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In this paper we will investigate the connection between two versions of the 
algebraic K-theory of fields. The definition of K,“(F). n>2, given by Milnor in [4] 
involves a straightforward generalization of K2(F) for a field F. The groups K:(F), 

KY(F) and KY(F) are the standard K-theory groups introduced in [5]. Putting these 
groups together we get 

There is a product structure defined on KY(F) in such a way that if xcK”(F), 
y E KY(F) then xy E K~~j(F). With this added structure we get a ring which is called 
the Milnor ring of F. All the definitions are strictly algebraic and the theory evolved 
bears a strong relation with both the Witt ring and Galois cohomology [4]. 

For any ring A we can define the infinite general linear group GL(A) and its 
classifying space BGL(A). For n? 1 Quillen defines the group K:(A) as the nth 
homotopy group of the space BGL(A)+, derived from BGL(A) by the plus 
construction. For n = 0 take @(A) as the standard group Ko(A) defined in [5]. For 
n = 1, 2 it is known that KY(F) s@(F) for any field F [3]. On the other hand if n is 
an odd integer greater than one and if F is a finite field, then KY(F) is trivial while 
K:(F) is cyclic. 

We can define the Quillen K-ring analagously (31. 

We also get a natural ring homomorphism I+: Ky(F)-+K?(F) which is uniquely 
determined by the isomorphism KY(F) 2 KY(F) (uniqueness follows since 
KY(F) is generated as a ring by KY(F)). We will refer to the image of lFas the set of 
decomposable elements. 

The calculations for finite fields shows that the decomposable elements do not in 
general cover K?(F). One might then ask if AF gives us a faithful copy of KY(F) in 
the Quillen K-ring, i.e. is the map ~FiinjeCtive. As a corollary to the work of Quillen 
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on the J-homomorphism we will show that for a global field, F, AF is injective on 
K;‘(F). This will give us a subgroup of KY(F) which is a direct sum of copies of 
Z/22, one for each real completion of F (see Section 1). On the other hand, if Q is 
the field of rational numbers then IF is the zero map on K:‘(Q) 3 Z/22. 

Another natural question to ask is what happens to decomposable elements under 
field extensions. Suppose E is a finite extension of F. The inclusion i: FLE induces 
a ring homomorphism i* :K?(F)-K?(E). Since it is a ring homomorphism it 
automatically takes decomposable elements to decomposable elements. In the other 
direction we have a group homomorphism, i,, called the Quillen transfer. It is not at 
all clear that i, preserves decomposable elements. 

One way to attack this problem is by introducing a transfer map for the Milnor 
theory which matches up, via AF, with i,. If E is separable over F then for each 
choice of a primitive element, a, Bass and Tate have introduced a transfer map 
Na:K?(E)+K?(F). In general it is not known whether N, is independent of the 
choice of (Y (for some partial results see [l] and [8]). In Section 2 we deduce two 
results matching up NU and i,. The first case is where E has prime degree over F. In 
that case ND and i, correspond via AF and AE. The second case is where E is Galois 
over F. Then we can show that N, and i, correspond on p-torsion where p is a prime 
which does not divide the degree of E over F. It is easy to see that in any case where 
N, and i, agree i, automatically takes decomposable elements in K?(E) to 
decomposable elements in K?(F). 

1. InjeCtiVity of AF 

For any ring A we have the algebraic K-groups K;(A), i = 0, 1, 2 introduced in [5]. 
For a field F Milnor has defined the groups K,(F) for n >2 and has given 
K,(F)%f.LroKn(F) the structure of a graded ring [4]. Following Milnor we 
introduce the canonical isomorphism 1: F* 4 ICI(F), where F* is the 

multiplicative group of units and I(ab) = I(a) + I(B) for a,b~ F*. In terms of 
generators and relations K?(F) is the associative ring with identity which is 
generated by symbols I(a), a E F*, subject only to the relations l(a6) = I(a) + f(b) and 
,(a)/(1 -(I)=O, (I, 1 -a#O. 

