30 research outputs found
Recommended from our members
First-in-Human Phase I Study to Evaluate the Brain-Penetrant PI3K/mTOR Inhibitor GDC-0084 in Patients with Progressive or Recurrent High-Grade Glioma.
PurposeGDC-0084 is an oral, brain-penetrant small-molecule inhibitor of PI3K and mTOR. A first-in-human, phase I study was conducted in patients with recurrent high-grade glioma.Patients and methodsGDC-0084 was administered orally, once daily, to evaluate safety, pharmacokinetics (PK), and activity. Fluorodeoxyglucose-PET (FDG-PET) was performed to measure metabolic responses.ResultsForty-seven heavily pretreated patients enrolled in eight cohorts (2-65 mg). Dose-limiting toxicities included 1 case of grade 2 bradycardia and grade 3 myocardial ischemia (15 mg), grade 3 stomatitis (45 mg), and 2 cases of grade 3 mucosal inflammation (65 mg); the MTD was 45 mg/day. GDC-0084 demonstrated linear and dose-proportional PK, with a half-life (âŒ19 hours) supportive of once-daily dosing. At 45 mg/day, steady-state concentrations exceeded preclinical target concentrations producing antitumor activity in xenograft models. FDG-PET in 7 of 27 patients (26%) showed metabolic partial response. At doses â„45 mg/day, a trend toward decreased median standardized uptake value in normal brain was observed, suggesting central nervous system penetration of drug. In two resection specimens, GDC-0084 was detected at similar levels in tumor and brain tissue, with a brain tissue/tumor-to-plasma ratio of >1 and >0.5 for total and free drug, respectively. Best overall response was stable disease in 19 patients (40%) and progressive disease in 26 patients (55%); 2 patients (4%) were nonevaluable.ConclusionsGDC-0084 demonstrated classic PI3K/mTOR-inhibitor related toxicities. FDG-PET and concentration data from brain tumor tissue suggest that GDC-0084 crossed the blood-brain barrier
Genome-Wide Discovery of Drug-Dependent Human Liver Regulatory Elements
Inter-individual variation in gene regulatory elements is hypothesized to play a causative role in adverse drug reactions and reduced drug activity. However, relatively little is known about the location and function of drug-dependent elements. To uncover drug-associated elements in a genome-wide manner, we performed RNA-seq and ChIP-seq using antibodies against the pregnane X receptor (PXR) and three active regulatory marks (p300, H3K4me1, H3K27ac) on primary human hepatocytes treated with rifampin or vehicle control. Rifampin and PXR were chosen since they are part of the CYP3A4 pathway, which is known to account for the metabolism of more than 50% of all prescribed drugs. We selected 227 proximal promoters for genes with rifampin-dependent expression or nearby PXR/p300 occupancy sites and assayed their ability to induce luciferase in rifampin-treated HepG2 cells, finding only 10 (4.4%) that exhibited drug-dependent activity. As this result suggested a role for distal enhancer modules, we searched more broadly to identify 1,297 genomic regions bearing a conditional PXR occupancy as well as all three active regulatory marks. These regions are enriched near genes that function in the metabolism of xenobiotics, specifically members of the cytochrome P450 family. We performed enhancer assays in rifampin-treated HepG2 cells for 42 of these sequences as well as 7 sequences that overlap linkage-disequilibrium blocks defined by lead SNPs from pharmacogenomic GWAS studies, revealing 15/42 and 4/7 to be functional enhancers, respectively. A common African haplotype in one of these enhancers in the GSTA locus was found to exhibit potential rifampin hypersensitivity. Combined, our results further suggest that enhancers are the predominant targets of rifampin-induced PXR activation, provide a genome-wide catalog of PXR targets and serve as a model for the identification of drug-responsive regulatory elements
Pharmacokinetic aspects of retinal drug delivery
Drug delivery to the posterior eye segment is an important challenge in ophthalmology, because many diseases affect the retina and choroid leading to impaired vision or blindness. Currently, intravitreal injections are the method of choice to administer drugs to the retina, but this approach is applicable only in selected cases (e.g. anti-VEGF antibodies and soluble receptors). There are two basic approaches that can be adopted to improve retinal drug delivery: prolonged and/or retina targeted delivery of intravitreal drugs and use of other routes of drug administration, such as periocular, suprachoroidal, sub-retinal, systemic, or topical. Properties of the administration route, drug and delivery system determine the efficacy and safety of these approaches. Pharmacokinetic and pharmacodynamic factors determine the required dosing rates and doses that are needed for drug action. In addition, tolerability factors limit the use of many materials in ocular drug delivery. This review article provides a critical discussion of retinal drug delivery, particularly from the pharmacokinetic point of view. This article does not include an extensive review of drug delivery technologies, because they have already been reviewed several times recently. Instead, we aim to provide a systematic and quantitative view on the pharmacokinetic factors in drug delivery to the posterior eye segment. This review is based on the literature and unpublished data from the authors' laboratory.Peer reviewe
International Consensus Statement on Rhinology and Allergy: Rhinosinusitis
