8 research outputs found

    Trypsin-based diet for the growth indices of Spanish mackerel

    Get PDF
    To protect the sustainability of the aquaculture industry, fishmeal is being replaced with alternative feed ingredients such as plant-based protein components. However, most plant-based feedstuffs contain a wide array of anti-nutritional factors. These factors can potentially hinder nutrient consumption, which in turn can interfere with fish health and performance. Protease enzyme supplements can reverse the impacts of anti-nutritional factors and enhance fish growth. This study aimed to incorporate the trypsin enzyme into the food of Spanish mackerel and explore its effects on growth factors, body composition, and blood biochemical parameters. This study was a fully-randomized experiment with three treatments and three replications. This experiment was carried out as a completely randomized design with three treatments and three replications, and the trypsin enzyme was added to the fish diet at different levels: 0%, 0.015%, and 0.025%. For a timeframe of 60 days, the fish were given experimental diets. The growth indices considered were: specific growth rate (SGR), protein efficiency ratio (PER), condition factor (CF), feed conversion ratio (FCR), weight gain percentage (WGP), and hepatic steatosis index (HSI). The results showed that FCR, PER, SGR, and WGP at enzyme levels of 0.015% and 0.025% were substantially different from the control group

    Volatile Compounds in Citrus Essential Oils: A Comprehensive Review

    Get PDF
    [EN] The essential oil fraction obtained from the rind of Citrus spp. is rich in chemical compounds of interest for the food and perfume industries, and therefore has been extensively studied during the last decades. In this manuscript, we provide a comprehensive review of the volatile composition of this oil fraction and rind extracts for the 10 most studied Citrus species: C. sinensis (sweet orange), C. reticulata (mandarin), C. paradisi (grapefruit), C. grandis (pummelo), C. limon (lemon), C. medica (citron), C. aurantifolia (lime), C. aurantium (bitter orange), C. bergamia (bergamot orange), and C. junos (yuzu). Forty-nine volatile organic compounds have been reported in all 10 species, most of them terpenoid (90%), although about half of the volatile compounds identified in Citrus peel are non-terpenoid. Over 400 volatiles of different chemical nature have been exclusively described in only one of these species and some of them could be useful as species biomarkers. A hierarchical cluster analysis based on volatile composition arranges these Citrus species in three clusters which essentially mirrors those obtained with genetic information. The first cluster is comprised by C. reticulata, C. grandis, C. sinensis, C. paradisi and C. aurantium, and is mainly characterized by the presence of a larger abundance of non-terpenoid ester and aldehyde compounds than in the other species reviewed. The second cluster is comprised by C. junos, C. medica, C. aurantifolia, and C. bergamia, and is characterized by the prevalence of mono- and sesquiterpene hydrocarbons. Finally, C. limon shows a particular volatile profile with some sulfur monoterpenoids and non-terpenoid esters and aldehydes as part of its main differential peculiarities. A systematic description of the rind volatile composition in each of the species is provided together with a general comparison with those in leaves and blossoms. Additionally, the most widely used techniques for the extraction and analysis of volatile Citrus compounds are also described.This work was supported in part by the European Commission Horizon 2020 program TRADITOM grant 634561 and TomGEM grant 679796 to JR and AG.González-Mas, M.; Rambla Nebot, JL.; López-Gresa, MP.; Blazquez, M.; Granell Richart, A. (2019). Volatile Compounds in Citrus Essential Oils: A Comprehensive Review. Frontiers in Plant Science. 10:1-18. https://doi.org/10.3389/fpls.2019.00012S11810Abreu, I., Da Costa, N. C., van Es, A., Kim, J.