335 research outputs found
The transitional gap transient AT 2018hso: new insights into the luminous red nova phenomenon
Context. The absolute magnitudes of luminous red novae (LRNe) are intermediate between those of novae and supernovae (SNe), and show a relatively homogeneous spectro-photometric evolution. Although they were thought to derive from core instabilities in single stars, there is growing support for the idea that they are triggered by binary interaction that possibly ends with the merging of the two stars.
Aims. AT 2018hso is a new transient showing transitional properties between those of LRNe and the class of intermediate-luminosity red transients (ILRTs) similar to SN 2008S. Through the detailed analysis of the observed parameters, our study supports that it actually belongs to the LRN class and was likely produced by the coalescence of two massive stars.
Methods. We obtained ten months of optical and near-infrared photometric monitoring, and 11 epochs of low-resolution optical spectroscopy of AT 2018hso. We compared its observed properties with those of other ILRTs and LRNe. We also inspected the archival Hubble Space Telescope (HST) images obtained about 15 years ago to constrain the progenitor properties.
Results. The light curves of AT 2018hso show a first sharp peak (reddening-corrected M-r = -13.93 mag), followed by a broader and shallower second peak that resembles a plateau in the optical bands. The spectra dramatically change with time. Early-time spectra show prominent Balmer emission lines and a weak [Ca II] doublet, which is usually observed in ILRTs. However, the strong decrease in the continuum temperature, the appearance of narrow metal absorption lines, the great change in the H alpha strength and profile, and the emergence of molecular bands support an LRN classification. The possible detection of a M-I similar to -8 mag source at the position of AT 2018hso in HST archive images is consistent with expectations for a pre-merger massive binary, similar to the precursor of the 2015 LRN in M101.
Conclusions. We provide reasonable arguments to support an LRN classification for AT 2018hso. This study reveals growing heterogeneity in the observables of LRNe than has been thought previously, which is a challenge for distinguishing between LRNe and ILRTs. This suggests that the entire evolution of gap transients needs to be monitored to avoid misclassifications
Development of Proficiency Testing for Detection of Irradiated Food: Project E01068. Results of First Round PSL Trials, September 2005
Development of Proficiency Testing for Detection of Irradiated Food: Project E01068. Results of Second Round PSL and TL Trials, September 2006
Pulsating in unison at optical and X-ray energies: simultaneous high-time resolution observations of the transitional millisecond pulsar PSR J1023+0038
PSR J1023+0038 is the first millisecond pulsar discovered to pulsate in the
visible band; such a detection took place when the pulsar was surrounded by an
accretion disk and also showed X-ray pulsations. We report on the first high
time resolution observational campaign of this transitional pulsar in the disk
state, using simultaneous observations in the optical (TNG, NOT, TJO), X-ray
(XMM-Newton, NuSTAR, NICER), infrared (GTC) and UV (Swift) bands. Optical and
X-ray pulsations were detected simultaneously in the X-ray high intensity mode
in which the source spends 70% of the time, and both disappeared in the
low mode, indicating a common underlying physical mechanism. In addition,
optical and X-ray pulses were emitted within a few km, had similar pulse shape
and distribution of the pulsed flux density compatible with a power-law
relation connecting the optical and the 0.3-45 keV
X-ray band. Optical pulses were detected also during flares with a pulsed flux
reduced by one third with respect to the high mode; the lack of a simultaneous
detection of X-ray pulses is compatible with the lower photon statistics. We
show that magnetically channeled accretion of plasma onto the surface of the
neutron star cannot account for the optical pulsed luminosity (
erg/s). On the other hand, magnetospheric rotation-powered pulsar emission
would require an extremely efficient conversion of spin-down power into pulsed
optical and X-ray emission. We then propose that optical and X-ray pulses are
instead produced by synchrotron emission from the intrabinary shock that forms
where a striped pulsar wind meets the accretion disk, within a few light
cylinder radii away, 100 km, from the pulsar.Comment: 26 pages, 14 figures, first submitted to ApJ on 2019, January 1
Deletion of the gabra2 gene results in hypersensitivity to the acute effects of ethanol but does not alter ethanol self administration
Human genetic studies have suggested that polymorphisms of the GABRA2 gene encoding the GABA(A) α2-subunit are associated with ethanol dependence. Variations in this gene also convey sensitivity to the subjective effects of ethanol, indicating a role in mediating ethanol-related behaviours. We therefore investigated the consequences of deleting the α2-subunit on the ataxic and rewarding properties of ethanol in mice. Ataxic and sedative effects of ethanol were explored in GABA(A) α2-subunit wildtype (WT) and knockout (KO) mice using a Rotarod apparatus, wire hang and the duration of loss of righting reflex. Following training, KO mice showed shorter latencies to fall than WT littermates under ethanol (2 g/kg i.p.) in both Rotarod and wire hang tests. After administration of ethanol (3.5 g/kg i.p.), KO mice took longer to regain the righting reflex than WT mice. To ensure the acute effects are not due to the gabra2 deletion affecting pharmacokinetics, blood ethanol concentrations were measured at 20 minute intervals after acute administration (2 g/kg i.p.), and did not differ between genotypes. To investigate ethanol's rewarding properties, WT and KO mice were trained to lever press to receive increasing concentrations of ethanol on an FR4 schedule of reinforcement. Both WT and KO mice self-administered ethanol at similar rates, with no differences in the numbers of reinforcers earned. These data indicate a protective role for α2-subunits, against the acute sedative and ataxic effects of ethanol. However, no change was observed in ethanol self administration, suggesting the rewarding effects of ethanol remain unchange
Relations between the milnor and quillen K-theory of fields
De novo mutations in specific mTOR pathway genes cause brain overgrowth in the context of intellectual disability (ID). By analyzing 101 mMTOR-related genes in a large ID patient cohort and two independent population cohorts, we show that these genes modulate brain growth in health and disease. We report the mTOR activator gene RHEB as an ID gene that is associated with megalencephaly when mutated. Functional testing of mutant RHEB in vertebrate animal models indicates pathway hyperactivation with a concomitant increase in cell and head size, aberrant neuronal migration, and induction of seizures, concordant with the human phenotype. This study reveals that tight control of brain volume is exerted through a large community of mTOR-related genes. Human brain volume can be altered, by either rare disruptive events causing hyperactivation of the pathway, or through the collective effects of common alleles
Cases of cryptosporidiosis co-infections in AIDS patients: a correlation between clinical presentation and GP60 subgenotype lineages from aged formalin-fixed stool samples
Nine cases of cryptosporidiosis co-infections in AIDS patients were clinically categorised into severe (patients 1, 3, 8 and 9), moderate (patients 4 and 5) and mild (patients 2, 6 and 7). Formalin-fixed faecal specimens from these patients were treated to obtain high quality DNA competent for amplification and sequencing of the 60-kDa glycoprotein (GP60) gene. Sequence analysis revealed that one patient was infected with Cryptosporidium hominis whereas the remaining eight patients were infected with C. parvum. Interestingly, the patients showing severe cryptosporidiosis harboured two subtypes within the C. parvum allelic family IIc (IIcA5G3 and IIcA5G3R2), whereas patients with moderate or mild infections showed various subtypes of the C. parvum allelic family IIa (IIaA14G2R1, IIaA15G2R1, IIaA17G3R1 and IIaA18G3R1)
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
- …
