1,101 research outputs found
Post-treatment follow-up study of abdominal cystic echinococcosis in Tibetan communities of northwest Sichuan Province, China
Background: Human cystic echinococcosis (CE), caused by the larval stage of Echinococcus granulosus, with the liver as the
most frequently affected organ, is known to be highly endemic in Tibetan communities of northwest Sichuan Province.
Antiparasitic treatment with albendazole remains the primary choice for the great majority of patients in this resource-poor
remote area, though surgery is the most common approach for CE therapy that has the potential to remove cysts and lead
to complete cure. The current prospective study aimed to assess the effectiveness of community based use of cyclic
albendazole treatment in Tibetan CE cases, and concurrently monitor the changes of serum specific antibody levels during
treatment.
Methodology/Principal Findings: Ultrasonography was applied for diagnosis and follow-up of CE cases after cyclic
albendazole treatment in Tibetan communities of Sichuan Province during 2006 to 2008, and serum specific IgG antibody
levels against Echinococcus granulosus recombinant antigen B in ELISA was concurrently monitored in these cases. A total of
196 CE cases were identified by ultrasound, of which 37 (18.9%) showed evidence of spontaneous healing/involution of
hepatic cyst(s) with CE4 or CE5 presentations. Of 49 enrolled CE cases for treatment follow-up, 32.7% (16) were considered
to be cured based on B-ultrasound after 6 months to 30 months regular albendazole treatment, 49.0% (24) were improved,
14.3% (7) remained unchanged, and 4.1% (2) became aggravated. In general, patients with CE2 type cysts (daughter cysts
present) needed a longer treatment course for cure (26.4 months), compared to cases with CE1 (univesicular cysts) (20.4
months) or CE3 type (detached cyst membrane or partial degeneration of daughter cysts) (9 months). In addition, the
curative duration was longer in patients with large (.10 cm) cysts (22.3 months), compared to cases with medium (5–
10 cm) cysts (17.3 months) or patients with small (,5 cm) cysts (6 months). At diagnosis, seven (53.8%) of 13 cases with CE1
type cysts without any previous intervention showed negative specific IgG antibody response to E. granulosus recombinant
antigen B (rAgB). However, following 3 months to 18 months albendazole therapy, six of these 7 initially seronegative CE1
cases sero-converted to be specific IgG antibody positive, and concurrently ultrasound scan showed that cysts changed to
CE3a from CE1 type in all the six CE cases. Two major profiles of serum specific IgG antibody dynamics during albendazole
treatment were apparent in CE cases: (i) presenting as initial elevation followed by subsequent decline, or (ii) a persistent
decline. Despite a decline, however, specific antibody levels remained positive in most improved or cured CE cases.
Conclusions: This was the first attempt to follow up community-screened cystic echinococcosis patients after albendazole
therapy using ultrasonography and serology in an endemic Tibetan region. Cyclic albendazole treatment proved to be
effective in the great majority of CE cases in this resource-poor area, but periodic abdominal ultrasound examination was
necessary to guide appropriate treatment. Oral albendazole for over 18 months was more likely to result in CE cure. Poor
drug compliance resulted in less good outcomes. Serology with recombinant antigen B could provide additional limited
information about the effectiveness of albendazole in CE cases. Post-treatment positive specific IgG antibody
seroconversion, in initially seronegative, CE1 patients was considered a good indication for positive therapeutic efficacy
of albendazole
Coordinated optimization of visual cortical maps (I) Symmetry-based analysis
In the primary visual cortex of primates and carnivores, functional
architecture can be characterized by maps of various stimulus features such as
orientation preference (OP), ocular dominance (OD), and spatial frequency. It
is a long-standing question in theoretical neuroscience whether the observed
maps should be interpreted as optima of a specific energy functional that
summarizes the design principles of cortical functional architecture. A
rigorous evaluation of this optimization hypothesis is particularly demanded by
recent evidence that the functional architecture of OP columns precisely
follows species invariant quantitative laws. Because it would be desirable to
infer the form of such an optimization principle from the biological data, the
optimization approach to explain cortical functional architecture raises the
following questions: i) What are the genuine ground states of candidate energy
functionals and how can they be calculated with precision and rigor? ii) How do
differences in candidate optimization principles impact on the predicted map
structure and conversely what can be learned about an hypothetical underlying
optimization principle from observations on map structure? iii) Is there a way
to analyze the coordinated organization of cortical maps predicted by
optimization principles in general? To answer these questions we developed a
general dynamical systems approach to the combined optimization of visual
cortical maps of OP and another scalar feature such as OD or spatial frequency
preference.Comment: 90 pages, 16 figure
Verified and potential pathogens of predatory mites (Acari: Phytoseiidae)
