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We study a class of models of correlated random networks in which vertices are characterized byhidden
variablescontrolling the establishment of edges between pairs of vertices. We find analytical expressions for
the main topological properties of these models as a function of the distribution of hidden variables and the
probability of connecting vertices. The expressions obtained are checked by means of numerical simulations in
a particular example. The general model is extended to describe a practical algorithm to generate random
networks with ana priori specified correlation structure. We also present an extension of the class, to map
nonequilibrium growing networks to networks with hidden variables that represent the time at which each
vertex was introduced in the system.
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I. INTRODUCTION

A large effort has been recently devoted to the study o
very large ensemble of interacting systems that can be
scribed in terms of complex networks~or graphs!, in which
the vertices represent typical units and the edges repre
the interactions between pairs of units@1–3#. Stimulated by
this finding, a theory of complex networks, deeply rooted
the classical graph theory@4#, has hence been develope
finding fruitful applications in fields as diverse as the Intern
@5–8#, the WorldWideWeb@9#, social communities@10#,
food webs@11#, or biological interacting networks@12–15#.

The study of complex networks, boosted by the n
availability of powerful computers capable of dealing wi
very large databases, was initially focused in the study
global properties such as the average shortest path length
average clustering coefficient, or the degree distribut
@1–3#. This work led to the discovery that most natural co
plex networks usually exhibit two typical properties:~i! the
small-world property @16#, which is defined by an averag
path length—average distance between any pair
vertices—increasing very slowly~usually logarithmically!
with the network sizeN and~ii ! a scale-freedegree distribu-
tion. If we define the degree distributionP(k) as the prob-
ability that a vertex is connected tok other vertices, then
scale-free networks are characterized by a power-law be
ior P(k);k2g, whereg is a characteristic degree expone
These properties imply a large connectivity heterogen
and a short average distance between vertices, which
considerable impact on the behavior of physical proces
taking place on top of the network, such as the resilience
random damage@17–19# or the spreading of infective agen
@20–23#.

It was soon realized, however, that these properties do
provide a sufficient characterization of natural networks.
particular, these systems seem to exhibit also ubiquitous
greecorrelations, which translate in the fact that the degre
of the vertices at the end points of any given edge are
independent@7,8,24,25#. This observation has led to a cla
sification of networks according to the nature of their deg
correlations@24#: In the presence of positive correlation
1063-651X/2003/68~3!/036112~13!/$20.00 68 0361
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~vertices with large degree tend to connect more prefera
with vertices with large degree!, the network is said to show
assortative mixing. On the other hand, negative correlatio
~highly connected vertices are preferably connected to ve
ces with low degree! imply the presence ofdissortative mix-
ing. At the same time, it has been pointed out that the pr
ence of correlations might have important consequence
dynamical processes taking place in the topology defined
the network@26–29#. Motivated by these observations, se
eral works have been recently devoted to set up a gen
framework to study the origin of correlations in random n
works @30,31#. At this respect, it is particularly interestin
the models introduced by Caldarelliet al. @32# and So¨derberg
@33#. These models consider graphs in which each vertex
assigned a tag~typeor fitness!, randomly drawn from a fixed
probability distribution. Edges are assigned to pairs of ve
ces with a given connection probability, depending on
values of the tags assigned at the edge end points. This
struction generates random networks that exhibit pecu
correlation and percolation properties@32,33#.

In this paper we present a generalization of the mod
described in Refs.@32,33#, which can be encompassed in
general class of models withhidden variablestagging the
vertices, and completely determining the topological str
ture of the ensuing network. We develop a detailed analy
of the correlations present in this class of network mode
providing explicit analytical expressions for both two an
three vertices degree correlations. We distinguish betw
sparse networks~with finite average degreêk&) and non-
sparse networks~with diverging^k& for a number of vertices
N→`). Even though both cases are enclosed in this clas
networks, analytical expressions are simpler in the form
case. As an example of our formalism, we consider the
trinsic fitness model introduced in Ref.@32#, which belongs
to the subset of nonsparse networks, and which has attra
a great deal of attention as an alternative to generate sc
free networks without growth nor preferential attachme
@34#. The solution of this model in the continuous degr
approximation is compared with extensive numerical sim
lations, yielding a remarkable agreement for all the topolo
cal properties considered. As a particular case of the gen
©2003 The American Physical Society12-1
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class of models with hidden variables, we propose a prac
algorithm to generate correlated random networks with
given correlation structure. The algorithm levers in the ass
nation of hidden variables with the structure of the degr
of a real network. Following this approach, it is possible
easily generate networks matching any desired correla
pattern, as we show by means of analytical calculations
numerical simulations. Finally, we present the extension
this class of models to nonequilibrium growing networks.
mapping the hidden variables to the time in which vertic
are introduced in the network@33#, and by means of an ap
propriately chosen connection probability, we define an al
rithm that yields networks exhibiting all the properties~in
particular aging! exhibited by traditional scale-free growin
models.

