1,675 research outputs found

    Unexpected behaviors in molecular transport through size-controlled nanochannels down to the ultra-nanoscale

    Get PDF
    Ionic transport through nanofluidic systems is a problem of fundamental interest in transport physics and has broad relevance in desalination, fuel cells, batteries, filtration, and drug delivery. When the dimension of the fluidic system approaches the size of molecules in solution, fluid properties are not homogeneous and a departure in behavior is observed with respect to continuum-based theories. Here we present a systematic study of the transport of charged and neutral small molecules in an ideal nanofluidic platform with precise channels from the sub-microscale to the ultra-nanoscale (<5 nm). Surprisingly, we find that diffusive transport of nano-confined neutral molecules matches that of charged molecules, as though the former carry an effective charge. Further, approaching the ultra-nanoscale molecular diffusivities suddenly drop by up to an order of magnitude for all molecules, irrespective of their electric charge. New theoretical investigations will be required to shed light onto these intriguing results

    A Four-Year Multi-Center Retrospective Observational Study of Pediatric Emergency Medical Services Utilization in a Large Metropolitan Health System

    Get PDF
    Study Objectives: The COVID-19 pandemic has significantly decreased pediatric emergency department (ED) utilization. The objective of this study was to quantify the characteristics of pediatric EMS utilization both before and during the COVID-19 pandemic in a metropolitan health care system. Methods: We performed a multi-center, retrospective observational study of all pediatric ED visits between 1/1/2018 and 12/31/2021, that presented to one of nine EDs within our health system. The data were sorted by mode of arrival; children arriving to the ED via EMS, or arrival by other means. Data collection included a variety of demographic and clinical variables. We compared overall pediatric ED patients’ arrival methods as well as ED and EMS volumes by year using a binomial test with a null hypothesis that the population proportion equals 50%. Analysis compared ED mode of arrival, admission rate, and Emergency Severity Index (ESI) triage scores using chi-square tests. Results: There were 201,313 pediatric ED encounters for 118,744 unique patients meeting the inclusion criteria. There were 8,815 (4.38%) children who arrived via EMS compared to 192,498 (95.62%) children who arrived by other means (p \u3c 0.0001). Children who arrived via EMS had a higher admission rate of 22.27% (1963) compared to 5.9% (11,351, p \u3c 0.0001). ESI among children arriving via EMS was higher, with 44.3% (3847) having ESI 1 or 2 triage scores compared to 8.8% (16,790) for children arriving by other means (p \u3c 0.0001). Overall pediatric ED mortality was 0.03% (61 deaths), with 86.9% (53) of those children arriving via EMS (p \u3c 0.0001). Pediatric ED and EMS volumes in 2018 and 2019 pre-pandemic were 127,652 ED visits and 5,306 EMS visits, respectively, compared to 73,661 and 3,509 visits in 2020 and 2021. This represents a 42.3% overall reduction in pediatric ED visits (p \u3c 0.0001) and a 33.9% reduction in pediatric EMS visits (p \u3c 0.0001). Conclusion: Approximately 5% of pediatric ED encounters in our health system arrived via EMS. These children appeared to have higher acuity presentations and required inpatient services more often than children who arrived by other means. Pediatric ED and EMS encounters have decreased substantially since the onset of the pandemic

    Neurological complications during veno-venous extracorporeal membrane oxygenation: Does the configuration matter? A retrospective analysis of the ELSO database