-A., Parasar, U., & Poulsen, M. L. (2017). Natural Occurrence of Aldol Condensation Products in Valencia Orange Oil. Journal of Food Science, 82(12), 2805-2815. doi:10.1111/1750-3841.13948Ahmed, M., Arpaia, M. L., & Scora, R. W. (2001). Seasonal Variation in Lemon (Citrus limonL. Burm. f) Leaf and Rind Oil Composition. Journal of Essential Oil Research, 13(3), 149-153. doi:10.1080/10412905.2001.9699646AKAKABE, Y., KUSUNOKI, A., TANAKA, R., & KANETSUNE, Y. (2010). A Comparison of Volatile Components of Setomi with Its Parent Cultivars. Bioscience, Biotechnology, and Biochemistry, 74(3), 659-662. doi:10.1271/bbb.90722AKAKABE, Y., SAKAMOTO, M., IKEDA, Y., & TANAKA, M. (2008). Identification and Characterization of Volatile Components of the Japanese Sour Citrus FruitCitrus nagato-yuzukichiTanaka. Bioscience, Biotechnology, and Biochemistry, 72(7), 1965-1968. doi:10.1271/bbb.80144Aliberti, L., Caputo, L., De Feo, V., De Martino, L., Nazzaro, F., & Souza, L. (2016). Chemical Composition and in Vitro Antimicrobial, Cytotoxic, and Central Nervous System Activities of the Essential Oils of Citrus medica L. cv. ‘Liscia’ and C. medica cv. ‘Rugosa’ Cultivated in Southern Italy. Molecules, 21(9), 1244. doi:10.3390/molecules21091244Alissandrakis, E. (2003). Ultrasound-assisted extraction of volatile compounds from citrus flowers and citrus honey. Food Chemistry, 82(4), 575-582. doi:10.1016/s0308-8146(03)00013-xAlonzo, G., Del Bosco, S. F., Palazzolo, E., Saiano, F., & Tusa, N. (2000). Citrus cybrid leaf essential oil. Flavour and Fragrance Journal, 15(2), 91-95. doi:10.1002/(sici)1099-1026(200003/04)15:23.0.co;2-xAsikin, Y., Maeda, G., Tamaki, H., Mizu, M., Oku, H., & Wada, K. (2015). Cultivation line and fruit ripening discriminations of Shiikuwasha (Citrus depressa Hayata) peel oils using aroma compositional, electronic nose, and antioxidant analyses. Food Research International, 67, 102-110. doi:10.1016/j.foodres.2014.11.015Asikin, Y., Taira, I., Inafuku-Teramoto, S., Sumi, H., Ohta, H., Takara, K., & Wada, K. (2012). The Composition of Volatile Aroma Components, Flavanones, and Polymethoxylated Flavones in Shiikuwasha (Citrus depressa Hayata) Peels of Different Cultivation Lines. Journal of Agricultural and Food Chemistry, 60(32), 7973-7980. doi:10.1021/jf301848sAsikin, Y., Taira, I., Inafuku, S., Sumi, H., Sawamura, M., Takara, K., & Wada, K. (2012). Volatile Aroma Components and Antioxidant Activities of the Flavedo Peel Extract of Unripe Shiikuwasha (Citrus depressa Hayata). Journal of Food Science, 77(4), C469-C475. doi:10.1111/j.1750-3841.2011.02604.xBelsito, E. L., Carbone, C., Di Gioia, M. L., Leggio, A., Liguori, A., Perri, F., … Viscomi, M. C. (2007). Comparison of the Volatile Constituents in Cold-Pressed Bergamot Oil and a Volatile Oil Isolated by Vacuum Distillation. Journal of Agricultural and Food Chemistry, 55(19), 7847-7851. doi:10.1021/jf070997qBen Hsouna, A., Ben Halima, N., Smaoui, S., & Hamdi, N. (2017). Citrus lemon essential oil: chemical composition, antioxidant and antimicrobial activities with its preservative effect against Listeria monocytogenes inoculated in minced beef meat. Lipids in Health and Disease, 16(1). doi:10.1186/s12944-017-0487-5Benelli, P., Riehl, C. A. S., Smânia, A., Smânia, E. F. A., & Ferreira, S. R. S. (2010). Bioactive extracts of orange (Citrus sinensis L. Osbeck) pomace obtained by SFE and low pressure techniques: Mathematical modeling and extract composition. The Journal of Supercritical Fluids, 55(1), 132-141. doi:10.1016/j.supflu.2010.08.015Benjamin, G., Tietel, Z., & Porat, R. (2013). Effects of Rootstock/Scion Combinations on the Flavor of Citrus Fruit. Journal of Agricultural and Food Chemistry, 61(47), 11286-11294. doi:10.1021/jf402892pBlanco Tirado, C., Stashenko, E. E., Combariza, M. Y., & Martinez, J. R. (1995). Comparative study of Colombian citrus oils by high-resolution gas chromatography and gas chromatography-mass spectrometry. Journal of Chromatography A, 697(1-2), 501-513. doi:10.1016/0021-9673(94)00955-9Blázquez, M. A., & Carbó, E. (2015). Control of Portulaca oleracea by boldo and lemon essential oils in different soils. Industrial