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We study a class of models of correlated random networks in which vertices are charactertredévy
variablescontrolling the establishment of edges between pairs of vertices. We find analytical expressions for
the main topological properties of these models as a function of the distribution of hidden variables and the
probability of connecting vertices. The expressions obtained are checked by means of numerical simulations in
a particular example. The general model is extended to describe a practical algorithm to generate random
networks with ana priori specified correlation structure. We also present an extension of the class, to map
nonequilibrium growing networks to networks with hidden variables that represent the time at which each
vertex was introduced in the system.
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I. INTRODUCTION (vertices with large degree tend to connect more preferably
with vertices with large degreethe network is said to show
A large effort has been recently devoted to the study of assortative mixingOn the other hand, negative correlations
very large ensemble of interacting systems that can be dehighly connected vertices are preferably connected to verti-
scribed in terms of complex networksr graph$, in which  ces with low degreeimply the presence dlissortative mix-
the vertices represent typical units and the edges represeing. At the same time, it has been pointed out that the pres-
the interactions between pairs of unfits-3]. Stimulated by ence of correlations might have important consequences in
this finding, a theory of complex networks, deeply rooted indynamical processes taking place in the topology defined by
the classical graph theor], has hence been developed, the network{26-29. Motivated by these observations, sev-
finding fruitful applications in fields as diverse as the Interneteral works have been recently devoted to set up a general
[5-8], the WorldWideWeb[9], social communitieg10],  framework to study the origin of correlations in random net-
food webs[11], or biological interacting networkisl2—15. works [30,31]. At this respect, it is particularly interesting
The study of complex networks, boosted by the newthe models introduced by Caldaredli al.[32] and Salerberg
availability of powerful computers capable of dealing with [33]. These models consider graphs in which each vertex has
very large databases, was initially focused in the study ofissigned a tagypeor fitness, randomly drawn from a fixed
global properties such as the average shortest path length, tpeobability distribution. Edges are assigned to pairs of verti-
average clustering coefficient, or the degree distributiorces with a given connection probability, depending on the
[1-3]. This work led to the discovery that most natural com-values of the tags assigned at the edge end points. This con-
plex networks usually exhibit two typical propertigs; the  struction generates random networks that exhibit peculiar
small-world property[16], which is defined by an average correlation and percolation propertigg2,33.
path length—average distance between any pair of In this paper we present a generalization of the models
vertices—increasing very slowlyusually logarithmically  described in Refd.32,33, which can be encompassed in a
with the network sizéN and (ii) a scale-freedegree distribu- general class of models withidden variablestagging the
tion. If we define the degree distributid®(k) as the prob- vertices, and completely determining the topological struc-
ability that a vertex is connected fo other vertices, then ture of the ensuing network. We develop a detailed analysis
scale-free networks are characterized by a power-law behaef the correlations present in this class of network models,
ior P(k)~k™?, wherewy is a characteristic degree exponent. providing explicit analytical expressions for both two and
These properties imply a large connectivity heterogeneityhree vertices degree correlations. We distinguish between
and a short average distance between vertices, which hagparse network$with finite average degreék)) and non-
considerable impact on the behavior of physical processesparse network&vith diverging(k) for a number of vertices
taking place on top of the network, such as the resilience ttl—<). Even though both cases are enclosed in this class of
random damagEL7-19 or the spreading of infective agents networks, analytical expressions are simpler in the former
[20-23. case. As an example of our formalism, we consider the in-
It was soon realized, however, that these properties do natinsic fitness model introduced in R¢82], which belongs
provide a sufficient characterization of natural networks. Into the subset of nonsparse networks, and which has attracted
particular, these systems seem to exhibit also ubiquitous dex great deal of attention as an alternative to generate scale-
greecorrelations which translate in the fact that the degreesfree networks without growth nor preferential attachment
of the vertices at the end points of any given edge are ndt34]. The solution of this model in the continuous degree
independen{7,8,24,23. This observation has led to a clas- approximation is compared with extensive numerical simu-
sification of networks according to the nature of their degredations, yielding a remarkable agreement for all the topologi-
correlations[24]: In the presence of positive correlations cal properties considered. As a particular case of the general
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class of models with hidden variables, we propose a practicand they are constrained by a degree detailed balance condi-
algorithm to generate correlated random networks with dion [26] stating the physical conservation of edges among
given correlation structure. The algorithm levers in the assigvertices: The total number of edges pointing from vertices
nation of hidden variables with the structure of the degreesvith degreek to vertices with degrek’ must be equal to the

of a real network. Following this approach, it is possible tonumber of edges that point from vertick$ to verticesk.
easily generate networks matching any desired correlatiofhere is an intuitive way to derive the degree detailed bal-
pattern, as we show by means of analytical calculations andnce condition[36]. Let us denote byN, the number of
numerical simulations. Finally, we present the extension oWertices of degre&. Since>,N,=N, whereN is the size of

this class of models to nonequilibrium growing networks. Bythe network, we can define the degree distributiorPék)
mapping the hidden variables to the time in which vertices=N, /N [37]. To completely define the network, we need to
are introduced in the netwoil83], and by means of an ap- specify also how the different degree classes are connected.
propriately chosen connection probability, we define an algoTo this end, let us define the symmetric matfy, that
rithm that yields networks exhibiting all the propertiéa gives the number of edges between vertices of deky@®d
particular aging exhibited by traditional scale-free growing k', for k#k’, and two times the number of self-connections
models. for k=k’ (the number of connections between vertices in the

The paper is organized as follows. In Sec. Il we reviewsame degree classThis matrix fulfills the identities
some general results concerning the measure of correlations

in complex networks, which will be useful through the rest 2 E.. —KN 5
of the paper. In Sec. Il we introduce the general analytical = kk? = 2k @
formulation of the class of correlated networks with hidden

variables. Section IV is devoted to the analytical and numeri-

cal study of the intrinsic fithness model introduced in Ref. E Eie =(k)N=2E, 3
[32]. In Sec. V we present an algorithm to generate corre- kK’

lated random networks with a givea priori correlation
structure. Sec. VI deals with the mapping into this class o
models of nonequilibrium growing networks. Finally, in Sec.
VII we draw our conclusions and perspectives.