    Get PDF
    Background Single- (SL) and double-lumen (DL) catheters are used in clinical practice for veno-venous extracorporeal membrane oxygenation (V-V ECMO) therapy. However, information is lacking regarding the effects of the cannulation on neurological complications. Methods A retrospective observational study based on data from the Extracorporeal Life Support Organization (ELSO) registry. All adult patients included in the ELSO registry from 2011 to 2018 submitted to a single run of V-V ECMO were analyzed. Propensity score (PS) inverse probability of treatment weighting estimation for multiple treatments was used. The average treatment effect (ATE) was chosen as the causal effect estimate of outcome. The aim of the study was to evaluate differences in the occurrence and the type of neurological complications in adult patients undergoing V-V ECMO when treated with SL or DL cannulas. Results From a population of 6834 patients, the weighted propensity score matching included 6245 patients (i.e., 91% of the total cohort; 4175 with SL and 20,270 with DL cannulation). The proportion of patients with at least one neurological complication was similar in the SL (306, 7.2%) and DL (189, 7.7%; odds ratio 1.10 [95% confidence intervals 0.91–1.32]; p = 0.33). After weighted propensity score, the ATE for the occurrence of least one neurological complication was 0.005 (95% CI − 0.009 to 0.018; p = 0.50). Also, the occurrence of specific neurological complications, including intracerebral hemorrhage, acute ischemic stroke, seizures or brain death, was similar between groups. Overall mortality was similar between patients with neurological complications in the two groups. Conclusions In this large registry, the occurrence of neurological complications was not related to the type of cannulation in patients undergoing V-V ECMO

    Genome-wide Analyses Identify KIF5A as a Novel ALS Gene

    Get PDF
    To identify novel genes associated with ALS, we undertook two lines of investigation. We carried out a genome-wide association study comparing 20,806 ALS cases and 59,804 controls. Independently, we performed a rare variant burden analysis comparing 1,138 index familial ALS cases and 19,494 controls. Through both approaches, we identified kinesin family member 5A (KIF5A) as a novel gene associated with ALS. Interestingly, mutations predominantly in the N-terminal motor domain of KIF5A are causative for two neurodegenerative diseases: hereditary spastic paraplegia (SPG10) and Charcot-Marie-Tooth type 2 (CMT2). In contrast, ALS-associated mutations are primarily located at the C-terminal cargo-binding tail domain and patients harboring loss-of-function mutations displayed an extended survival relative to typical ALS cases. Taken together, these results broaden the phenotype spectrum resulting from mutations in KIF5A and strengthen the role of cytoskeletal defects in the pathogenesis of ALS.Peer reviewe

    Association of Variants in the SPTLC1 Gene With Juvenile Amyotrophic Lateral Sclerosis

    Get PDF
    Importance: Juvenile amyotrophic lateral sclerosis (ALS) is a rare form of ALS characterized by age of symptom onset less than 25 years and a variable presentation.Objective: To identify the genetic variants associated with juvenile ALS.Design, Setting, and Participants: In this multicenter family-based genetic study, trio whole-exome sequencing was performed to identify the disease-associated gene in a case series of unrelated patients diagnosed with juvenile ALS and severe growth retardation. The patients and their family members were enrolled at academic hospitals and a government research facility between March 1, 2016, and March 13, 2020, and were observed until October 1, 2020. Whole-exome sequencing was also performed in a series of patients with juvenile ALS. A total of 66 patients with juvenile ALS and 6258 adult patients with ALS participated in the study. Patients were selected for the study based on their diagnosis, and all eligible participants were enrolled in the study. None of the participants had a family history of neurological disorders, suggesting de novo variants as the underlying genetic mechanism.Main Outcomes and Measures: De novo variants present only in the index case and not in unaffected family members.Results: Trio whole-exome sequencing was performed in 3 patients diagnosed with juvenile ALS and their parents. An additional 63 patients with juvenile ALS and 6258 adult patients with ALS were subsequently screened for variants in the SPTLC1 gene. De novo variants in SPTLC1 (p.Ala20Ser in 2 patients and p.Ser331Tyr in 1 patient) were identified in 3 unrelated patients diagnosed with juvenile ALS and failure to thrive. A fourth variant (p.Leu39del) was identified in a patient with juvenile ALS where parental DNA was unavailable. Variants in this gene have been previously shown to be associated with autosomal-dominant hereditary sensory autonomic neuropathy, type 1A, by disrupting an essential enzyme complex in the sphingolipid synthesis pathway.Conclusions and Relevance: These data broaden the phenotype associated with SPTLC1 and suggest that patients presenting with juvenile ALS should be screened for variants in this gene.</p