The paper is organized as follows. In Sec. II we revi
some general results concerning the measure of correla
in complex networks, which will be useful through the re
of the paper. In Sec. III we introduce the general analyti
formulation of the class of correlated networks with hidd
variables. Section IV is devoted to the analytical and num
cal study of the intrinsic fitness model introduced in R
@32#. In Sec. V we present an algorithm to generate co
lated random networks with a givena priori correlation
structure. Sec. VI deals with the mapping into this class
models of nonequilibrium growing networks. Finally, in Se
VII we draw our conclusions and perspectives.

II. MEASURING CORRELATIONS IN COMPLEX
NETWORKS

A. Two vertices correlations

Let us consider the class of unstructured undirected
works, in which all vertices with the same degree can
considered to be statistically equivalent. In this sense,
following results will not apply to structured networks,
which a distance ordering can be defined; for instance, w
the small-world property is absent@27,35#. A network is said
to beuncorrelatedwhen the probability that an edge depa
ing from a vertex of degreek arrives at a vertex of degreek8
is independent of the degree of the initial vertexk. Most
natural networks are not uncorrelated, in the sense that
degrees at the end points of any given edge are not inde
dent. This kind of two vertices degree correlation can
measured in undirected networks by means of the co
tional probabilityP(k8uk) that a vertex of degreek is con-
nected to a vertex of degreek8. From the point of view of
correlations, it is useful to consider the restricted subse
undirected Markovian random networks@26#, which are
completely defined by the degree distributionP(k) and the
conditional probabilityP(k8uk). The Markovian nature of
this class of networks implies that all higher order corre
tions can be expressed as a function ofP(k8uk).

The functionsP(k) and P(k8uk) are assumed to be no
malized, i.e.,

(
k

P~k!5(
k8

P~k8uk!51, ~1!
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and they are constrained by a degree detailed balance co
tion @26# stating the physical conservation of edges amo
vertices: The total number of edges pointing from vertic
with degreek to vertices with degreek8 must be equal to the
number of edges that point from verticesk8 to verticesk.
There is an intuitive way to derive the degree detailed b
ance condition@36#. Let us denote byNk the number of
vertices of degreek. Since(kNk5N, whereN is the size of
the network, we can define the degree distribution asP(k)
5Nk /N @37#. To completely define the network, we need
specify also how the different degree classes are connec
To this end, let us define the symmetric matrixEkk8 that
gives the number of edges between vertices of degreek and
k8, for kÞk8, and two times the number of self-connectio
for k5k8 ~the number of connections between vertices in
same degree class!. This matrix fulfills the identities

(
k8

Ekk85kNk , ~2!

(
k,k8

Ekk85^k&N52E, ~3!

whereE is the total number of edges in the network. This la
identity allows us to define thejoint distribution

P~k,k8!5
Ekk8
^k&N

, ~4!

where the symmetric function (22dk,k8)P(k,k8) is the prob-
ability that a randomly chosen edge connects two vertice
degreesk and k8. The conditional probabilityP(k8uk) de-
fined as the probability that an edge from ak vertex points to
a k8 vertex can be easily written as

P~k8uk!5
Ek8k

kNk
5

^k&P~k,k8!

kP~k!
. ~5!

From the symmetry ofP(k,k8) it follows immediately the
degree detailed balance condition

kP~k8uk!P~k!5k8P~kuk8!P~k8!5^k&P~k,k8!. ~6!

The joint distributionP(k,k8) conveys all the information
needed to construct a Markovian random network. In fac
is easy to see that

P~k!5
^k&
k (

k8
P~k,k8!. ~7!

