336 research outputs found

    Scalar conservation laws with nonconstant coefficients with application to particle size segregation in granular flow

    Full text link
    Granular materials will segregate by particle size when subjected to shear, as occurs, for example, in avalanches. The evolution of a bidisperse mixture of particles can be modeled by a nonlinear first order partial differential equation, provided the shear (or velocity) is a known function of position. While avalanche-driven shear is approximately uniform in depth, boundary-driven shear typically creates a shear band with a nonlinear velocity profile. In this paper, we measure a velocity profile from experimental data and solve initial value problems that mimic the segregation observed in the experiment, thereby verifying the value of the continuum model. To simplify the analysis, we consider only one-dimensional configurations, in which a layer of small particles is placed above a layer of large particles within an annular shear cell and is sheared for arbitrarily long times. We fit the measured velocity profile to both an exponential function of depth and a piecewise linear function which separates the shear band from the rest of the material. Each solution of the initial value problem is non-standard, involving curved characteristics in the exponential case, and a material interface with a jump in characteristic speed in the piecewise linear case

    Hemodynamics through the congenitally bicuspid aortic valve: a computational fluid dynamics comparison of opening orifice area and leaflet orientation

    Get PDF
    A computational fluid dynamics model of a bicuspid aortic valve has been developed using idealised three-dimensional geometry. The aim was to compare how the orifice area and leaflet orientation affect the hemodynamics of a pure bicuspid valve. By applying physiologic material properties and boundary conditions, blood flow shear stresses were predicted during peak systole. A reduced orifice area altered blood velocity, the pressure drop across the valve and the wall shear stress through the valve. Bicuspid models predicted impaired blood flow similar to a stenotic valve, but the flow patterns were specific to leaflet orientation. Flow patterns developed in bicuspid aortic valves, such as helical flow, were sensitive to cusp orientation. In conclusion, the reduced opening area of a bicuspid aortic valve amplifies any impaired hemodynamics, but cusp orientation determines subsequent flow patterns which may determine the specific regions downstream from the valve most at risk of clinical complications. </jats:p

    Measuring the Temperature of Hot Nuclear Fragments

    Full text link
    A new thermometer based on fragment momentum fluctuations is presented. This thermometer exhibited residual contamination from the collective motion of the fragments along the beam axis. For this reason, the transverse direction has been explored. Additionally, a mass dependence was observed for this thermometer. This mass dependence may be the result of the Fermi momentum of nucleons or the different properties of the fragments (binding energy, spin etc..) which might be more sensitive to different densities and temperatures of the exploding fragments. We expect some of these aspects to be smaller for protons (and/or neutrons); consequently, the proton transverse momentum fluctuations were used to investigate the temperature dependence of the source

    Mesoscopics and fluctuations in networks

    Full text link
    We describe fluctuations in finite-size networks with a complex distribution of connections, P(k)P(k). We show that the spectrum of fluctuations of the number of vertices with a given degree is Poissonian. These mesoscopic fluctuations are strong in the large-degree region, where P(k)â‰Č1/NP(k) \lesssim 1/N (NN is the total number of vertices in a network), and are important in networks with fat-tailed degree distributions.Comment: 3 pages, 1 figur

    Topology and correlations in structured scale-free networks

    Get PDF
    We study a recently introduced class of scale-free networks showing a high clustering coefficient and non-trivial connectivity correlations. We find that the connectivity probability distribution strongly depends on the fine details of the model. We solve exactly the case of low average connectivity, providing also exact expressions for the clustering and degree correlation functions. The model also exhibits a lack of small world properties in the whole parameters range. We discuss the physical properties of these networks in the light of the present detailed analysis.Comment: 10 pages, 9 figure

    Class of correlated random networks with hidden variables

    Get PDF
    We study a class models of correlated random networks in which vertices are characterized by \textit{hidden variables} controlling the establishment of edges between pairs of vertices. We find analytical expressions for the main topological properties of these models as a function of the distribution of hidden variables and the probability of connecting vertices. The expressions obtained are checked by means of numerical simulations in a particular example. The general model is extended to describe a practical algorithm to generate random networks with an \textit{a priori} specified correlation structure. We also present an extension of the class, to map non-equilibrium growing networks to networks with hidden variables that represent the time at which each vertex was introduced in the system

    Evidence of Color Coherence Effects in W+jets Events from ppbar Collisions at sqrt(s) = 1.8 TeV

    Full text link
    We report the results of a study of color coherence effects in ppbar collisions based on data collected by the D0 detector during the 1994-1995 run of the Fermilab Tevatron Collider, at a center of mass energy sqrt(s) = 1.8 TeV. Initial-to-final state color interference effects are studied by examining particle distribution patterns in events with a W boson and at least one jet. The data are compared to Monte Carlo simulations with different color coherence implementations and to an analytic modified-leading-logarithm perturbative calculation based on the local parton-hadron duality hypothesis.Comment: 13 pages, 6 figures. Submitted to Physics Letters

    Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration

    Full text link
    Extensive experimental data from high-energy nucleus-nucleus collisions were recorded using the PHENIX detector at the Relativistic Heavy Ion Collider (RHIC). The comprehensive set of measurements from the first three years of RHIC operation includes charged particle multiplicities, transverse energy, yield ratios and spectra of identified hadrons in a wide range of transverse momenta (p_T), elliptic flow, two-particle correlations, non-statistical fluctuations, and suppression of particle production at high p_T. The results are examined with an emphasis on implications for the formation of a new state of dense matter. We find that the state of matter created at RHIC cannot be described in terms of ordinary color neutral hadrons.Comment: 510 authors, 127 pages text, 56 figures, 1 tables, LaTeX. Submitted to Nuclear Physics A as a regular article; v3 has minor changes in response to referee comments. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions at sqrt(s) = 7 TeV with the ATLAS experiment

    Get PDF
    This paper describes an analysis of the angular distribution of W->enu and W->munu decays, using data from pp collisions at sqrt(s) = 7 TeV recorded with the ATLAS detector at the LHC in 2010, corresponding to an integrated luminosity of about 35 pb^-1. Using the decay lepton transverse momentum and the missing transverse energy, the W decay angular distribution projected onto the transverse plane is obtained and analysed in terms of helicity fractions f0, fL and fR over two ranges of W transverse momentum (ptw): 35 < ptw < 50 GeV and ptw > 50 GeV. Good agreement is found with theoretical predictions. For ptw > 50 GeV, the values of f0 and fL-fR, averaged over charge and lepton flavour, are measured to be : f0 = 0.127 +/- 0.030 +/- 0.108 and fL-fR = 0.252 +/- 0.017 +/- 0.030, where the first uncertainties are statistical, and the second include all systematic effects.Comment: 19 pages plus author list (34 pages total), 9 figures, 11 tables, revised author list, matches European Journal of Physics C versio
    • 

    corecore