Crops and Products, 76, 515-521. doi:10.1016/j.indcrop.2015.07.019Bonaccorsi, I. L., McNair, H. M., Brunner, L. A., Dugo, P., & Dugo, G. (1999). Fast HPLC for the Analysis of Oxygen Heterocyclic Compounds of Citrus Essential Oils†. Journal of Agricultural and Food Chemistry, 47(10), 4237-4239. doi:10.1021/jf990417sBoussaada, O., & Chemli, R. (2006). Chemical Composition of Essential Oils from Flowers, Leaves and Peel of Citrus aurantium L. var. amara from Tunisia. Journal of Essential Oil Bearing Plants, 9(2), 133-139. doi:10.1080/0972060x.2006.10643484Boussaada, O., Skoula, M., Kokkalou, E., & Chemli, R. (2007). Chemical Variability of Flowers, Leaves, and Peels Oils of Four Sour Orange Provenances. Journal of Essential Oil Bearing Plants, 10(6), 453-464. doi:10.1080/0972060x.2007.10643579Brophy, J. J., Goldsack, R. J., & Forster, P. I. (2001). The Leaf Oils of the Australian Species ofCitrus(Rutaceae). Journal of Essential Oil Research, 13(4), 264-268. doi:10.1080/10412905.2001.9699690Buettner, A., Mestres, M., Fischer, A., Guasch, J., & Schieberle, P. (2003). Evaluation of the most odour-active compounds in the peel oil of clementines (citrus reticulata blanco cv. clementine). European Food Research and Technology, 216(1), 11-14. doi:10.1007/s00217-002-0586-yCannon, R. J., Kazimierski, A., Curto, N. L., Li, J., Trinnaman, L., Jańczuk, A. J., … Chen, M. Z. (2015). Identification, Synthesis, and Characterization of Novel Sulfur-Containing Volatile Compounds from the In-Depth Analysis of Lisbon Lemon Peels (Citrus limonL. Burm. f. cv. Lisbon). Journal of Agricultural and Food Chemistry, 63(7), 1915-1931. doi:10.1021/jf505177rCarbonell-Caballero, J., Alonso, R., Ibañez, V., Terol, J., Talon, M., & Dopazo, J. (2015). A Phylogenetic Analysis of 34 Chloroplast Genomes Elucidates the Relationships between Wild and Domestic Species within the GenusCitrus. Molecular Biology and Evolution, 32(8), 2015-2035. doi:10.1093/molbev/msv082Casilli, A., Decorzant, E., Jaquier, A., & Delort, E. (2014). Multidimensional gas chromatography hyphenated to mass spectrometry and olfactometry for the volatile analysis of citrus hybrid peel extract. Journal of Chromatography A, 1373, 169-178. doi:10.1016/j.chroma.2014.11.023Chen, Y., Wu, J., Xu, Y., Fu, M., & Xiao, G. (2014). Effect of Second Cooling on the Chemical Components of Essential Oils from Orange Peel (Citrus sinensis). Journal of Agricultural and Food Chemistry, 62(35), 8786-8790. doi:10.1021/jf501079rCheong, M. W., Chong, Z. S., Liu, S. Q., Zhou, W., Curran, P., & Bin Yu. (2012). Characterisation of calamansi (Citrus microcarpa). Part I: Volatiles, aromatic profiles and phenolic acids in the peel. Food Chemistry, 134(2), 686-695. doi:10.1016/j.foodchem.2012.02.162Cheong, M.-W., Liu, S.-Q., Yeo, J., Chionh, H.-K., Pramudya, K., Curran, P., & Yu, B. (2011). Identification of Aroma-Active Compounds in Malaysian Pomelo (Citrus grandis(L.) Osbeck) Peel by Gas Chromatography-Olfactometry. Journal of Essential Oil Research, 23(6), 34-42. doi:10.1080/10412905.2011.9712279Cheong, M.-W., Loke, X.-Q., Liu, S.-Q., Pramudya, K., Curran, P., & Yu, B. (2011). Characterization of Volatile Compounds and Aroma Profiles of Malaysian Pomelo (Citrus grandis (L.) Osbeck) Blossom and Peel. Journal of Essential Oil Research, 23(2), 34-44. doi:10.1080/10412905.2011.9700445Chisholm, M. G., Jell, J. A., & Cass, D. M. (2003). Characterization of the major odorants found in the peel oil ofCitrus reticulata Blanco cv. Clementine using gas chromatography-olfactometry. Flavour and Fragrance Journal, 18(4), 275-281. doi:10.1002/ffj.1188Chisholm, M. G., Wilson, M. A., & Gaskey, G. M. (2003). Characterization of aroma volatiles in key lime essential oils (Citrus aurantifolia Swingle). Flavour and Fragrance Journal, 18(2), 106-115. doi:10.1002/ffj.1172Choi, H.-S. (2003). Characterization ofCitrus unshiu(C. unshiuMarcov. formaMiyagawa-wase) Blossom Aroma by Solid-Phase Microextraction in Conjunction with an Electronic Nose. Journal of Agricultural and Food Chemistry, 51(2), 418-423. doi:10.1021/jf0114280Choi, H.