This relation, together with Eq.~5!, completely defines the
network properties, i.e.,P(k) andP(k8uk), as a function of
the joint distributionP(k,k8). Notice that Eqs.~5! and ~7!
define the degree distribution and the conditional probabi
in the wholek range, except fork50. This fact does not
represent a problem, however, since vertices without ed
are usually not considered in natural complex networks.

The empirical evaluation ofP(k,k8) @or P(k8uk)] is, in
most real networks, a quite difficult task, since the availa
2-2
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data, restricted to finite sizes, usually yield results extrem
noisy and difficult to interpret. For this reason, it is mo
useful for practical purposes to analyze instead the ave
degree of the nearest neighbors~ANND! as a function of the
vertex degree, defined by@7#

k̄nn~k!5(
k8

k8P~k8uk!. ~8!

For uncorrelated networks, in whichP(k8uk) does not de-
pend onk, application of the normalization condition~1! into
Eq. ~6! yields P0(k8uk)5k8P(k8)/^k&. In this case, we ob-
tain k̄nn

0 (k)5^k2&/^k&, independent ofk. Therefore, a func-

tion k̄nn(k) with an explicit dependence onk signals the
presence of degree correlations in the network. Based on
ANND, it is possible to characterize the correlation prop
ties of the network@24#: When k̄nn(k) is an increasing func-
tion of k, the network shows assortative mixing. Examples
assortative behavior can be found in several social netw
@24#. On the other hand, whenk̄nn(k) is a decreasing func
tion of k, the network shows disassortative mixing, as fou
for example, in technological systems such as the Inte
@7#.

B. Three vertices correlations

Correlations among three vertices can be measured
means of the probabilityP(k8,k9uk) that a vertex of degreek
is simultaneously connected to two vertices with degreesk8
and k9. In the particular case of Markovian networks, th
function is related to the two vertices correlation throu
P(k8,k9uk)5P(k8uk)P(k9uk). For non-Markovian net-
works, however, the functionsP(k8,k9uk) and P(k8uk) are
in principle not related.

Information about three vertices correlations can be
tained from the clustering coefficient. The concept of clu
tering in a graph refers to the tendency to form cliques~com-
plete subgraphs@4#! in the neighborhood of any given verte
In this sense, clustering implies that if vertexi is connected
to vertexj, and at the same timej is connected tol, then, with
high probability,i is also connected tol. The probability that
two vertices with a common neighbor are also connecte
each other is called theclustering coefficientof the common
vertex@16#. Numerically, the clustering coefficientci of ver-
tex i can be computed as the ratio between the numbe
edges existing betweenki neighbors ofi, ei , and its maxi-
mum possible valueki(ki21)/2, that is,

ci5
2ei

ki~ki21!
. ~9!

On the other hand, the clustering coefficient of a vertex
degreek, c̄(k) @8#, can be formally computed as the pro
ability that it is connected to verticesk8 and k9, and that
those two vertices are, on their turn, joined by and ed
averaged over all the possible values of the degrees of
neighbor vertices. Therefore, we can writec̄(k) as a function
of the three vertices correlations as
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c̄~k!5 (
k8,k9

P~k8,k9uk!pk8,k9 , ~10!

where the functionpk8,k9 is the probability that the vertice
k8 and k9 are connected@38#. The quantityc̄(k) has been
recently used to study the level of hierarchy and modula
in real complex networks@39#.

III. HIDDEN VARIABLE MODELS OF CORRELATED
NETWORKS

Recently, Caldarelliet al. @32# and So¨derberg@33,40# ~see
also Refs.@25,41#! have proposed different models of inho
mogeneous random graphs that represents a natural gen
zation of the classical Erdo¨s-Rényi random graph mode
@42,43#. These models consider inhomogeneous graphs
which each vertex is characterized by a differenttype or
fitness. Types can be either discrete or continuous variab
and are assigned to vertices according to a certain probab
distribution. Then, pairs of vertices are independently join
by an undirected edge with a probability depending on
type of the respective end points. This construction lead
an ensemble of undirected random networks, which inhe
the simplicity of the Erdo¨s-Rényi model while allowing free-
dom for general forms of the degree distribution and cor
lation structure. References@33,40# were mainly concerned
with the component distribution and the onset of the gi
component in these kinds of models, and Ref.@32# reported
numerical simulations for different model parameters, a
analytical arguments for the form of the degree distributio

The models defined in Refs.@32,33# can be generalized a
a class of models withhidden variables. The hidden vari-
ables play the role of tags assigned to the vertices, and
completely determine the topological properties of the n
work through their probability distribution and the probab
ity to connect pairs of vertices.

