicted by Torsion models. Results are presented based on an analysis of pp collisions at a center-of-mass energy of 7 TeV corresponding to an integrated luminosity of 4.9 fb−1 in the e + e − channel and 5.0 fb−1 in the μ + μ −channel. A Z ′ boson with Standard Model-like couplings is excluded at 95 % confidence level for masses below 2.22 TeV. A Randall-Sundrum graviton with coupling k/MPl=0.1 is excluded at 95 % confidence level for masses below 2.16 TeV. Limits on the other models are also presented, including Technicolor and Minimal Z′ Models

    Single-lens mass measurement in the high-magnification microlensing event Gaia19bld located in the Galactic disc

    Get PDF
    This work was supported from the Polish NCN grants: Preludium No. 2017/25/N/ST9/01253, Harmonia No. 2018/30/M/ST9/00311, MNiSW grant DIR/WK/2018/12, Daina No. 2017/27/L/ST9/03221, and by the Research Council of Lithuania, grant No. S-LL-19-2. The OGLE project has received funding from the NCN grant MAESTRO 2014/14/A/ST9/00121 to AU. We acknowledge the European Commission’s H2020 OPTICON grant No. 730890. YT acknowledges the support of DFG priority program SPP 1992 “Exploring the Diversity of Extrasolar Planets” (WA 1047/11-1). EB and RS gratefully acknowledge support from NASA grant 80NSSC19K0291. Work by AG was supported by JPL grant 1500811. Work by JCY was supported by JPL grant 1571564. SJF thanks Telescope Live for access to their telescope network. NN acknowledges the support of Data Science Research Center, Chiang Mai University. FOE acknowledges the support from the FONDECYT grant nr. 1201223. MK acknowledges the support from the NCN grant No. 2017/27/B/ST9/02727.Context. Microlensing provides a unique opportunity to detect non-luminous objects. In the rare cases that the Einstein radius θE and microlensing parallax πE can be measured, it is possible to determine the mass of the lens. With technological advances in both ground- and space-based observatories, astrometric and interferometric measurements are becoming viable, which can lead to the more routine determination of θE and, if the microlensing parallax is also measured, the mass of the lens.  Aims. We present the photometric analysis of Gaia19bld, a high-magnification (A approximate to 60) microlensing event located in the southern Galactic plane, which exhibited finite source and microlensing parallax effects. Due to a prompt detection by the Gaia satellite and the very high brightness of I = 9.05 mag at the peak, it was possible to collect a complete and unique set of multi-channel follow-up observations, which allowed us to determine all parameters vital for the characterisation of the lens and the source in the microlensing event.  Methods. Gaia19bld was discovered by the Gaia satellite and was subsequently intensively followed up with a network of ground-based observatories and the Spitzer Space Telescope. We collected multiple high-resolution spectra with Very Large Telescope (VLT)/X-shooter to characterise the source star. The event was also observed with VLT Interferometer (VLTI)/PIONIER during the peak. Here we focus on the photometric observations and model the light curve composed of data from Gaia, Spitzer, and multiple optical, ground-based observatories. We find the best-fitting solution with parallax and finite source effects. We derived the limit on the luminosity of the lens based on the blended light model and spectroscopic distance.  Results. We compute the mass of the lens to be 1.13 ± 0.03 M⊙ and derive its distance to be 5.52-0.64+0.35 kpc. The lens is likely a main sequence star, however its true nature has yet to be verified by future high-resolution observations. Our results are consistent with interferometric measurements of the angular Einstein radius, emphasising that interferometry can be a new channel for determining the masses of objects that would otherwise remain undetectable, including stellar-mass black holes.Publisher PDFPeer reviewe

    PS15cey and PS17cke: prospective candidates from the Pan-STARRS Search for kilonovae

    Get PDF
    Time domain astronomy was revolutionized with the discovery of the first kilonova, AT2017gfo, in August 2017, which was associated with the gravitational wave signal GW170817. Since this event, numerous wide-field surveys have been optimizing search strategies to maximize their efficiency of detecting these fast and faint transients. With the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS), we have been conducting a volume-limited survey for intrinsically faint and fast-fading events to a distance of D similar or equal to 200 Mpc. Two promising candidates have been identified from this archival search, with sparse data - PS15cey and PS17cke. Here, we present more detailed analysis and discussion of their nature. We observe that PS15cey was a luminous, fast-declining transient at 320 Mpc. Models of BH-NS mergers with a very stiff equation of state could possibly reproduce the luminosity and decline but the physical parameters are extreme. A more likely scenario is that this was an AT2018kzr-like merger event. PS17cke was a faint and fast-declining event at 15 Mpc. We explore several explosion scenarios of this transient including models of it as a NS-NS and BH-NS merger, the outburst of a massive luminous star, and compare it against other known fast-fading transients. Although there is uncertainty in the explosion scenario due to difficulty in measuring the explosion epoch, we find PS17cke to be a plausible kilonova candidate from the model comparisons

    Developmental malformation of the corpus callosum: a review of typical callosal development and examples of developmental disorders with callosal involvement

    Get PDF
    This review provides an overview of the involvement of the corpus callosum (CC) in a variety of developmental disorders that are currently defined exclusively by genetics, developmental insult, and/or behavior. I begin with a general review of CC development, connectivity, and function, followed by discussion of the research methods typically utilized to study the callosum. The bulk of the review concentrates on specific developmental disorders, beginning with agenesis of the corpus callosum (AgCC)—the only condition diagnosed exclusively by callosal anatomy. This is followed by a review of several genetic disorders that commonly result in social impairments and/or psychopathology similar to AgCC (neurofibromatosis-1, Turner syndrome, 22q11.2 deletion syndrome, Williams yndrome, and fragile X) and two forms of prenatal injury (premature birth, fetal alcohol syndrome) known to impact callosal development. Finally, I examine callosal involvement in several common developmental disorders defined exclusively by behavioral patterns (developmental language delay, dyslexia, attention-deficit hyperactive disorder, autism spectrum disorders, and Tourette syndrome)
    corecore