-S. (2003). Character Impact Odorants ofCitrusHallabong [(C. unshiuMarcov ×C. sinensisOsbeck) ×C. reticulataBlanco] Cold-Pressed Peel Oil. Journal of Agricultural and Food Chemistry, 51(9), 2687-2692. doi:10.1021/jf021069oChoi, H.-S. (2005). Characteristic Odor Components of Kumquat (Fortunella japonicaSwingle) Peel Oil. Journal of Agricultural and Food Chemistry, 53(5), 1642-1647. doi:10.1021/jf040324xChoi, H.-S. (2006). Lipolytic Effects of Citrus Peel Oils and Their Components. Journal of Agricultural and Food Chemistry, 54(9), 3254-3258. doi:10.1021/jf052409jChoi, H.-S., Kondo, Y., & Sawamura, M. (2001). Characterization of the Odor-Active Volatiles in Citrus Hyuganatsu (Citrus tamuranaHort. ex Tanaka). Journal of Agricultural and Food Chemistry, 49(5), 2404-2408. doi:10.1021/jf001467wChoi, H. S., Sawamura, M., & Kondo, Y. (2002). Characterization of the Key Aroma Compounds of Citrus flaviculpus Hort. ex Tanaka by Aroma Extraction Dilution Analysis. Journal of Food Science, 67(5), 1713-1718. doi:10.1111/j.1365-2621.2002.tb08711.xChung, H., Chung, W.-Y., Yoo, E.-S., Cho, S. K., Oh, S.-K., & Kim, Y.-S. (2012). Characterization of volatile aroma-active compounds in Dangyooja (Citrus grandis Osbeck). Journal of the Korean Society for Applied Biological Chemistry, 55(1), 133-136. doi:10.1007/s13765-012-0023-2Chung, M. S. (2012). Volatile compounds of the Hallabong (Citrus kiyomi × Citrus ponkan) blossom. Food Science and Biotechnology, 21(1), 285-290. doi:10.1007/s10068-012-0038-9Cosimi, S., Rossi, E., Cioni, P. L., & Canale, A. (2009). Bioactivity and qualitative analysis of some essential oils from Mediterranean plants against stored-product pests: Evaluation of repellency against Sitophilus zeamais Motschulsky, Cryptolestes ferrugineus (Stephens) and Tenebrio molitor (L.). Journal of Stored Products Research, 45(2), 125-132. doi:10.1016/j.jspr.2008.10.002Costa, R., Bisignano, C., Filocamo, A., Grasso, E., Occhiuto, F., & Spadaro, F. (2014). Antimicrobial activity and chemical composition ofCitrus aurantifolia(Christm.) Swingle essential oil from Italian organic crops. Journal of Essential Oil Research, 26(6), 400-408. doi:10.1080/10412905.2014.964428Costa, R., Dugo, P., Navarra, M., Raymo, V., Dugo, G., & Mondello, L. (2010). Study on the chemical composition variability of some processed bergamot (Citrus bergamia) essential oils. Flavour and Fragrance Journal, 25(1), 4-12. doi:10.1002/ffj.1949Craske, J. D., Suryadi, N., & Wootton, M. (2005). A comparison of the peel oil components of Australian native lime (Microcitrus australe) and Mexican lime (Citrus aurantifolia Swingle). Journal of the Science of Food and Agriculture, 85(3), 522-525. doi:10.1002/jsfa.2038Behzad, B. D. (2011). Comparison of volatile components of flower, leaf, peel and juice of Page mandarin [(Citrus reticulata var Dancy Citrus paradisi var Duncan) Citrus clementina]. African Journal of Biotechnology, 10(51), 10437-10446. doi:10.5897/ajb11.1069Delort, E., & Jaquier, A. (2009). Novel terpenyl esters from Australian finger lime (Citrus australasica) peel extract. Flavour and Fragrance Journal, 24(3), 123-132. doi:10.1002/ffj.1922Delort, E., Jaquier, A., Decorzant, E., Chapuis, C., Casilli, A., & Frérot, E. (2015). Comparative analysis of three Australian finger lime (Citrus australasica) cultivars: Identification of unique citrus chemotypes and new volatile molecules. Phytochemistry, 109, 111-124. doi:10.1016/j.phytochem.2014.10.023Dharmawan, J., Kasapis, S., Sriramula, P., Lear, M. J., & Curran, P. (2009). Evaluation of Aroma-Active Compounds in Pontianak Orange Peel Oil (Citrus nobilis Lour. Var.microcarpaHassk.) by Gas Chromatography−Olfactometry, Aroma Reconstitution, and Omission Test. Journal of Agricultural and Food Chemistry, 57(1), 239-244. doi:10.1021/jf801070rDong, Z. B., Shao, W. Y., & Liang, Y. R. (2014). Isolation and Characterization of Essential Oil Extracted from Tangerine Peel. Asian Journal of Chemistry, 26(16), 4975-4978. doi:10.14233/ajchem.2014.16277Družić, J., Jerković, I., Marijanović, Z., & Roje, M. (2016). Chemical biodiversity of the leaf and flower