Background: The 5 years since the publication of the first International Consensus Statement on Allergy and Rhinology: Rhinosinusitis (ICARâRS) has witnessed foundational progress in our understanding and treatment of rhinologic disease. These advances are reflected within the more than 40 new topics covered within the ICARâRSâ2021 as well as updates to the original 140 topics. This executive summary consolidates the evidenceâbased findings of the document. Methods: ICARâRS presents over 180 topics in the forms of evidenceâbased reviews with recommendations (EBRRs), evidenceâbased reviews, and literature reviews. The highest grade structured recommendations of the EBRR sections are summarized in this executive summary. Results: ICARâRSâ2021 covers 22 topics regarding the medical management of RS, which are grade A/B and are presented in the executive summary. Additionally, 4 topics regarding the surgical management of RS are grade A/B and are presented in the executive summary. Finally, a comprehensive evidenceâbased management algorithm is provided. Conclusion: This ICARâRSâ2021 executive summary provides a compilation of the evidenceâbased recommendations for medical and surgical treatment of the most common forms of RS
Recommended from our members
Organic Cation Transporters in Drug Disposition and Response
Transporters in the kidney play an important role in the tissue distribution and excretion of various prescription drugs and endogenous metabolic waste products. For organic cations that are dependent upon renal elimination, variability in the activities or expression levels of renal organic cation transporters are major sources of intra- and inter-individual variation in secretory clearance. The overall goal of this dissertation research was to enhance our knowledge of the clinical impact of renal organic cation transporters on variation in drug disposition and response. This research primarily focuses on the role of efflux transporters at the apical membrane of the renal proximal tubule: Multidrug and toxin extrusion proteins, MATE1 and MATE2K.The studies described in this dissertation aimed to understand the importance of two potential sources of variability in renal drug handling: extrinsic (i.e., a drug-drug interaction mediated by MATE2K) and intrinsic (i.e., expression variants of MATE1 and MATE2K). Our in vitro and clincal data suggest that both MATE1 and MATE2K play important roles in the exposure, tissue distribution and response of the antidiabetic drug, metformin. Furthermore, these studies also challenge currently recommended methods and criteria for the conduct and use of in vitro experiments to inform the decision to perform a clinical investigation of a transporter-mediated drug-drug interaction. This dissertation research also demonstrates that expression variants of MATE1 and MATE2K have a clinical impact on the disposition and pharmacologic effects of metformin in healthy volunteers and type II diabetic subjects. Overall, the studies described in this dissertation add to our understanding of the role of MATE1 and MATE2K in renal drug handling and peripheral effects of drugs
Recommended from our members
Renal transporters in drug development.
The kidney plays a vital role in the body's defense against potentially toxic xenobiotics and metabolic waste products through elimination pathways. In particular, secretory transporters in the proximal tubule are major determinants of the disposition of xenobiotics, including many prescription drugs. In the past decade, considerable progress has been made in understanding the impact of renal transporters on the disposition of many clinically used drugs. In addition, renal transporters have been implicated as sites for numerous clinically important drug-drug interactions. This review begins with a description of renal drug handling and presents relevant equations for the calculation of renal clearance, including filtration and secretory clearance. In addition, data on the localization, expression, substrates, and inhibitors of renal drug transporters are tabulated. The recent US Food and Drug Administration drug-drug interaction draft guidance as it pertains to the study of renal drug transporters is presented. Renal drug elimination in special populations and transporter splicing variants are also described
Recommended from our members
Renal transporters in drug development.
The kidney plays a vital role in the body's defense against potentially toxic xenobiotics and metabolic waste products through elimination pathways. In particular, secretory transporters in the proximal tubule are major determinants of the disposition of xenobiotics, including many prescription drugs. In the past decade, considerable progress has been made in understanding the impact of renal transporters on the disposition of many clinically used drugs. In addition, renal transporters have been implicated as sites for numerous clinically important drug-drug interactions. This review begins with a description of renal drug handling and presents relevant equations for the calculation of renal clearance, including filtration and secretory clearance. In addition, data on the localization, expression, substrates, and inhibitors of renal drug transporters are tabulated. The recent US Food and Drug Administration drug-drug interaction draft guidance as it pertains to the study of renal drug transporters is presented. Renal drug elimination in special populations and transporter splicing variants are also described
Discovery of potent, selective multidrug and toxin extrusion transporter 1 (MATE1, SLC47A1) inhibitors through prescription drug profiling and computational modeling.
The human multidrug and toxin extrusion (MATE) transporter 1 contributes to the tissue distribution and excretion of many drugs. Inhibition of MATE1 may result in potential drug-drug interactions (DDIs) and alterations in drug exposure and accumulation in various tissues. The primary goals of this project were to identify MATE1 inhibitors with clinical importance or in vitro utility and to elucidate the physicochemical properties that differ between MATE1 and OCT2 inhibitors. Using a fluorescence assay of ASP(+) uptake in cells stably expressing MATE1, over 900 prescription drugs were screened and 84 potential MATE1 inhibitors were found. We identified several MATE1 selective inhibitors including four FDA-approved medications that may be clinically relevant MATE1 inhibitors and could cause a clinical DDI. In parallel, a QSAR model identified distinct molecular properties of MATE1 versus OCT2 inhibitors and was used to screen the DrugBank in silico library for new hits in a larger chemical space