e/vhereE is the total number of edges in the network. This last
identity allows us to define th@int distribution

Ekkl

PUK) = @

Il. MEASURING CORRELATIONS IN COMPLEX

NETWORKS where the symmetric function 25 /) P(k,k") is the prob-

ability that a randomly chosen edge connects two vertices of
A. Two vertices correlations degreesk and k’. The conditional probabilityP(k’|k) de-
fined as the probability that an edge frork gertex points to

Let us consider the class of unstructured undirected net-

works, in which all vertices with the same degree can beak vertex can be easily written as

considered to be statistically equivalent. In this sense, the Evi (K)P(kK')
following results will not apply to structured networks, in P(k'|k)= Kk _ ’ (5)
which a distance ordering can be defined; for instance, when KN kP(k)

the small-world property is absef7,35. A network is said
to beuncorrelatedwhen the probability that an edge depart-
ing from a vertex of degrek arrives at a vertex of degrée

is independent of the degree of the initial vertexMost kP(K'|K)P(k) =k’ P(k|k")P(K")=(k)P(k,K').  (6)
natural networks are not uncorrelated, in the sense that the

degrees at the end points of any given edge are not indepefthe joint distributionP(k,k’) conveys all the information

dent. This kind of two vertices degree correlation can beyeeded to construct a Markovian random network. In fact, it
measured in undirected networks by means of the condis easy to see that

tional probability P(k’|k) that a vertex of degrek is con-

nected to a vertex of degrde€. From the point of view of (k)

correlations, it is useful to consider the restricted subset of Pk ="~ 2 P(k,k"). @)
undirected Markovian random networks[26], which are K

completely defined by the degree distributiBk) and the  Thjs relation, together with Eq(5), completely defines the
conditional probab|I|tyP.(k’|.k). The Markovian nature of petwork properties, i.eP(k) and P(k'|K), as a function of
this class of networks implies that all higher order correla-the joint distributionP(k,k’). Notice that Eqs(5) and (7)

From the symmetry oP(k,k") it follows immediately the
degree detailed balance condition

tions can be expressed as a functiorPgk’ (k). define the degree distribution and the conditional probability
The functionsP(k) and P(k’[k) are assumed to be nor- i, the wholek range, except fok=0. This fact does not
malized, i.e., represent a problem, however, since vertices without edges
are usually not considered in natural complex networks.
> P(k)=> P(k'|k)=1, (1) The empirical evaluation oP(k.k") [or R(k’|k)] is, in
k K’ most real networks, a quite difficult task, since the available
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data, restricted to finite sizes, usually yield results extremely _ o

noisy and difficult to interpret. For this reason, it is more c(k)= E P(K",K"[K) Py e (10
useful for practical purposes to analyze instead the average Kk

degree of the nearest neighb@&\NND) as a function of the  \yhere the functiomp,.  is the probability that the vertices

vertex degree, defined Hy] k' andk” are connected38]. The quantityc(k) has been
. recently used to study the level of hierarchy and modularity
kon(K) =2 k' P(K'|K). (8)  in real complex networkg39].
k/

. . Ill. HIDDEN VARIABLE MODELS OF CORRELATED
For uncorrelated networks, in whidA(k’|k) does not de- NETWORKS

pend onk, application of the normalization conditigf) into

Eq. (6) yields Py(k’|k)=k’P(k’)/{k). In this case, we ob- Recently, Caldarellet al.[32] and Salerberg 33,40 (see

tain k, (k) = (k?)/(k), independent ok. Therefore, a func- @ISO Refs[25,41]) have proposed different models of inho- '
tion an(k) with an explicit dependence ok signals the mogeneous random graphs that represents a natural generali-

presence of degree correlations in the network. Based on t ;'(Zna Ofrr;[g:ecﬁgzzgl grﬁg]rylinﬁonnﬂgmengergﬁg n:gdﬁL in
ANND, it is possible to characterize the correlation proper-- "~ g grap

. — _ . . which each vertex is characterized by a differéype or
ties of the network24]: Whenk,(k) is an increasing func-  fiess Types can be either discrete or continuous variables
tion of k, the network shows assortative mixing. Examples ofynq are assigned to vertices according to a certain probability
assortative behavior can be found in several social networkgisripution. Then, pairs of vertices are independently joined
[24]. On the other hand, wheky,(k) is a decreasing func- by an undirected edge with a probability depending on the
tion of k, the network shows disassortative mixing, as foundtype of the respective end points. This construction leads to
for example, in technological systems such as the Internein ensemble of undirected random networks, which inherits
[7]. the simplicity of the Erde-Renyi model while allowing free-
dom for general forms of the degree distribution and corre-
B. Three vertices correlations lation structure. Referencg83,40 were mainly concerned

Correlations among three vertices can be measured b\é(Vith the component distribution and the onset of the giant
means of the probabiliti?(k’,k”|k) that a vertex of degrele omponent in these kinds of models, and R8E] reported

o ) . numerical simulations for different model parameters, and
IS swnﬁultaneously C_onnected to two vertices with degka‘es. analytical arguments for the form of the degree distribution.
andk . In the particular case of M_arkowan ne;works, this The models defined in Reff82,33 can be generalized as
func,tlo,rll IS relat?d to tt}e two vertices correlatl_on througha class of models witlinidden variables The hidden vari-
P(k’,k"[k) =P (k’[K) P(k |k.)' Forr ”non-Markow,an Nt ables play the role of tags assigned to the vertices, and they
yvorKS, however, the functionB(k’,k"|k) and P(k’[k) are completely determine the topological properties of the net-
in principle not related.

work thr h their pr ili istribution and the pr il-
Information about three vertices correlations can be ob- ° oug eir probability distribution and the probab

. . o ity to connect pairs of vertices.
tained from the clustering coefficient. The concept of clus-  \na define the class of models with hidden variables as
tering in a graph refers to the tendency to form cliq(ezsn-

I b Het) in th iahborhood of . follows. Let us consider a set &f disconnected vertices and
plete subgrap 1) In the neighborhood of any given vertex. , general hidden variable which can be a natural or a real
In this sense, clustering implies that if verteis connected

; g . number. An undirected graph is generated by the followin
to vertexj, and at the same tinjés connected td, then, with grap g y g

: R, " two rules.
high probability,i is also connected tb The probability that (1) Each vertesi is assigned a variable , independently
two vertices with a common neighbor are also connected tQrawn from the probability distributiop(h),
each other is called theustering coefficienof the common (2) For each pair of verticesandj with.respective hid-
vertex[16]. Numerically, the clustering coefficient of ver- en variabled. andh. . an undirectéd edge is created with
tex i can be computed as the ratio between the number og ' N

o ) . ; robability r(h;,h;) (the connection probability where
edges existing betwedqn neighbors ofi, e, and its maxi- / : ! ; ; /
mum possible valug (k—1)/2, that is, r(h,h")=0 is a symmetric function ofi andh’.