essential oils of Citrus aurantium L. from Dubrovnik area (Croatia) in comparison with Citrus sinensis L. Osbeck cv. Washington navel, Citrus sinensis L. Osbeck cv. Tarocco and Citrus sinensis L. Osbeck cv. Doppio Sanguigno. Journal of Essential Oil Research, 28(4), 283-291. doi:10.1080/10412905.2016.1159258Dugo, G., Bonaccorsi, I., Sciarrone, D., Costa, R., Dugo, P., Mondello, L., … Fakhry, H. A. (2011). Characterization of Oils from the Fruits, Leaves and Flowers of the Bitter Orange Tree. Journal of Essential Oil Research, 23(2), 45-59. doi:10.1080/10412905.2011.9700446Dugo, P., Mondello, L., Cogliandro, E., Verzera, A., & Dugo, G. (1996). On the Genuineness of Citrus Essential Oils. 51. Oxygen Heterocyclic Compounds of Bitter Orange Oil (Citrus aurantiumL.). Journal of Agricultural and Food Chemistry, 44(2), 544-549. doi:10.1021/jf950183mDugo, P., Mondello, L., Favoino, O., Cicero, L., Zenteno, N. A. R., & Dugo, G. (2004). Characterization of cold-pressed Mexican dancy tangerine oils. Flavour and Fragrance Journal, 20(1), 60-66. doi:10.1002/ffj.1367Elmaci, Y., & Onoğur, T. (2012). Mandarin peel aroma: Estimation by using headspace/GC/MS and descriptive analysis techniques. Acta Alimentaria, 41(1), 131-139. doi:10.1556/aalim.41.2012.1.15Fancello, F., Petretto, G. L., Zara, S., Sanna, M. L., Addis, R., Maldini, M., … Pintore, G. (2016). Chemical characterization, antioxidant capacity and antimicrobial activity against food related microorganisms of Citrus limon var. pompia leaf essential oil. LWT - Food Science and Technology, 69, 579-585. doi:10.1016/j.lwt.2016.02.018Fanciullino, A.-L., Gancel, A.-L., Froelicher, Y., Luro, F., Ollitrault, P., & Brillouet, J.-M. (2005). Effects of Nucleo-cytoplasmic Interactions on Leaf Volatile Compounds from Citrus Somatic Diploid Hybrids. Journal of Agricultural and Food Chemistry, 53(11), 4517-4523. doi:10.1021/jf0502855Fanciullino, A.-L., Tomi, F., Luro, F., Desjobert, J. M., & Casanova, J. (2006). Chemical variability of peel and leaf oils of mandarins. Flavour and Fragrance Journal, 21(2), 359-367. doi:10.1002/ffj.1658Feger, W., Brandauer, H., & Ziegler, H. (2000). Sesquiterpene hydrocarbons of cold-pressed lime oils. Flavour and Fragrance Journal, 15(4), 281-284. doi:10.1002/1099-1026(200007/08)15:43.0.co;2-wFeger, W., Brandauer, H., & Ziegler, H. (2001). Analytical Investigation of Sweetie Peel Oil. Journal of Essential Oil Research, 13(5), 309-313. doi:10.1080/10412905.2001.9712221Feger, W., Brandauer, H., & Ziegler, H. (2001). Germacrenes in Citrus Peel Oils. Journal of Essential Oil Research, 13(4), 274-277. doi:10.1080/10412905.2001.9699692Ferhat, M. A., Meklati, B. Y., & Chemat, F. (2007). Comparison of different isolation methods of essential oil fromCitrus fruits: cold pressing, hydrodistillation and microwave ‘dry’ distillation. Flavour and Fragrance Journal, 22(6), 494-504. doi:10.1002/ffj.1829Fischer, A., Grab, W., & Schieberle, P. (2007). Characterisation of the most odour-active compounds in a peel oil extract from Pontianak oranges (Citrus nobilis var. Lour. microcarpa Hassk.). European Food Research and Technology, 227(3), 735-744. doi:10.1007/s00217-007-0781-yFlamini, G., & Cioni, P. L. (2010). Odour gradients and patterns in volatile emission of different plant parts and developing fruits of grapefruit (Citrus paradisi L.). Food Chemistry, 120(4), 984-992. doi:10.1016/j.foodchem.2009.11.037Flamini, G., Tebano, M., & Cioni, P. L. (2007). Volatiles emission patterns of different plant organs and pollen of Citrus limon. Analytica Chimica Acta, 589(1), 120-124. doi:10.1016/j.aca.2007.02.053Fouad, H. A., & da Camara, C. A. G. (2017). Chemical composition and bioactivity of peel oils from Citrus aurantiifolia and Citrus reticulata and enantiomers of their major constituent against Sitophilus zeamais (Coleoptera: Curculionidae). Journal of Stored Products Research, 73, 30-36. doi:10.1016/j.jspr.2017.06.001Frizzo, C. D., Lorenzo, D., & Dellacassa, E. (2004). Composition and Seasonal Variation of the Essential Oils from Two Mandarin Cultivars of Southern Brazil. Journal of Agricultural and Food Chemistry, 52(10), 3036-3041. doi:10.1021/jf030685xFurneri, P. M., Mondello, L., Mandalari, G., Paolino, D., Dugo, P., Garozzo, A., & Bisignano, G. (2012). In vitro antimycoplasmal activity of citrus bergamia essential oil and its major components. European Journal of Medicinal Chemistry, 52, 66-69. doi:10.1016/j.ejmech.2012.03.005Gancel, A.