We define the class of models with hidden variables
follows. Let us consider a set ofN disconnected vertices an
a general hidden variableh, which can be a natural or a rea
number. An undirected graph is generated by the follow
two rules.

~1! Each vertexi is assigned a variablehi , independently
drawn from the probability distributionr(h).

~2! For each pair of verticesi and j, with respective hid-
den variableshi andhj , an undirected edge is created wi
probability r (hi ,hj ) ~the connection probability!, where
r (h,h8)>0 is a symmetric function ofh andh8.

Given the independent assignment of hidden variab
and edges among vertices, this procedure generates c
lated random networks with neither loops nor multiple edg
which are Markovian at the hidden variable level@44# and
whose degree distribution and correlation properties are
coded in the two functionsr(h) and r (h,h8). Here we will
focus in the case in which the distributionr(h) is indepen-
dent of the network sizeN. The case in whichr(h) is al-
lowed to depend onN will be considered in Sec. VI.

In this section we will provide analytic expressions for t
correlation function and clustering coefficient of the ne
works generated with this class of models as a function
2-3
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the distribution of hidden variables and the probability
connect pairs of vertices.

A. Degree distribution

The degree distributionP(k) is defined as the probability
that any given vertex hask edges attached to it. Therefore,
order to compute it, we need to know the conditional pro
ability g(kuh) ~propagator! that a vertex with initial hidden
variableh ends up connected to otherk vertices. The degree
distribution can then be written as

P~k!5(
h

g~kuh!r~h!, ~11!

where the summation sign must be exchanged by an inte
for continuoush. The propagator, which is obviously no
malized,(kg(kuh)51, provides full information about the
dependence of the actual degreek on the hidden variableh.
In particular, we can see that the average degree of the
tices with hidden variableh, k̄(h), is given by

k̄~h!5(
k

kg~kuh!, ~12!

and the average degree can be expressed as

^k&5(
k

kP~k!5(
h

k̄~h!r~h!. ~13!

On the other hand, the probability that a vertex of act
degreek has associated a hidden variableh, g* (huk), can be
computed as the inverse of the propagator by means
Bayes’ formula@45#,

P~k!g* ~huk!5r~h!g~kuh!. ~14!

In order to get an explicit expression for the propaga
we start by noticing that it can be written as

g~kuh!5 (
k1 , . . . ,kc

g1
(h)~k1uh1!g2

(h)~k2uh2!•••gc
(h)~kcuhc!

3dk11k21•••1kc ,k , ~15!

wheregi
(h)(ki uhi) is the probability that a vertex with hidde

variableh ends up withki connections with vertices of hid
den variablehi , hc being the maximum value ofh. Since the
connections between vertices with hidden variablesh andh8
are independently drawn with probabilityr (h,h8), the prob-
ability gi

(h)(ki uhi) is simply given by a binomial distribution
i.e.,

gi
(h)~ki uhi !5S Ni

ki
D r ~h,hi !

ki@12r ~h,hi !#
Ni2ki, ~16!

where Ni5Nr(hi) is the number of vertices with hidde
variablehi . Let us define now the generating function@46#
03611
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ĝ~zuh!5(
k

zkg~kuh!. ~17!

Since the propagator is given by a convolution, Eq.~15!, we
can write its generating function as the product of the g
erating functions of the partial propagatorsgi

(h)(ki uhi),
which on their turn, being binomial distributions, yield

ĝi
(h)~zuhi !5@12~12z!r ~h,hi !#

Ni. ~18!

Inserting this expression into the definition ofĝ(zuh) and
taking logarithms on both sides we are led to the equatio

ln ĝ~zuh!5N(
h8

r~h8!ln@12~12z!r ~h,h8!#. ~19!