Given the independent assignment of hidden variables
2e, and edges among vertices, this procedure generates corre-
= 9 lated random networks with neither loops nor multiple edges,
ki(ki—1) which are Markovian at the hidden variable leyé#] and
On the o@er hand, the clustering coefficient of a vertex o%év(!]g;: i(rj]etgrj]reefvgsftl::iacut}g)nnp?r?)d;no(;rrilﬁ t;]o/r)\.p;c:::r\tl:/e;svalrle en
degreek, c(k) [8], can be formally computed as the prob- focys in the case in which the distributigith) is indepen-
ability that it is connected to verticds' andk”, and that gentof the network sizeN. The case in whiclp(h) is al-
those two vertices are, on their turn, joined by and edgelgwed to depend oM will be considered in Sec. VI.
averaged over all the possible values of the degrees of the | this section we will provide analytic expressions for the
neighbor vertices. Therefore, we can wigigk) as a function  correlation function and clustering coefficient of the net-
of the three vertices correlations as works generated with this class of models as a function of

Ci
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the distribution of hidden variables and the probability to R .
connect pairs of vertices. 9(Z|h)=2k zg(k|h). (17

A. Degree distribution Since the propagator is given by a convolution, Bdy), we
The degree distributioR(k) is defined as the probability €an write its generating function as the product of the gen-
that any given vertex hdsedges attached to it. Therefore, in erating functions of the partial propagatogs” (ki|h;),
order to compute it, we need to know the conditional prob-which on their turn, being binomial distributions, yield
ability g(k|h) (propagator that a vertex with initial hidden
variableh ends up connected to othkevertices. The degree " (zlh)=[1—(1—2)r(h,h) M. (18
distribution can then be written as
Inserting this expression into the definition §(z|h) and
p(k)ZE g(klh)p(h), (12) taking logarithms on both sides we are led to the equation
h

where the summation sign must be exchanged by an integral In g(zlh)=N2 p(h)In[1—(1-2)r(h,h")]. (19
for continuoush. The propagator, which is obviously nor- h’

malized, =, g(k|h)=1, provides full information about the - ,
dependence of the actual degkeen the hidden variablé. For general probabmtl_ep(h) andr (h,h ).’ Eq. (19 must be .
solved and inverted in order to obtain the corresponding

In particular, we can see that the average degree of the Vepr)'ropagator. The degree distribution is then obtained applying

tices with hidden variablé, k(h), is given by Eq. (11). Even without solving the previous equation, how-
ever, it is already possible to obtain some information on the
V(h)zE kg(k|h), (12) connectivity pr.operties of the network. Erom the defirjition,
K Eq. (17), the first moment ofg(k|h) is given by the first

derivative of@(z| h) evaluated az=1. Therefore we have
and the average degree can be expressed as

_ k(h)=N2>, p(h")r(h,h"), (20)
(=2 kP()=2 K(h)p(h). (19 o

and
On the other hand, the probability that a vertex of actual

degreek has associated a hidden variabjeg* (h|k), can be
computed as the inverse of the propagator by means of (Ky=N2, p(h)r(h,h")p(h"), (21
Bayes’ formula[45], h,h’

P(k)g* (h|k)=p(h)g(k|h). (14) where we have used E@l19) in computing these expres-
sions.
In order to get an explicit expression for the propagator, At this point we must consider the possibility of two dif-
we start by noticing that it can be written as ferent kinds of networks: Sparse networks, with a well-

defined thermodynamic limit for the average degfiee and
nonsparse networks, in which the average degree diverges

gklhy= > g (kh)gP(kylhy)- - - g™ (ke he) with the network size. In the case of sparse networks, the
Koo ke number of edges grows linearly with the system size and,
X Stttk K (15  therefore, the joint distribution is a well-defined quantity, in-
1K TR K

dependent ofN. In the opposite case, nonsparse networks
have a number of edges growing faster than linearly, which
causes the breakdown of the thermodynamic limit and the
emergence of the phenomenon of condensation of edges
Sec. V). In order to distinguish between sparse and non-
sparse networks we must consider the value of the average
degree, given by Eq21). If the densityp(h) is independent
of the size of the system, the only possibility to have a sparse
network is that the connection probability scalesNis?.
N This scaling behavior turns out to have a strong implication
My Nkir _ NNi—ki in the form of the propagator. Definingr(h,h’)
9" (kily) ( ki)r(h’h') [1=r(hh) 25 (8 o hr)/N (as considered in Ref33]), whereC(h.h') is
a bounded symmetric function, independentNyfwe can
where N;=Np(h;) is the number of vertices with hidden expand the right-hand side of E.9) in the limit N— to
variableh; . Let us define now the generating functipt6] obtain

Wheregi(h)(ki|hi) is the probability that a vertex with hidden
variableh ends up withk; connections with vertices of hid-
den variableh;, h; being the maximum value d¢f. Since the
connections between vertices with hidden variablesdh’
are independently drawn with probabilityh,h’), the prob-
ability gi(h)(ki|hi) is simply given by a binomial distribution,
ie.,
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. Finally, using Eqs(25) and(26) we can compute the ANND
g(ZIh)=eXD[(Z—1)E p(h")C(h,h") . (22  as
h!