-L., Ollé, D., Ollitrault, P., Luro, F., & Brillouet, J.-M. (2002). Leaf and peel volatile compounds of an interspecific citrus somatic hybrid [Citrus aurantifolia(Christm.) Swing. +Citrus paradisiMacfayden]. Flavour and Fragrance Journal, 17(6), 416-424. doi:10.1002/ffj.1119Gancel, A.-L., Ollitrault, P., Froelicher, Y., Tomi, F., Jacquemond, C., Luro, F., & Brillouet, J.-M. (2003). Leaf Volatile Compounds of Seven Citrus Somatic Tetraploid Hybrids Sharing Willow Leaf Mandarin (Citrus deliciosaTen.) as Their Common Parent. Journal of Agricultural and Food Chemistry, 51(20), 6006-6013. doi:10.1021/jf0345090Gancel, A.-L., Ollitrault, P., Froelicher, Y., Tomi, F., Jacquemond, C., Luro, F., & Brillouet, J.-M. (2005). Leaf Volatile Compounds of Six Citrus Somatic Allotetraploid Hybrids Originating from Various Combinations of Lime, Lemon, Citron, Sweet Orange, and Grapefruit. Journal of Agricultural and Food Chemistry, 53(6), 2224-2230. doi:10.1021/jf048315bGonzález-Mas, M. C., Rambla, J. L., Alamar, M. C., Gutiérrez, A., & Granell, A. (2011). Comparative Analysis of the Volatile Fraction of Fruit Juice from Different Citrus Species. PLoS ONE, 6(7), e22016. doi:10.1371/journal.pone.0022016Högnadóttir, Á., & Rouseff, R. L. (2003). Identification of aroma active compounds in orange essence oil using gas chromatography–olfactometry and gas chromatography–mass spectrometry. Journal of Chromatography A, 998(1-2), 201-211. doi:10.1016/s0021-9673(03)00524-7Hosni, K., Zahed, N., Chrif, R., Abid, I., Medfei, W., Kallel, M., … Sebei, H. (2010). Composition of peel essential oils from four selected Tunisian Citrus species: Evidence for the genotypic influence. Food Chemistry, 123(4), 1098-1104. doi:10.1016/j.foodchem.2010.05.068Huang, H.-H., Lin, L.-Y., Chiang, H.-M., Lay, S.-J., Wu, C.-S., & Chen, H.-C. (2017). Analysis of Volatile Compounds from Different Parts ofCitrus grandis(L.) Osbeck Flowers by Headspace Solid-Phase Microextraction-Gas Chromatography-Mass Spectrometry. Journal of Essential Oil Bearing Plants, 20(4), 1057-1065. doi:10.1080/0972060x.2017.1377112Inafuku-Teramoto, S., Suwa, R., Fukuzawa, Y., & Kawamitsu, Y. (2011). Polymethoxyflavones, Synephrine and Volatile Constitution of Peels of Citrus Fruit Grown in Okinawa. Journal of the Japanese Society for Horticultural Science, 80(2), 214-224. doi:10.2503/jjshs1.80.214Jabalpurwala, F. A., Smoot, J. M., & Rouseff, R. L. (2009). A comparison of citrus blossom volatiles. Phytochemistry, 70(11-12),

    Which method is best for the induction of labour?: A systematic review, network meta-analysis and cost-effectiveness analysis

    Get PDF
    Background: More than 150,000 pregnant women in England and Wales have their labour induced each year. Multiple pharmacological, mechanical and complementary methods are available to induce labour. Objective: To assess the relative effectiveness, safety and cost-effectiveness of labour induction methods and, data permitting, effects in different clinical subgroups. Methods: We carried out a systematic review using Cochrane methods. The Cochrane Pregnancy and Childbirth Group’s Trials Register was searched (March 2014). This contains over 22,000 reports of controlled trials (published from 1923 onwards) retrieved from weekly searches of OVID MEDLINE (1966 to current); Cochrane Central Register of Controlled Trials (The Cochrane Library); EMBASE (1982 to current); Cumulative Index to Nursing and Allied Health Literature (1984 to current); ClinicalTrials.gov; the World Health Organization International Clinical Trials Registry Portal; and hand-searching of relevant conference proceedings and journals. We included randomised controlled trials examining interventions to induce labour compared with