Several species of phytoseiid mites (Acari: Phytoseiidae), including species of the genera Amblyseius, Galendromus, Metaseiulus, Neoseiulus, Phytoseiulus and Typhlodromus, are currently reared for biological control of various crop pests and/or as model organisms for the study of predator¿prey interactions. Pathogen-free phytoseiid mites are important to obtain high efficacy in biological pest control and to get reliable data in mite research, as pathogens may affect the performance of their host or alter their reproduction and behaviour. Potential and verified pathogens have been reported for phytoseiid mites during the past 25 years. The present review provides an overview, including potential pathogens with unknown host effects (17 reports), endosymbiotic Wolbachia (seven reports), other bacteria (including Cardinium and Spiroplasma) (four reports), cases of unidentified diseases (three reports) and cases of verified pathogens (six reports). From the latter group four reports refer to Microsporidia, one to a fungus and one to a bacterium. Only five entities have been studied in detail, including Wolbachia infecting seven predatory mite species, other endosymbiotic bacteria infecting Metaseiulus (Galendromus, Typhlodromus) occidentalis (Nesbitt), the bacterium Acaricomes phytoseiuli infecting Phytoseiulus persimilis Athias-Henriot, the microsporidium Microsporidium phytoseiuli infecting P. persimilis and the microsporidium Oligosproridium occidentalis infecting M. occidentalis. In four cases (Wolbachia, A. phytoseiuli, M. phytoseiuli and O. occidentalis) an infection may be connected with fitness costs of the host. Moreover, infection is not always readily visible as no obvious gross symptoms are present. Monitoring of these entities on a routine and continuous basis should therefore get more attention, especially in commercial mass-production. Special attention should be paid to field-collected mites before introduction into the laboratory or mass rearing, and to mites that are exchanged among rearing facilities. However, at present general pathogen monitoring is not yet practical as effects of many entities are unknown. More research effort is needed concerning verified and potential pathogens of commercially reared arthropods and those used as model organisms in research
Genome wide association mapping of grain arsenic, copper, molybdenum and zinc in rice (Oryza sativa L.) grown at four international field sites
Peer reviewedPublisher PD
Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
The inclusive and dijet production cross-sections have been measured for jets
containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass
energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The
measurements use data corresponding to an integrated luminosity of 34 pb^-1.
The b-jets are identified using either a lifetime-based method, where secondary
decay vertices of b-hadrons in jets are reconstructed using information from
the tracking detectors, or a muon-based method where the presence of a muon is
used to identify semileptonic decays of b-hadrons inside jets. The inclusive
b-jet cross-section is measured as a function of transverse momentum in the
range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet
cross-section is measured as a function of the dijet invariant mass in the
range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets
and the angular variable chi in two dijet mass regions. The results are
compared with next-to-leading-order QCD predictions. Good agreement is observed
between the measured cross-sections and the predictions obtained using POWHEG +
Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet
cross-section. However, it does not reproduce the measured inclusive
cross-section well, particularly for central b-jets with large transverse
momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final
version published in European Physical Journal
Structural basis for native agonist and synthetic inhibitor recognition by the Pseudomonas aeruginosa quorum sensing regulator PqsR (MvfR)
Bacterial populations co-ordinate gene expression collectively through quorum sensing (QS), a cell-to-cell communication mechanism employing diffusible signal molecules. The LysR-type transcriptional regulator (LTTR) protein PqsR (MvfR) is a key component of alkyl-quinolone (AQ)-dependent QS in Pseudomonas aeruginosa. PqsR is activated by 2-alkyl-4-quinolones including the Pseudomonas quinolone signal (PQS; 2-heptyl-3-hydroxy-4(1H)-quinolone), its precursor 2-heptyl-4- hydroxyquinoline (HHQ) and their C9 congeners, 2-nonyl-3-hydroxy-4(1H)-quinolone (C9-PQS) and 2-nonyl-4-hydroxyquinoline (NHQ). These drive the autoinduction of AQ biosynthesis and the up-regulation of key virulence determinants as a function of bacterial population density. Consequently, PqsR constitutes a potential target for novel antibacterial agents which attenuate infection through the blockade of virulence. Here we present the crystal structures of the PqsR co-inducer binding domain (CBD) and a complex with the native agonist NHQ. We show that the structure of the PqsR CBD has an unusually large ligand-binding pocket in which a native AQ agonist is stabilized entirely by hydrophobic interactions. Through a ligand-based design strategy we synthesized and evaluated a series of 50 AQ and novel quinazolinone (QZN) analogues and measured the impact on AQ biosynthesis, virulence gene expression and biofilm development. The simple exchange of two isosteres (OH for NH2) switches a QZN agonist to an antagonist with a concomitant impact on the induction of bacterial virulence factor production. We also determined the complex crystal structure of a QZN antagonist bound to PqsR revealing a similar orientation in the ligand binding pocket to the native agonist NHQ. This structure represents the first description of an LTTR-antagonist complex. Overall these studies present novel insights into LTTR ligand binding and ligand-based drug design and provide a chemical scaffold for further anti-P. aeruginosa virulence drug development by targeting the AQ receptor PqsR