1

The generating function of the propagator is a pure exponen- Knn(K)=1+ 5k > g(klh)p(h)kaa(h), (27
tial, which indicates that the propagator itself is a Poisson (k) “h
distribution, where we have defined the ANND ofhavertex[see Eq(8)]
e K )k as
g(klh) = ——7—, (23)

knn(h) =2, k(h")p(h’|h). (28)
where in this cask(h)=X=,p(h")C(h,h"). Equation(23) is, "
indeed, a strong result, since it states the universality of the
propagator for sparse networks regardless of the form of the
connection probability. The clustering coefficient is defined as the probability that
It is worth mentioning that the degree distribution, Eqg.two vertices, adjacent to a third vertex, are also connected to
(19), has been derived on the basis of a microcanonical ereach other. In the space of hidden variables, consider a
semble, in the sense that the number of vertices of each clasgrtex, which is connected to two other vertidé€sand h”
NL,=N p(h), is a fixed quantity. This is in contrast to the with probability p(h’,h”|h). On the other handy’ andh”
canonical ensemble in which the fixed quantity is the averagare connected with probabilityh’,h"). Therefore, the clus-
number of vertices of each class. However, given the equivatering coefficient of a vertexh is given by c,
lence between ensembles, both approaches are equivalent=#%,, ,»p(h’,h”|h)r(h’,h”). Note that this is the natural

C. Clustering coefficient

the thermodynamic limif47]. counterpart of Eq(10) in the space of hidden variables.
Now, since the network is Markovian at the hidden variable
B. Degree correlations level, we have thap(h’,h"|h)=p(h’[h)p(h"|h). Thus we
have that

Degree correlations are completely characterized by
means of the conditional probability(k’|k), which gives
the probability that an edge emanating from a vertex of de- ch= > p(h'[hyr(h’,h")p(h"[h). (29
greek is connected to a vertex of degr&é. In order to h’.h"
construct the functiorP(k’|k) we consider a vertex of de-
greek, which with probabilityg* (h|k) has associated a hid-
den variableh. Let us definep(h’|h) the conditional prob-
ability that ah vertex is connected tola' vertex. Then, the
conditional probabilityP(k’|k) can be written as

The clustering coefficient of the vertices of degiee(k),
will be given by the probability that a vertek has hidden
variableh, g* (h|k), timesc;,, averaged over all the possible
values ofh. Thus

— 1
P(K'[k=3 g(k'~1|n")p(h'[hg* (hlk),  (24) c=pi) & pMakiCh, k=23,.... (30
h,h’
where we have used the form gf (h|k) given by Eq.(14).

The results derived in this section represent the general
solution of the class of networks with hidden variables. In
the rest of the paper we will show how this formalism is able
to deal with a wide variety of models, from sparse to non-

where the propagatag(k’ —1|h’) gives the probability that
theh’ vertex ends up with degrd€ (since one connection
has already been used up for the conditional edge hijith

Using the form ofg* (h|k) given by Eq.(14) we have

1 sparse networks, and from equilibrium to nonequilibrium
P(k'|k)=5== >, g(k'=1]h")p(h’[h)p(h)g(klh), ones.
P
(29 IV. THE INTRINSIC FITNESS MODEL
valid fork,k’=1,2, . ... Inorder to close Eq(25), we need, As an example of the general class of models with hidden

finally, to provide an expression for the conditional probabil-yariaples, Caldareliéet al. [32] considered the model defined
ity p(h’|h). In order to do so, we consider that the probabil-py the probability distributions

ity of drawing an edge fronh to h’ is proportional to the

probability of finding anh’ vertex, times the probability of p(hy=e " for he[0x[, (31
creating the actual edge. Taking into account normalization,
we have that r(h,h")=6(h+h"—9), (32)
p(h")r(h,h") Np(h’)r(h,h") where 6(x) is the Heaviside step function ardis a con-
p(h'|h)= = = (26)  stant. In this model, hereafter referred to as the intrinsic fit-
2 p(h")r(h,h") k(h) ness(IF) model, vertices have assigned an exponentially dis-
b tributed hidden variabléfitness, and are joined by an edge
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whenever the sum of the fitness of the end points is larger In order to characterize the correlations of the model, we
than a given threshold. By means of numerical simulations compute the ANND, given by Eq27). In the continuouk
and analytical arguments, Caldaresti al. [32] showed that  approximation, the functiok(h) takes the form

the degree distribution in this model is power-law distrib-

uted. This observation led to the very interesting conclusion ?(h): Ne"£6,(0,0) +No(h— ). (37)
that it is possible to generate scale-free networks without
growth not preferential attachmefg4]. Inserting this expression into the formula for the ANND, we
obtain
A. Analytic solution
— Ne 2¢
Using the general formalism developed in the preceding Kon(K)=1+ W (1+2)8(k—N)
section, we can provide analytic expressions for the main
properties of the IF model. In order to do so, let us compute 2
in the first place the propagatg(k|h). Inserting Eqs(31) + N_{1+ Z+1n E) ] 0.(Ne {,N)|. (38
and(32) into Eqg.(19), we have, substituting the summation k3 N '

by an integral,

The regular part of this expressi¢discarding thes function
singularities, signaling again the effect of the condensation
of edges in the correlation functipiakes the form

k
N
That is, the regular part of the ANND is proportionalko?,

times a logarithmic correction term. We are therefore in the
presence of disassortative mixing. Note that, in the liknit

—oo, we have thaﬁm(k)—m, in agreement with the theo-
retical prediction made in Ref29].
kIn)=8(k—Ne" ) 8,(0.2)+ 8(k—N) 8(h—¢), Finally, .to estimate t_he clusterlng'c.:oefﬂuent, we havq to
g(klh) = € 0n(0.0)+ & )0(h=0) (34) compute first the conditional probability at the level of hid-
den variables, given by E@26). Using Egs.(31) and (32),
where 8(x) is the Dirac delta function and we have intro- We obtain
duced the window function