placebo, no treatment or other interventions in women eligible for third-trimester induction. We included outcomes relating to efficacy, safety and acceptability to women. In addition, for the economic analysis we searched the Database of Abstracts of Reviews of Effects, and Economic Evaluations Databases, NHS Economic Evaluation Database and the Health Technology Assessment database. We carried out a network meta-analysis (NMA) using all of the available evidence, both direct and indirect, to produce estimates of the relative effects of each treatment compared with others in a network. We developed a de novo decision tree model to estimate the cost-effectiveness of various methods. The costs included were the intervention and other hospital costs incurred (price year 2012–13). We reviewed the literature to identify preference-based utilities for the health-related outcomes in the model. We calculated incremental cost-effectiveness ratios, expected costs, utilities and net benefit. We represent uncertainty in the optimal intervention using cost-effectiveness acceptability curves. Results: We identified 1190 studies; 611 were eligible for inclusion. The interventions most likely to achieve vaginal delivery (VD) within 24 hours were intravenous oxytocin with amniotomy [posterior rank 2; 95% credible intervals (CrIs) 1 to 9] and higher-dose (≥ 50 μg) vaginal misoprostol (rank 3; 95% CrI 1 to 6). Compared with placebo, several treatments reduced the odds of caesarean section, but we observed considerable uncertainty in treatment rankings. For uterine hyperstimulation, double-balloon catheter had the highest probability of being among the best three treatments, whereas vaginal misoprostol (≥ 50 μg) was most likely to increase the odds of excessive uterine activity. For other safety outcomes there were insufficient data or there was too much uncertainty to identify which treatments performed ‘best’. Few studies collected information on women’s views. Owing to incomplete reporting of the VD within 24 hours outcome, the cost-effectiveness analysis could compare only 20 interventions. The analysis suggested that most interventions have similar utility and differ mainly in cost. With a caveat of considerable uncertainty, titrated (low-dose) misoprostol solution and buccal/sublingual misoprostol had the highest likelihood of being cost-effective. Limitations: There was considerable uncertainty in findings and there were insufficient data for some planned subgroup analyses. Conclusions: Overall, misoprostol and oxytocin with amniotomy (for women with favourable cervix) is more successful than other agents in achieving VD within 24 hours. The ranking according to safety of different methods was less clear. The cost-effectiveness analysis suggested that titrated (low-dose) oral misoprostol solution resulted in the highest utility, whereas buccal/sublingual misoprostol had the lowest cost. There was a high degree of uncertainty as to the most cost-effective intervention

    Effects of gentaminoseleferon on blood parameters during treatment of Mycoplasma dispar respiratory infection in calves

    Get PDF
    Background and Aim: Respiratory diseases in young cattle are among the significant cattle pathologies that cause considerable economic damage globally. For the treatment of respiratory diseases, coformulated drugs that increase general nonspecific resistance, exhibit adaptogenic and anti-inflammatory properties, and normalize metabolic processes in animals are currently being used. The aim of our study was to investigate the therapeutic efficacy of the complex drug "gentaminoseleferon", used in the treatment of respiratory diseases in calves, especially in Mycoplasma dispar infection. Materials and Methods: The animals were divided into three groups. Calves with the first clinical signs of respiratory pathology were randomly divided into two groups. The first experimental group (n=5) was intramuscularly injected with sulfetrisan at a dose of 5-10 mL/animal once per day for 7 days. The second experimental group (n=5) was given gentaminoseleferon at