For any ring A Quillen has introduced the space BGL(A)+ constructed from the 
classifying space of GL(A) by the addition of certain 2-cells and 3-cells (31. Recall 
that 

where the inclusion of GL,,(A+GL “+ I(A) is defined by putting 1 in the lower right 
hand corner and by putting zeros in the rest of the last column and last row. The 
group K:(A) is defined as the nth homotopy group rr,,(BGL(A)+) for nl 1, and we 
will take K&4) to be K&l). The total group K?(A) is endowed with a multipli- 
cative structure in such a way that it becomes a graded ring. Let us also recall that 
for n=O, 1, 2 K?(A)=:?(A) [3]. 
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It follows from the description of K:‘(F) in terms of generators and relations that 

the isomorphism K:‘(F) d K?(F) induces a ring homomorphism 1~: K?‘(F)+ 

K?(F). This follows because both relations (being essentially in Kz) go to zero in 

K?(F). In particular j,F takes an additive generator 

M) .a. [(a,) to f(al) * .** * /(a,) 

in K:(F), where the * denotes the product in K?(F). As noted in the introduction 

the calculations of the K theory of finite fields implies that AF is not surjective. As 

far as injectivity is concerned we have the following two propositions. The first gives 

us a class of examples where ,IF is injective and the second an example where 

injectivity fails. 

I would like to thank Stuart Priddy for explaining to me the pertinent facts from 

homotopy theory which led to the proofs of these propositions, 

Proposition 1. If F is a globalfield, then AF: K;‘(F)--rKy(F) is injective. 

The following corollary follows from the second part of the proof of the 

proposition. 

Corollary. If F is a global field, then KY(F) contains as a subgroup a direct sum of 
Z/22, one for each real completion of F. 

Proof (Proposition 1). (i) Suppose Fis the rational numbers, Q. K;‘(Q) 2 Z/22 with 

the nontrivial element represented by /( - 1)3 [4, Example 1.81. We must show, 

therefore, that x = I( - 1) * I( - 1) * I( - 1) is nontrivial in KY(Q). It follows from [2, 

Theorem 4.81, that K~(Z)-+K~(Q)+K~(lR) is injective, where Z is the rational 

integers and [R the real numbers. Therefore it suffices to show that x#O as an 

element of KY(Z). 
If we view the elements of the symmetric group, En, as permutation matrices we 

get an embedding of Cn in CL,,(Z). By passing to z:, = li@tJ, we derive a map from 

_I?, to GL(Z). This in turn induces a homomorphism n,,(B;T;~)~K~(Z) for all n. 
Using the same technique as that used to induce a product structure on K?(A) (i.e. 

tensor product, see [3]) we can define a ring structure on n,(BJYg). It follows also 

that the map from n.(B_XJ to K?(Z) is a ring homomorphism (the definitions of the 

respective product structures are totally compatible). 

We are now ready to show that xf 0. The generator q E rct(B.JCz) z Z/ZZ maps to 

/( -1) in K?(Z)= Z/22 [7]. Therefore q3 maps to x. q3f0 [2, 4.41 and n3(BZ~)-, 

K3(Z) is injective [7, proposition]. Therefore x+0. 

(ii) Now let F be a general global field. We have an isomorphism, induced by the 

inclusion maps, K!‘(F)-I_L,ky(F,), where {F,} is the family of real completions of 

F and 

k y(F) gfK;‘(F)/2Ky(F). 



96 J.M. Shapiro 

By [4, Example 1.61, k!‘(R) 3 Z/22 with the non-zero element represented by /( - 1)3. 
The inclusion maps FGF, also induce a homomorphism from K&F) to ~&Fy), 

where the lower case again stands for the group mod2. We therefore derive the 
following commutative square 

K?(F) - I,Lk%=v). 

Part (i) of the proof implies that 
injective. 0 

A, is injective for each v. Therefore AF is 

We now use the fact that q4e n@J5’:) is zero and that f( -l)“#O in KY(Q) to 
derive the second proposition. 