In (;(z|h)=Nf:dh’e—h’mm—(1—z)9(h+ h'—9)]

e ¢ ifo<hs<¢ W(k)—l+N2ej§
1 if h>¢, 33 e

1+{+1In 6 (Ne ¢,N). (39

=N Inz[

from where we obtaing(zlh)=2z"¢" * for 0<h=¢, and

§(2| h)=zN for h>¢. In order to invert this generating func-
tion, we approximaté by a continuous variable. In this case,
the propagator takes the simple form

p(h’'[h)y=e " 6(h'+h—)[ef "6,(0.L)+ 6(h—{)].
1 for asx<b (40

(39

0 otherwise. From this expression we can obtain the clustering coefficient
at the level of the hidden variables
This approximation is expected to perform poorly for small
values ofk, as we will see when comparing the analytical Ch=0,(0,£12) + e 2N 2h—(+1)6,({12,)
results with computer simulations of the IF model. —¢
Inserting the propagator, E(34), into the general expres- e f({+1)oth=0), (42)

sion (11), and performing the integrals corresponding to the . .- .
Dirac 6 functions, we obtain the degree distribution and the clustering coefficient as a function of the dedgee

0,(a,b)=

— e ¢ N3e~2¢
! . . c(k)=— O (Ne~¢,Ne )+ —
P(k)=Ne Eak(Ne N)+e ¢*8(k—N). (36 k“P(k) kK*P(k)
k 2 1
That is, the networks generated by the IF model exhibit a X(2In N +{+110(Ne"TEN)+ P(k)

scale-free degree distribution, with degree expongat2,
for degrees in the rangee ‘<k=N, plus an accumulation X e ?(f+1)8(k—N). (42)
point atk=N, given by thed function, with weighte¢.
This accumulation point signals the presence obadensa-
tion of edges in the fractioe ¢ of the vertices of the net-
work with h> ¢, which establish connections to all the other (k)= 0 (Ne~{,Ne 92+
vertices [48]. This condensation, reminiscent to that ob- '
served in models with nonlinear preferential attachnég,

is the result of the nonsparse nature of the network, which,
from Eq.(21), has average degré&)=Ne ¢({+1).

The regular part of this formula is finally

2a-¢

k
21n

X —
N

++1|6,(Ne 2 N). (43)
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FIG. 1. Comparison between the theoretical prediction(E4).
for the degree distributiorisolid line) and computer simulations
(hollow circleg of the IF model. The isolated point k=N corre-
sponds to the analytical Dirad function, with strengthe ¢
=N"1

That is, fork<Ne~%?, the clustering coefficient is constant
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FIG. 2. Comparison between the theoretical prediction (&5),
for the ANND (solid linel and computer simulationghollow
circles of the IF model.

for small k. This is a natural effect of the continuoksap-
proximation, which can be readily understood from the form
of Eq. (44): The form P(k)~k 2 cannot be correct in a
discrete approximation, since it does not fulfill the normal-

and equal to its maximum possible value 1. The presence dfation condition. The condensation of edgeskatN is
this flat region in the clustering coefficient is easy to underlearly visible in the presence of an isolated peak, of height

stand. The degree rande<Ne ¢? corresponds, from Eq.
(37), to vertices with fitnesh<<{/2. These vertices can only
establish connections with vertices with> /2, which are

approximately equal tt\~ 1. Figures 2 and 3, on the other
hand, represent the ANND and the clustering coefficient as a
function of the degreé, respectively. As we can see, the fit

on their turn fully interconnected among them. From here, itbetween the computer simulations and the analytical expres-
follows a maximum clustering coefficient equal to 1 for all sions is quite good.

vertices withh<(¢/2. On the other hand, foNe “?<k
<N, the clustering coefficient decreaseskag, modulated
again by a logarithmic correction term.

B. Numerical simulations

V. APRACTICAL ALGORITHM TO GENERATE
CORRELATED RANDOM NETWORKS

The hidden variable class of models represents a natural
extension of the ErdeReyi random graph model that al-

In order to check the validity of the proposed analyticaljows to generate a broad class of correlated networks from
expressions, we have performed numerical simulations of th@hich it is possible to compute the most relevant topological
IF model. To simplify the comparison, we have consideredyroperties. From a practical point of view, however, it is still

the particular casé=In N, in which the relevant expressions
take the form

1 1
P(k)=Eek(1,N)+N5(k—N), (44)
_ 1+Ink
K (k)=|1+N " }9k(1,N), (45)
_ 2 k
cr(k)=0k(1,N1’2)+k—,: |n(N—1,2 +% O (NY2N).
(46)

Simulations were performed for networks of sike=10*
(corresponding ta’=In10*~9.2103), averaging all statisti-
cal distributions over 10to 10 network realizations.

T T T TTTIT

T T T

T T T T T T

©-6550008005880580
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-3 Lol Ll o111
10

° 10" 10

k
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In Fig. 1 we depict the results corresponding to the degree FIG. 3. Comparison between the theoretical prediction (&6),

distribution. As we can see, the theoretical predictisolid

for the clustering coefficient as a function of degieésolid line)

line) overestimates the value of the actual degree distributioand computer simulationgollow circleg of the IF mode.
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missing an important point. Indeed, there are many situations-NX,,p(h")r(h,h’)=h, where we have used E@8). There-
in which it is desirable to generate a network with a particu-fore, the propagator is a simple Poisson distribution, with
lar correlation structure given by a certain joint distribution average valud, i.e.,
P(k,k"). For a hidden variable model it is possible to com-
pute this quantity as a function of the initial probabilities
p(h) andr(h,h"). However, this relation is nontrivial, and it g(klh)=
is generally not possible to invert it. Therefore, in order to
implement an algorithm capable of generating networks wittNote that the validity of this result levers on a quite strong
any a priori correlation structure, one must carefully chooseassumption for the boundedness of the connection probabil-
the distribution of hidden variables and the connection prObi'[y r(h,h"). The nature of this condition is more clearly seen
ability. in the case of uncorrelated networks, witty(h,h’)