    Optimasi Portofolio Resiko Menggunakan Model Markowitz MVO Dikaitkan dengan Keterbatasan Manusia dalam Memprediksi Masa Depan dalam Perspektif Al-Qur`an

    Full text link
    Risk portfolio on modern finance has become increasingly technical, requiring the use of sophisticated mathematical tools in both research and practice. Since companies cannot insure themselves completely against risk, as human incompetence in predicting the future precisely that written in Al-Quran surah Luqman verse 34, they have to manage it to yield an optimal portfolio. The objective here is to minimize the variance among all portfolios, or alternatively, to maximize expected return among all portfolios that has at least a certain expected return. Furthermore, this study focuses on optimizing risk portfolio so called Markowitz MVO (Mean-Variance Optimization). Some theoretical frameworks for analysis are arithmetic mean, geometric mean, variance, covariance, linear programming, and quadratic programming. Moreover, finding a minimum variance portfolio produces a convex quadratic programming, that is minimizing the objective function ðð¥with constraintsð ð 𥠥 ðandð´ð¥ = ð. The outcome of this research is the solution of optimal risk portofolio in some investments that could be finished smoothly using MATLAB R2007b software together with its graphic analysis

    Search for heavy resonances decaying to two Higgs bosons in final states containing four b quarks

    Get PDF
    A search is presented for narrow heavy resonances X decaying into pairs of Higgs bosons (H) in proton-proton collisions collected by the CMS experiment at the LHC at root s = 8 TeV. The data correspond to an integrated luminosity of 19.7 fb(-1). The search considers HH resonances with masses between 1 and 3 TeV, having final states of two b quark pairs. Each Higgs boson is produced with large momentum, and the hadronization products of the pair of b quarks can usually be reconstructed as single large jets. The background from multijet and t (t) over bar events is significantly reduced by applying requirements related to the flavor of the jet, its mass, and its substructure. The signal would be identified as a peak on top of the dijet invariant mass spectrum of the remaining background events. No evidence is observed for such a signal. Upper limits obtained at 95 confidence level for the product of the production cross section and branching fraction sigma(gg -> X) B(X -> HH -> b (b) over barb (b) over bar) range from 10 to 1.5 fb for the mass of X from 1.15 to 2.0 TeV, significantly extending previous searches. For a warped extra dimension theory with amass scale Lambda(R) = 1 TeV, the data exclude radion scalar masses between 1.15 and 1.55 TeV

    2020 roadmap on solid-state batteries

    Get PDF
    Li-ion batteries have revolutionized the portable electronics industry and empowered the electric vehicle (EV) revolution. Unfortunately, traditional Li-ion chemistry is approaching its physicochemical limit. The demand for higher density (longer range), high power (fast charging), and safer EVs has recently created a resurgence of interest in solid state batteries (SSB). Historically, research has focused on improving the ionic conductivity of solid electrolytes, yet ceramic solids now deliver sufficient ionic conductivity. The barriers lie within the interfaces between the electrolyte and the two electrodes, in the mechanical properties throughout the device, and in processing scalability. In 2017 the Faraday Institution, the UK's independent institute for electrochemical energy storage research, launched the SOLBAT (solid-state lithium metal anode battery) project, aimed at understanding the fundamental science underpinning the problems of SSBs, and recognising that the paucity of such understanding is the major barrier to progress. The purpose of this Roadmap is to present an overview of the fundamental challenges impeding the development of SSBs, the advances in science and technology necessary to understand the underlying science, and the multidisciplinary approach being taken by SOLBAT researchers in facing these challenges. It is our hope that this Roadmap will guide academia, industry, and funding agencies towards the further development of these batteries in the future

    Search for supersymmetry in events with one lepton and multiple jets in proton-proton collisions at root s=13 TeV

    Get PDF
    Peer reviewe
    corecore