PrOpOSitiOn 2. IQ : K~(UJ)--rK~(CJ) is the zero map. In particular AQ is not injective. 

2. Decomposable elements and transfer 

For a field F let us call the image of K?(F) in K?(F) the decomposable elements 

and denote that subring by K?(F) dec. In Section I we have noted that in general 
K?(F)dec does not provide us with a faithful copy of the Milnor K-ring. On the other 
hand it does provide a portion of an algebraic object for which calculation has 
proved difficult. It is with this in mind that we investigate this subring in greater 
detail. In particular we would like to study the effect of field extensions on the 
decomposable elements. 

Suppose E is a field extension of F with inclusion map i: F&E. This map induces 
a ring homomorphism i* : K?(F)+K?(E). It follows trivially that i*(K?(F)de3 5 

K?(E)d”. Let us also note that i* makes K?(E) into a K?(F)-module. If E is finite 
over F we also have the Quillen transfer &nap i. : K?(E)-+K?(F) which is a K?(F)- 

module homomorphism [6, Section 41. It is not at all obvious that the map i, sends 
K?(E)dec to K?(F)dec. Let us note that if we can find a map N : K\;‘(E)+ K?(F) such 
that the diagram 

K?(E) AE ’ K:(E) 

(1) 

is a commutative square of groups and group homomorphisms then we 
automatically get the desired result. 
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If E is a finite separable extension of F, then for each choice of a primitive 
element, a, Bass and Tate have defined a transfer map N=: K!(E)*K?(F) [l]. If 
the degree of E over F, [E : F], is a prime number then this map is independent of a. 
The proof of this assertion follows because in this case K?(E) is generated by Ko(E) 
and Kl(E) as a K?(F)-module [ 1, 5.91. Since K”(F) I K?(F) for i = 0, 1 and since in 
these cases Na= i, (via the above isomorphisms) the commutativity of diagram (1) is 
immediate. More generally, we have the following proposition. 

Proposition 3. Suppose E is a finite separable extension of F with the property that 
there exists a tower of intermediate extensions E = Ear El L .*. z En = Fsuch that for 

each i, 0 I is n - 1, [Ei : Ei+ I) is a prime. Then i, takes K?(E)deC into K?(F)dec. 

Example. E is Galois over F with nilpotent Galois group. 

Proof. In this case we define ZV;: Ky(Ei)-*KY(Ei+ I) for each i, Oailn- 1. By 
iterating the above argument n-times we arrive at the fact that diagram (1) 
commutes, where N is the n-fold composite of the N,. The result on the 
decomposable elements then follows immediately. Cl 

Now suppose E is a finite Galois extension of F. In this case we will be able to 
show that the p-torsion part of diagram (1) commutes, where p is any prime not 
dividing the degree of E over F. This in turn will imply that the Quillen transfer 
takes 

K?(E): to K?(F)?, 

where for an abelian group B, BP denotes the elements having p-power order. 

Theorem. Suppose E is a finite Galois extension of F and p is a prime not dividing 
[E : F]. Let N= denote the Bass- Tate transfer induced by any primitive element, a. 
Then we get a commutative square as follows. 

K:(E), A K:(E), 

H I I LI 1. 

KY(F), 4 K?(F), . 

(lp) 

Corollary. With the hypothesis as in the above theorem it follows that the Quillen 
transfer takes 

K:(E)? to K$(F)p. 

For the rest of this paper we will fix a prime p which is prime to [E: F]. The 
method of proof, as in (81, will be to introduce a special extension F’ which contains 
F and is contained in a separable closure of F, FseQ. 
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Let Fsep be chosen so that it also contains E. Following Tate [9] F’ is (I maximal 
extension of F, contained in Fsep, which is a union (set theoretic) of finite prime-to-p 

extensions of F. As noted in [8] this field F’ has a number of important properties 
which we now recall. 