One possible way to proceed is to define hidden variables- hp' IN(h). If ro(h,h’) has to decrease a¢ !, then the
h that have themselves the structure of the degrees of a reglaximum value of the hidden degree must be smaller than
network (hidden degregs with correlations given by a joint  h (N)= (N(h))l’2 [50], a condition that imposes restrictions
distribution P(h,h’). Those hidden degrees will then be on the maximum degree available for any vertex.
natural numbers that are assigned to the vertices according to From the propagator, E¢52), the degree distribution as a
the probability distributiorfsee Eq.(7)] function of p(h) follows immediately from Eq(11):

7hhk

(52

k

h ~
p<h>=%2 P(h,h), (47) P(k)= 2 — P (53)
h/

with (h)=Xphp(h). In order to define the connection prob- This relation between distributions implies a relation be-
ability, we consider that, if the hidden degrees were the actween the respective moments. Indeed, it is straightforward
tual degrees characterizing the network, then the total nunto prove that

ber of edges between verticés and h’ would be E;

=(h)YP(h,h")N. Since the total number df vertices isN;, (hM=(k(k=1)---(k=n+1)), (54)

=Np(h), it is therefore natural to define . . .
and, in particular, the first two moments read

r(h,h’)zﬂm (48) (hy=(k), (h?)=(k?—(K). (55)

N p(h)p(h")’ , , , ,
Itis alsq instructive to see how we can recover the classical
On the other hand, the conditional probability that a vertex Erdos-Renyi random graph model from this formalism. The

is connected to a vertdx’ is given by[see Eq.(5)] Erdcs-Renyi model corresponds to joining pairs of vertices
with a constant probabilityp. Such connection probability
, (h>l3 h,h") results from imposing uncorrelated hidden degrees with dis-
p(h'[h)= “he(h) (49 tribution pgr(h) = &), Which yields a Poisson degree dis-

tribution with average degreg).
In order to compute the ANND function from EQ7),

The quantitiep(h) andp(h’|h) will be, in this case, related SR iy :
through the hidden degree detailed balance condition, we observe that in this casgh)=h. From here we obtain
’ ! ’ N — D ’ — _hhk
hp(h'[h)p(h)=h"p(h[h")p(h")=(h)P(h,h"), (50) k.y(K)=1 > s(h)h,(h), (56)

TP 4
as can be checked by inserting into the definitiop@f’|h),

Eqg. (26), the expression of Eq48). It is interesting to note where, in this case, the average hidden degree of the nearest
that, if two-point correlations are absent at the level of theneighbors as a function &f[see Eq(28)] is

hidden variables, then we have thaPy(h,h’)

=hh'p(h)p(h’)/(h)2. Thus, the connection probability e (M= h'p(h'[h)= (h) S hBehh). (57
, hp(h) < o
h h

reads
hh’ For uncorrelated networks at the hidden level, the ANND
fo(hh")= N¢h)”’ (52) yields
recovering the model recently introduced by Chung and Lu (h?) (k%
[50] (see also Ref[51]). k() =1+ IORRCE (58)

Assuming that the connection probability is bounded and

decreases for large network sizesNis', we can compute  recovering the well-known resui52). Finally, the clustering
the propagatorg(k|/h) applying Eq. (23) with k(h) coefficient takes, from Eq30), the form
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— 1 e "hk 10"
(=505 > @ Pen, (59)

h . -
o Simulations

— Transformed
— = Theoretical

where the clustering coefficient in terms of the hidden de- 107
grees is given by

[T
Loovvum

ch= 2 p(h’'[hyr(h’;h")p(h’|h) S
hI’hH
h)3 B(h,h))B(h’,h")B(h",h : :
_ 2< >2 ()P OBET) 3 E
h%p(h)“N n' v p(h")p(h") I |
When correlations are missing in the hidden degree distribu- _; o ciamsd i asams] .
tion, we obtain 00 10" 10° 10° 10°
o h2)2 K2y — (K})2 k
o (M7 _ (D= (k)* -

FIG. 4. Degree distribution obtained from numerical simulations
of the proposed algorithm, applied to the joint distribution, &%),
recovering the result previously derived by Newni&s]. compared with the theoretical and transformed values.

The key point to notice in the above expressions is that
the Poisson propagator, E€:2), is a sharply peaked func- Which, forq—1, approaches a power-law distribution with

tion atk=h, which in the largek limit is analogous to a delta €xponenty=2. In Figs. 4—-6 we present the results for the
function &, .. Therefore, in the limitk—, we expect to degree distribution, the ANND function, and the clustering

observe the behavior coefficient, respectively, from computer simulations of the
proposed algorithm, using the joint probability distribution
P(k)~p(k), (62 given by Eq.(65). The plots have been obtained for networks
o o of size N=10" and a parameteq=0.999, averaging over
Knn(K)~1+h,n(k), (63  10° realizations. In the same graphs we also represent the
theoretical values corresponding to a network with a corre-
ak)NCk_ (64) lation structure given byP.(k,k"), plus the transformed
functions given by Eqs(53), (56), and (59), respectively,
That is, the main topological properties referred to the actuathat correspond to the actual topological properties of the
degreek tend to their analogs computed for the hidden de-network. As discussed previously, and to ease the compari-
gree h, with the sole exception of a constant of order unitson of the plots, a factor 1 has been subtracted to the ANND
added to the ANND function. We can take advantage of thigunction obtained from computer simulations and the trans-
observation to propose the following algorithm to generate dormation, Eq.(56). We can see that for all three quantities,
correlated random network with theoretical degree distributhe matching between the computer simulations and the the-

N(RY3 N(K)®

tion P,(k) and joint distributionP,(k,k"). oretical results is very good for values kflarger than 10.
(1) Assign to each vertekan integer random variable Being the discrepancy limited to such small degree values,
i=1,... N, drawn from the probability distributio(k). ,
(2) For each pair of vertices and j, draw an undi- L AL B L L A L
. . T iRy N ]
recte~d eclge with  probability r (ki ,k;) = (k) P:(k; ,k;)/ s \\\ S ]
N Pt(kl)Pt(k]) | \\ _ Transfor.med |
The outcome of this process will be a random network , A = Thearedl
whose actual degree structure, in the lakgkmit, will be 107 A E
distributed according to the probabili§};(k), with correla- o~ - .
tions given byP(k,k"). N T
In order to check the accuracy of the previous algorithm, = I i
we have tested it with the joint probability distribution 10‘5— 3
P(kk)=Ad¥, kk'=12, ..., (65) I ]
whereA is a normalization constant arg<1 is a constant o T T T
parameter. With this choice, the degree distribution takes the 10° 10' 107 10°
form k
(k)Aqk FIG. 5. ANND function obtained from numerical simulations of
P(k)= ———, (66) the proposed algorithm, applied to the joint distribution, E&H),
k(1— qk) compared with the theoretical and transformed values.
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now an explicit dependence on the system 8lZer the final
time T).