a dose of 1 mL/10 kg of body weight once per day for 7 days. The drugs were not used in the control group, the "healthy animals (n=5)". Blood samples were taken 10 days before and after treatment and compared between the experimental and healthy calves. The changes in the hematological and biochemical parameters of blood and serum were evaluated. Results: During the recovery process of animals in the experimental groups, a normalization of the hematological and biochemical parameters of blood and serum was noted. Interestingly, in calves of the second experimental group, an increase in the total serum protein content by 2.2% (p<0.05) was recorded in comparison with the first group. The second group, furthermore, showed an increase in Vitamins A, E, and C concentrations by 13.5% (p<0.05), 11.9% (p<0.005), and 15.1% (p<0.0005), respectively, as well as in zinc and iron concentrations by 4.1% (p<0.05) and 9.3% (p<0.0001), respectively. These findings indicate a more pronounced decrease in the inflammatory process in the respiratory system and intensive restoration of metabolism, thereby establishing the high therapeutic efficacy of gentaminoseleferon. Conclusion: Gentaminoseleferon was proven highly effective in the treatment of calves with respiratory illnesses and in restoring homeostasis in the organisms of animals after treatment, as indicated by the normalization of morphological and biochemical blood parameters with a reduction in the recovery time

    ВЛИЯНИЕ АПРАМИЦИНА НА СТРУКТУРНО-ФУНКЦИОНАЛЬНЫЕ СВОЙСТВА ЭРИТРОЦИТОВ ПЕРИФЕРИЧЕСКОЙ КРОВИ КРЫС ПО ПАРАМЕТРАМ ОСМОТИЧЕСКИХ И КИСЛОТНЫХ ЭРИТРОГРАММ

    No full text
    Using automatic registration of erythrograms, the hypoosmotic and acid resistance of rat peripheral blood erythrocytes, modified with the antibiotic apramycin, were studied. It was found that a preliminary 30-minute incubation of a suspension of erythrocytes in physiological solution together with the antibiotic apramycin at a concentration of 0.2 mg/ml reduced the resistance of blood cells to hypoosmotic and acid conditions compared with intact erythrocytes. In a 0.45 % NaCl solution, erythrocytes modified with apramycin were more actively involved in the hemolytic process and 90 % of the cells were subjected to osmotic hemolysis for 90 s. In physiological saline with pH of 3.5-4.0, the latent period of acid hemolysis of erythrocytes modified with apramycin was 130 s. The number of erythrocytes hemolyzed in an acidic environment did not exceed 29 %. It was stated that the aminoglycoside antibiotic apramycin at a concentration of 0.2 mg/ml can interact with rat blood erythrocytes and cause latent changes in membrane structures and other organic components of cells in them, thereby reducing their resistance properties in hypoosmotic and acidic conditions.С помощью автоматической регистрации эритрограмм изучены гипоосмотическая и кислотная резистентность эритроцитов периферической крови крыс, модифицированных антибиотиком апрамицином. Установлено, что предварительная 30 минутная инкубация взвеси эритроцитов в физиологическом растворе вместе антибиотиком апрамицином в концентрации 0.2 мг/мл снижает резистентость клеток крови к гипоосмотическим и кислотным условиям по сравнению с интактными эритроцитами. В 0.45 % растворе NaCl эритроциты, модифицированные апрамицином, активнее вовлекались в гемолитический процесс и в течение 90 с осмотическому гемолизу подвергалось 90 % клеток. В физиологическом растворе с рН 3.5-4.0 латентный период кислотного гемолиза эритроцитов, модифицированных апрамицином, составил 130 с. Количество эритроцитов, гемолизированных в кислой среде, не превышало 29 %. Установлено, что аминогликозидный антибиотик апрамицин в концентрации 0.2 мг/мл может взаимодействовать с эритроцитами крови крыс и, вызывать в них скрытые изменения мембранных структур и других органических компонентов клеток, снижая тем самым их резистентные свойства в условиях гипоосмотической и кислой среды

    Acute complications after laparoscopic bariatric procedures: update for the general surgeon

    No full text
    corecore