Maltreated children use more grammatical negations
Many studies reveal a strong impact of childhood maltreatment on language development, mainly resulting in shorter utterances, less rich vocabulary, or a delay in grammatical complexity. However, different theories suggest the possibility for resilience – a positive adaptation to an otherwise adverse environment – in children who experienced childhood maltreatment. Here, we investigated different measures for language development in spontaneous speech, examining whether childhood maltreatment leads to a language deficit only or whether it can also result in differences in language use due to a possible adaptation to a toxic environment. We compared spontaneous speech during therapeutic peer-play sessions of 32 maltreated and 32 non-maltreated children from the same preschool and equivalent in gender, age (2 to 5 years), home neighborhood, ethnicity, and family income. Maltreatment status was reported by formal child protection reports, and corroborated by independent social service reports. We investigated general language sophistication (i.e., vocabulary, talkativeness, mean length of utterance), as well as grammatical development (i.e., use of plurals, tense, grammatical negations). We found that maltreated and non-maltreated children showed similar sophistication across all linguistic measures, except for the use of grammatical negations. Maltreated children used twice as many grammatical negations as non-maltreated children. The use of this highly complex grammatical structure shows an advanced linguistic skill, which shows that childhood maltreatment does not necessarily lead to a language deficit. The result might indicate the development of a negativity bias in the structure of spontaneous language due to an adaptation to their experiences
Reconstruction of primary vertices at the ATLAS experiment in Run 1 proton–proton collisions at the LHC
This paper presents the method and performance of primary vertex reconstruction in proton–proton collision data recorded by the ATLAS experiment during Run 1 of the LHC. The studies presented focus on data taken during 2012 at a centre-of-mass energy of √s=8 TeV. The performance has been measured as a function of the number of interactions per bunch crossing over a wide range, from one to seventy. The measurement of the position and size of the luminous region and its use as a constraint to improve the primary vertex resolution are discussed. A longitudinal vertex position resolution of about 30μm is achieved for events with high multiplicity of reconstructed tracks. The transverse position resolution is better than 20μm and is dominated by the precision on the size of the luminous region. An analytical model is proposed to describe the primary vertex reconstruction efficiency as a function of the number of interactions per bunch crossing and of the longitudinal size of the luminous region. Agreement between the data and the predictions of this model is better than 3% up to seventy interactions per bunch crossing
Search for additional heavy neutral Higgs and gauge bosons in the ditau final state produced in 36 fb−1 of pp collisions at √s=13 TeV with the ATLAS detector
A search for heavy neutral Higgs bosons and Z′ bosons is performed using a data sample corresponding to an integrated luminosity of 36.1 fb −1 from proton-proton collisions at s=13 TeV recorded by the ATLAS detector at the LHC during 2015 and 2016. The heavy resonance is assumed to decay to τ + τ − with at least one tau lepton decaying to final states with hadrons and a neutrino. The search is performed in the mass range of 0.2-2.25 TeV for Higgs bosons and 0.2-4.0 TeV for Z′ bosons. The data are in good agreement with the background predicted by the Standard Model. The results are interpreted in benchmark scenarios. In the context of the hMSSM scenario, the data exclude tan β > 1.0 for m A = 0.25 TeV and tan β > 42 for m A = 1.5 TeV at the 95% confidence level. For the Sequential Standard Model, Z SSM ′ with m Z′ < 2.42 TeV is excluded at 95% confidence level, while Z NU ′ with m Z ′ < 2.25 TeV is excluded for the non-universal G(221) model that exhibits enhanced couplings to third-generation fermions
Measurement of the cross section for inclusive isolated-photon production in pp collisions at √s=13TeV using the ATLAS detector
Inclusive isolated-photon production in pp collisions at a centre-of-mass energy of 13TeVis studied with the ATLAS detector at the LHC using a data set with an integrated luminosity of 3.2fb−1. The cross section is measured as a function of the photon transverse energy above 125GeVin different regions of photon pseudorapidity. Next-to-leading-order perturbative QCD and Monte Carlo event-generator predictions are compared to the cross-section measurements and provide an adequate description of the data
- …