The next step is to define the connection probability of
two vertices that joined the network at timésand t’,
r(t,t"). The choice of this function is equivalent to the con-
nection probability at the time that the vertices were added
and its specific form will determine the final properties of the
network. For instance, an homogeneous form if(i,t"),
that is,r (t,t")=f(|t—t'|), will produce, in the largd limit,
networks in which all the vertices will have the same statis-
tical properties, independent of the injection time. In the op-
posite case of inhomogeneous networks, vertices introduced

P . b sl i b pail at early times will have different topological properties than
100 10" 102 10° those added later, giving rise &ging (that is, an explicit
k dependence on the injection tirhef all the vertex properties
evaluated at tim@>t).

FIG. 6. Clustering coefficient obtained from numerical simula-  In order to provide a particular example, we focus on the
tions of the proposed algorithm, applied to the joint distribution, Eq.class of growing scale-free networks, whose most character-
(65), compared with the theoretical and transformed values. istic element is the BarabaAlbert model[34]. From gen-

eral scaling argumentg,3], it is possible to see that growing
we conclude that the proposed algorithm reproduces the decale-free networks are described by a power-law degree dis-
sired correlation structure with an accuracy that is more thatribution P(k) ~k™ 7, while the average degree at timef a
satisfactory for any purpose dealing with the large scaleertex introduced at tim&' is given by
properties of the network.

[T T
NIRRT,

107

c(k)

10

o Simulations
— Transformed
— = Theoretical

VI. NONEQUILIBRIUM CORRELATED
RANDOM NETWORKS

The class of models we have introduced so far are stati/nere the exponenig andy fulfill the scaling relation
models, in which, starting from a fixed numkéiof vertices,
edges are assigned with a given probability. As we have seen,
this construction is extremely useful because it gives us con-
trol over the final network structure and, at the same time,
the possibility to calculate important structural properties.In the Barabai-Albert model, corresponding t8=1/2 and
Many real networks, however, are far from being static. In-y=3, new edges are joined to old vertices following a pref-
stead, many of them are the result of an evolving prof®lss erential attachment prescription, that is, with probability pro-
in which vertices are added to the network following someportional to the degree of the existing vertices. We can gen-
growing procesglinear, exponential, etg.establishing con- eralize this prescription and consider a preferential
nections to other existing vertices with a given attachmenkttachment as a function of timiemapping the degree to the
rule (preferential attachmert34], deactivation of vertices time by means of Eq(67). In this case, however, when a
[35], etg. From this growing mechanism the network new vertex is added at time it can establish connections
reaches a nonequilibrium steady state where the statistic@lith nodes introduced between 1 ahénd, consequently,
properties are time independent. the connection probability is to be rescaled by a factor

In the following we will see how it is possible to map [t (t)dt’, which is proportional td. Therefore, the prob-
nonequilibrium growing networks into a particular kind of ability that a new vertex, created at tirhewill be joined to
model with hidden variables. The key point is to realize thata vertex injected at timé' <t is proportional to {/t")#/t.
after the growth of the network, all vertices that joined the  Following this reasoning we propose a connection prob-
network at the same time are statistically equivalent andapility as a function of times andt’ given by
thus, the hidden variable of a vertex must correspond to its
injection time t [33]. We consider a time windowt 1/t\? 1/t'\8

—(—) 0(t—t’)+—(—> o(t’ —t)
t\t tr\t

B
kt,(t)~<t£,>, 0<B<l, t>t'>1, (67)

1
y=1+ E (68

e[ty,T], with T>tq, in which the initial time can be taken r(tt)=a
asty=1, without lack of generality. I\ is the rate of cre-

ation of new vertices per unit timé4] the network size is

given by N=A(T—1). In this case, the density of hidden wherea is a parameter that controls the final average degree
variablesp(t), is a uniform distribution defined in the range of the network. The connection probability has been symme-
[1,T], that is,p(t)=1/(T—1), reflecting the linear growth trized fort andt’ to comply with the general conditions of
of the network. The main difference between this class othis function. Its symmetric property, however, does not im-
nonequilibrium networks and the classes discussed in thply that the average properties of the vertices are indepen-
previous sections lies in the fact that the distributigh) has  dent oft. For example, computing the average degree of a

. (69
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vertex (introduced at time), evaluated at the final time, 10°'—9'g¢",""| S L LA B
using Eq.(20), we obtain[55] o b=1A
% X o b=12
o b=1011 3

— T al 1 al
k(t):)\fl r(t,t’)dt’=m 1_tlj +F

H

For largeT, we have?(t)~(T/t)B, recovering the behavior 1™
obtained in growing network models, E7), if we con-
sider the timeT as the observation time. On the other hand,

?(t) is a decreasing function dfbetween the limitd=1,

3
o
P (k)

g=390 %
Q

o Bg=3.07
a

<
. . T . <
y|e|d|ng kmax~a)\TB/:8! andt:T’ where it converges to the 10—6 - L |||||||1 L |||||||2 L |||||||3 L .uml4 L
constantk,i,~ a\/(1—B). This functional form implies 10 10 10 10 10
that the oldest verticesvith smallert) have a larger average k
degree, which is the signature of aging in the netw@&. FIG. 7. Cumulative distribution for the mapping of the growing
From Eq.(21), the average degree of the network can bemodel for different values of the parametgr (8=1/3,1/2, and
computed as 10/11). The average degree is in all cases sétte- 6. The size of

the network isN=1CP.

