1,360 research outputs found

    Elucidating cylindrospermopsin toxicity via synthetic analogues: An in vitro approach

    Get PDF
    © 2019 Elsevier Ltd Cylindrospermopsin (CYN) is an alkaloid biosynthesized by selected cyanobacteria, the cyto- and genotoxic properties of which have been studied extensively by in vitro and in vivo experimental models. Various studies have separately established the role of uracil, guanidine and hydroxyl groups in CYN-induced toxicity. In the present study, we have prepared five synthetic analogues that all possess a uracil group but had variations in the other functionality found in CYN. We compared the in vitro toxicity of these analogues in common carp hepatocytes by assessing oxidative stress markers, DNA fragmentation and apoptosis. All the analogues tested induced generation of reactive oxygen species, lipid peroxidation (LPO) and DNA fragmentation. However, the greatest increase in LPO and increase in caspase-3 activity, an apoptosis marker, was demonstrated by an analogue containing guanidine, hydroxyl and uracil functionalities similar to those found in CYN but lacking the complex tricyclic structure of CYN. We also report a crystal structure of an analogue lacking the hydroxyl group found in CYN which does not show intramolecular H-bonding interactions between the guanidine and the uracil functionalities. The observations made in this work supports the hypothesis that CYN toxicity is a result of an interplay between both of the uracil, hydroxyl and guanidine functional groups.This research was partially funded by the Ministry of Education and Science of Ukraine (program for support young fellows MV-1) and by the BEACON (ERDF) program and the EPSRC. Thanks are given to the EPSRC for a fellowship (DE, EP/J01821X/1), the BEACON (ERDF) program for support (PJM, DE) and to the National Mass Spectrometry Facility at Swansea.Published versio

    Peculiarities of structural, electrokinetic, energetic, and magnetic properties semiconductive solid solution Lu1-xVxNiSb

    Get PDF
    The structural, electrokinetic, energetic, and magnetic properties of the new semiconductive solid solution Lu1-xVxNiSb, х=0–0.10, were studied. It was shown that V atoms could simultaneously occupy different crystallographic positions in different ratios, generating structural defects of acceptor and donor nature. This creates corresponding acceptor and donor bands in the bandgap εg of Lu1-xVxNiSb. The mechanism of the formation of two acceptor bands with different depths of occurrence has been established: a small acceptor band εА2, formed by defects due to the substitution of Ni atoms by V ones in the 4c position, and band εА1, generated by vacancies in the LuNiSb structure. The ratio of the concentrations of generated defects determines the position of the Fermi level εF and the conduction mechanisms. The investigated solid solution Lu1-xVxNiSb is a promising thermoelectric material

    Measurement of the cross-section and charge asymmetry of WW bosons produced in proton-proton collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector

    Get PDF
    This paper presents measurements of the W+μ+νW^+ \rightarrow \mu^+\nu and WμνW^- \rightarrow \mu^-\nu cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables, submitted to EPJC. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13

    Search for chargino-neutralino production with mass splittings near the electroweak scale in three-lepton final states in √s=13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for supersymmetry through the pair production of electroweakinos with mass splittings near the electroweak scale and decaying via on-shell W and Z bosons is presented for a three-lepton final state. The analyzed proton-proton collision data taken at a center-of-mass energy of √s=13  TeV were collected between 2015 and 2018 by the ATLAS experiment at the Large Hadron Collider, corresponding to an integrated luminosity of 139  fb−1. A search, emulating the recursive jigsaw reconstruction technique with easily reproducible laboratory-frame variables, is performed. The two excesses observed in the 2015–2016 data recursive jigsaw analysis in the low-mass three-lepton phase space are reproduced. Results with the full data set are in agreement with the Standard Model expectations. They are interpreted to set exclusion limits at the 95% confidence level on simplified models of chargino-neutralino pair production for masses up to 345 GeV

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Search for photonic signatures of gauge-mediated supersymmetry in 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search is presented for photonic signatures, motivated by generalized models of gauge-mediated supersymmetry breaking. This search makes use of proton-proton collision data at √s = 13 TeV corresponding to an integrated luminosity of 36.1 fb −1 recorded by the ATLAS detector at the LHC, and it explores models dominated by both strong and electroweak production of supersymmetric partner states. Experimental signatures incorporating an isolated photon and significant missing transverse momentum are explored. These signatures include events with an additional photon or additional jet activity not associated with any specific underlying quark flavor. No significant excess of events is observed above the Standard Model prediction, and 95% confidence-level upper limits of between 0.083 fb and 0.32 fb are set on the visible cross section of contributions from physics beyond the Standard Model. These results are interpreted in terms of lower limits on the masses of gluinos, squarks, and gauginos in the context of generalized models of gauge-mediated supersymmetry, which reach as high as 2.3 TeV for strongly produced and 1.3 TeV for weakly produced supersymmetric partner pairs

    Correlated long-range mixed-harmonic fluctuations measured in pp, p+Pb and low-multiplicity Pb+Pb collisions with the ATLAS detector

    Get PDF
    For abstract see published article
    corecore