Property 1. F is a direct limit of fields F’= ligaFa where {Fa) is the family of 
prime-to-p extensions of F contained in F’. 

Property 2. If K is a finite extension of F’contained in FSeD, then [K: F’] =pp where 
“a” is a non-negative integer. Furthermore there exists a tower of fields F’= 

K0SK15**- sK,=Ksuch that (Ki+I:Ki]=p, Ilila. 

We also have the following proposition. 

Proposition 4. Let j: FGF’ be the natural inclusion. Then j* : K?(F), -*K?(F), is 
injective. 

Proof. By Property 1 we see that F’= l+=Fa where {F,} is the family of prime-to-p 
extensions of F contained in F’. For the Quillen K-theory we know that 
K?(liknuF~)rji~sK?(Fa) [6, Section 2). It is therefore sufficient to prove that for a 
prime-to-p extension E of F, K?(F),-+K?(E), is injective. If j: FGE is the 
inclusion map then j, oj*: K$(F)-+K?(F) is multiplication by the degree [E: F]. 
Since [E: F] is prime-to-p it follows that j* is injective. 0 

Let us recall that we are working with a finite separable extension E over Fand we 
have chosen a fixed primitive element, (r, for E over F. This element induces a 
homomorphism NO : Ky(E)-+Ky(F). The further hypothesis that E is in fact Galois 
over F will not be needed until the last part of the proof of the theorem. Suppose 
now that L. is any extension of F contained in Fsep (at the end of the proof we will 
specialize L to be the above extension, F’). Let p(x) be the irreducible polynomial of 
a over F. As a polynomial in L[x], p(x) may decompose into a product of r manic 
irreducibles, p(x) =p~(x) . ..pr(x). We choose an ordering so that a is a root of PI(x). 
Let us denote a also as at and then choose az, . . . , ar so that ai is a root of pi(X), 
15 irr. The tensor product E&L is then isomorphic to a product of fields 
HI= 1 L;, where Li Z’L(aJ. 

For each i, 1 cc i I r, we have a diagram of field extensions 

E Ir Li 

F- 
i L. 
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The identification of E = F(a) as a subfield of Liz L(ai) is made by the unique 
isomorphism over F extending the map sending a to a,. 

Globally we have a diagram of rings 

E / E@JFLgfL 

I I 
FA L. 

In the Quillen K-theory we know that K?(t)= nT=t K?(Li) [6, Section 21. For the 
Milnor K-theory we merely define K!‘(L) as fir= I Ky(Li). 

In order to prove the theorem we need a number of lemmas which describe how 
the transfer maps are affected when passing to the extension L over L. We will 
denote by N;: K?(Li)-+K?(L) the map induced by cr;, and the map N: K:(t), 
K:(L) will be the map taking (Xi) E nr= 1 Ky(L;) to Cc= 1 Ni(Xi). 

Lemma 1. The following is a commutative diagram of groups and group homo- 
morphisms. 

K;‘(E) 

K:‘(F) A K?‘(L). 

Proof. This follows from [l, proposition in Section 5.81, as already noted in 

[gl. q 

Notation. The maps T: K$!Z)-+K?(F), 7: K?(L)-+K?(L) and Ti: K?(Li)-KY(L) 
will denote the respective Quillen transfer maps. 

Lemma 2. The following is a commutative diagram of groups and group home- 
morphisms. 

K?(E) i’ K?(L)+ fi K?(Li) 

IT (0 p//z;, 
K?(F) A K?(L) 

Proof. (i) For a ring A let P(A) denote the category of finitely generated projective 
modules over A. Following Quillen [6] any exact functor from P(A) to P(B), where 
B is also a ring, induces a well defined homomorphism from K?(A) to K?(B). 



100 J. M. Shapiro 

We will show that the appropriate maps in the diagram are induced by the same 
exact functor. 