I’:\)(Z)ZEX[{ a)\(zlg_l)(z_ 1)] flefah(lfz)rfﬁ/ﬁdT

1T _Za)\( 1TA-1
<k>—ﬁfl k(t)dt—m 1—E T—1

), (71)

B(1-p) 0
which, in the limit of largeT and g<1, tends to(k) VB¢ _
=2aN(1- ), from where we identify the normalization = a_)\(l_z) L(=1g,ar(1-2)/p)
parametera as a function of the average degree. Fr B B

=1, on the other hand, the average degree divergé&)as p{a)\(Z,B—l)(Z— 1)}
, (74)

~2a\ In T. Note that this choice of the connection probabil-
ity, independent of the network size, yields fe 1 a sparse B(1=P)
network (with finite average degree in the thermodynamic
limit), in opposition with the case discussed in Sec. Ill. This ) ) ) )
fact is due to the explicit dependence lrof the distribution ~ Wherel'(x,y) is the incomplete Gamma function. Expanding
of timesp(t), and signals the crucial difference of nonequi- P(z) aroundz=1, we obtain the leading terms
librium networks with hidden variables.

In order to obtain the form of the degree distribution, we "
observe that, even though the network is sparse, sificg) . aN\"FT(=1/B)
is not proportional toN~* we cannot rigorously apply Eq. P(Z)21_<k>(1_z)+(7> B (1-2)".
(23). However, we note that the maximum valuerdf,t’) (75)
takes place at=t’, namely,

(K)(1-pB) Applying Tauberian theorem$6], it follows from the sin-
= (72)  gularity P(z)~(1—2)Y# in the vicinity of z=1, the largek
behavior of the degree distribution, namely?(k)
~k~17Y; that is, the model recovers a scale-free network,

For not very large values dik) and larget, the connection P(k)~k~?, with a degree exponent=1+1/8, and a cutoff
probability is bounded by an small value, and therefore Wegiven by the maximum degredx_ TA~NYO-1)  in

can still approximate its propagator by means of E2§). max ~
Working for simplicity with the generating function of the models[3].

(04
rto=1< 2Nt

agreement with the results obtained for growing network

degree distributionP(z)=2,z“P(k), we therefore write, In order to check this result, we have numerically gener-
from Eq. (22), ated networks of sizdl=10°, with the connection probabil-
ity, Eq. (69). For a rate of addition of new verticas=1, the
R 1 (T - numerical prefactor im(t,t’) is a=(k)(1—8)/2; we im-
P(z)= ﬁjl elz~ Dk, (73 pose(k)=6. Figure 7 shows the numerical cumulated de-

gree distributions obtained for valug8=1/3, 1/2, and

10/11. The plots show a clear power-law behavior in all
Performing the change of variables=t/T, and considering three cases, with a degree exponent, estimated from a linear
the limit T—cc, we obtain fit in the scaling region, given by=3.90, 3.07, and 2.14,
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respectively. These values compare very well with the theo- VIl. CONCLUSIONS

. tiony— 14 ! ; _ _ .
retical predictiony=1+ 1/8, which provides the expected In this paper we have analyzed in detail a general class of

exponents 4, 3, and 2.1. X

. — . complex network models that are based on the existence of a

ourT?cfr :1\2122 flér;cmjgakr;‘g(g])( ézgﬁlsgsgﬁmﬁgglg%doigzgg hidden.s_pace, in which vertices are Iocated., and a connection
form for the p.ropagator we can de%ine the generating funcprobablllty that depends on the hidden variable of each ver-
S — ) tex. The Markovian character at the hidden level allows to

tion W(2) = 2yz°kP(K)[ knn(k) — 1], which takes the form o0 jate analytical expressions for the most important struc-
Nz (T — T tural properties, such as degree distribution, the ANND
\p(z):_f dtek(t)(zfl)f dt’r(t,t’)?(t’), (76) functlon—qggntlfylng two vertices correlatlo_ns—and cIu_s-

T-1)1 1 tering coefficient, as a measure of three vertices correlation.

Our formalism is valid for both sparse and nonsparse net-
from where it is possible to derive the largeimit of the  works, extending the applicability of our results to a wide
ANND. We are primarily interested in the cage=1/2, that  range of complex networks. At this respect, one of the appli-
is, the scale-free range of the model. Focusinginl/2, the  cations of our formalism is to provide the analytical solution
limit T—co of Eq.(76) is of a recently introduced model with intrinsic fitness, which

has recently attracted a great deal of interest as a way to

- a’\?z 251 [* obtain scale-free networks without preferential attachment.

W(2)= B(2B—1) T fo Our solution has been successfully contrasted with numerical
simulations, thus validating the accuracy of our formalism.

where we have used the same change of variables as before. Another interesting result of our analysis is to provide a

ez DK g7 (77)

o

An expansion of this equation arouze- 1 leads to new algorithm for generating correlated random networks
with an a priori specified correlation structure. In this case,
A W?\2T26-1 a\(1-2) an(1-2) we also calculate exact fprmula; for the relgvgnt gua}ntit!es.
V(z)= 5 ( In . We have tested the algorithm using a probe joint distribution
B (28—1) B B P(k,k"), with very encouraging results.
(78) Perhaps the most striking result concerns the application

: : . . . of the formalism to growing networks. Even though, in this
Applying again Tauberian theorems, we can write that, in the . o - .
large k limit, case, the nclatwork is out. of equ|llpr|um, it is possible 'Eo map
it to a specific kind of hidden variable model by the identi-
fication of the injection time as the hidden variable. In order
kp(k)[fnn(k)_l]NTZB—li, (79  to check this point we have applied the method to a general
k? class of growing networks, which, as a particular case, con-
tains the Barals-Albert model. Using our formalism, we
from where it is straightforward to derive the largéimit of ~ have recovered all the known results for this models, both for
the ANND: the degree distribution and the correlation structure. It is re-
markable that, from a static approach, our formalism is able
Knn(K)~NG= (=1 =GE=»), (80)  to derive correct results for nonequilibrium evolving net-
works. Therefore, this approach opens an appealing way to

The case8=1/2 is very similar to the previous one, except StUdy such systems.
for the type of divergence with the system size appearing as
a prefactor. In the larg@& limit, we can write
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