The map ~oJ?* is induced as follows. Suppose VE P(E) i.e. a finite dimensional 
vector space. Then C@E V is a free L-module of the same rank. Restriction of 
scalars allows us to view L@E V as a finite dimensional vector space over L and 
hence as an element of P(L). L is L@FE so L@E V= (L@FE)@E VSL@F V where 
the action of F on V is by restriction of scalars. The functor sending E-L@ V 

induces the map j*o T. Therefore square (1) commutes. 
(ii) As in the previous part we will show that (CF=, T;)o y and Tare induced by the 

same exact functor. Suppose VE P(L); then the projection t+Li (via the isomor- 
phism L-a n L;) induces a map V -* Vi which in turn induces a homomorphism 
yi: K?(L)*K?(L;). In this notation y is the map fir=, y;. T; is induced by restriction 
of scalars. That is we view Vi as a vector space over L, where r; : LGL;. Addition in 
the abelian group K?(L) is induced by the direct sum of modules [6, Section 21. 
Therefore the composite (C{=, Ti) 0 y is induced by the map V-+lr~= I Vi, where the 
action of L on a vector (VI, . . . , v,) eJ,_Lj=, V;, V;E Vi, is given by ~(vI, . . . . vr) = 

(jl@)VI, . . . , j&z)v,), a~ L. Using the isomorphism cz nr= I Li together with the 
inclusion ri: LdLi we can see that the restriction of scalars from t to L induces the 
same functor, sending V-u;, , Vi. We use the fact that a projective over nr=, Li is 
isomorphic to Vr x e-e x V, where each ViE P(Li). Cl 

Lemma 3. The following is a commutative diagram of rings and ring homo- 
morphisms. 

K!(L) A K?(L) 

Here “res” is the unique ring homomorphism compatible with the inclusion 
KI(F)zF*GL*~KI(L). 

Proof. Since {I(a) 1 a E F*} forms a set of multiplicative generators for KY(F) it is 
enough to check commutativity on that set. In either direction we get the identical 
map, that is, I(a) E ICI(F) gets sent to I(a) E ICI(L) via the inclusion map. 0 

In the last lemma we inspect an analogous diagram for the extension L’ over E. 

Lemma 4. The following is a commutative diagram of rings and ring homo- 
morphisms. 
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Proof. (i) It is enough to check square (i) for each i, 1 I is r. For each i we may use 
Lemma 3 for the desired result. 

(ii) For triangle (ii) we can also look at each i separately. That is we must check 
that jrand the jth component map (yoj*)i are induced by the same exact functor. 
The following diagram gives a schematic rendering of the situation on the vector 
space level, where VE P(E) 

r 

Li@E V c--- @EVZ fl(Li@EV) 
,=I 

Putting together the global diagram (1) and the diagrams in the four lemmas we 
obtain a cubical diagram in the category of groups. The sixth face of the cube is the 
square 

fi Ky(Li) “=“’ + fI K?(Li) 
i= I 

I 

I=1 

I:=$4 

! 

c:= , (73. (2) 

KY(L) A K?(L) 

If we can show that diagram (2) commutes and that j*: K?(F)+K?(L) is injective, 
then we will have proved the theorem (in fact a stronger (global) result). 

Remark. It is easy to choose L so that diagram (2) commutes. For example we will 
see from the proof of the theorem that the splitting field of p(x) works. In general 
we can say that the global diagram (1) commutes modulo the kernel of j* : K?(F)-+ 

K?(L). In fact choosing L correctly (e.g. as in the proof) we can always get the 
global diagram (1) to commute mod&o torsion in K?(F). 

Proof (Theorem). For the fixed p of the theorem, p x [E: F), let us choose L to be 
the maximal extension F’ which is a union of prime-to-p extensions of F. Then by 
Property 2 each L; over L is a p-power extension. Since E is Galois over F, [L;: L] 

must divide [E : F]. Hence [Li: L] = 1 for all i, 1 risr. Thus the commutativity of 
diagram (2) is a triviality. Finally by Proposition 4 j* is l-l on the p-torsion part of 
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K?(F), hence it follows that the p-torsion diagram (lp) of the theorem is 

commutative. D 
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