For general probabilitiesr(h) andr (h,h8), Eq.~19! must be
solved and inverted in order to obtain the correspond
propagator. The degree distribution is then obtained apply
Eq. ~11!. Even without solving the previous equation, how
ever, it is already possible to obtain some information on
connectivity properties of the network. From the definitio
Eq. ~17!, the first moment ofg(kuh) is given by the first
derivative ofĝ(zuh) evaluated atz51. Therefore we have

k̄~h!5N(
h8

r~h8!r ~h,h8!, ~20!

and

^k&5N(
h,h8

r~h!r ~h,h8!r~h8!, ~21!

where we have used Eq.~19! in computing these expres
sions.

At this point we must consider the possibility of two di
ferent kinds of networks: Sparse networks, with a we
defined thermodynamic limit for the average degree^k&, and
nonsparse networks, in which the average degree dive
with the network size. In the case of sparse networks,
number of edges grows linearly with the system size a
therefore, the joint distribution is a well-defined quantity, i
dependent ofN. In the opposite case, nonsparse netwo
have a number of edges growing faster than linearly, wh
causes the breakdown of the thermodynamic limit and
emergence of the phenomenon of condensation of edges~see
Sec. IV!. In order to distinguish between sparse and no
sparse networks we must consider the value of the ave
degree, given by Eq.~21!. If the densityr(h) is independent
of the size of the system, the only possibility to have a spa
network is that the connection probability scales asN21.
This scaling behavior turns out to have a strong implicat
in the form of the propagator. Definingr (h,h8)
[C(h,h8)/N ~as considered in Ref.@33#!, whereC(h,h8) is
a bounded symmetric function, independent ofN, we can
expand the right-hand side of Eq.~19! in the limit N→` to
obtain
2-4



e
o

th
th

q
e
la
e
ag
iv
n

b

de

-
-

il
il

f
io

at
d to
a

l
.
le

e

eral
In
le
n-
m

en
d

fit-
is-

e

CLASS OF CORRELATED RANDOM NETWORKS WITH . . . PHYSICAL REVIEW E68, 036112 ~2003!
ĝ~zuh!5expH ~z21!(
h8

r~h8!C~h,h8!J . ~22!

The generating function of the propagator is a pure expon
tial, which indicates that the propagator itself is a Poiss
distribution,

g~kuh!5
e2 k̄(h)k̄~h!k

k!
, ~23!

where in this casek̄(h)5(hr(h8)C(h,h8). Equation~23! is,
indeed, a strong result, since it states the universality of
propagator for sparse networks regardless of the form of
connection probability.

It is worth mentioning that the degree distribution, E
~19!, has been derived on the basis of a microcanonical
semble, in the sense that the number of vertices of each c
Nh5N r(h), is a fixed quantity. This is in contrast to th
canonical ensemble in which the fixed quantity is the aver
number of vertices of each class. However, given the equ
lence between ensembles, both approaches are equivale
the thermodynamic limit@47#.

B. Degree correlations

Degree correlations are completely characterized
means of the conditional probabilityP(k8uk), which gives
the probability that an edge emanating from a vertex of
gree k is connected to a vertex of degreek8. In order to
construct the functionP(k8uk) we consider a vertex of de
greek, which with probabilityg* (huk) has associated a hid
den variableh. Let us definep(h8uh) the conditional prob-
ability that ah vertex is connected to ah8 vertex. Then, the
conditional probabilityP(k8uk) can be written as

P~k8uk!5 (
h,h8

g~k821uh8!p~h8uh!g* ~huk!, ~24!

where the propagatorg(k821uh8) gives the probability that
the h8 vertex ends up with degreek8 ~since one connection
has already been used up for the conditional edge withh).
Using the form ofg* (huk) given by Eq.~14! we have

P~k8uk!5
1

P~k! (
h,h8

g~k821uh8!p~h8uh!r~h!g~kuh!,

~25!

valid for k,k851,2, . . . . Inorder to close Eq.~25!, we need,
finally, to provide an expression for the conditional probab
ity p(h8uh). In order to do so, we consider that the probab
ity of drawing an edge fromh to h8 is proportional to the
probability of finding anh8 vertex, times the probability o
creating the actual edge. Taking into account normalizat
we have that

p~h8uh!5
r~h8!r ~h,h8!

(
h9

r~h9!r ~h,h9!

5
Nr~h8!r ~h,h8!

k̄~h!
. ~26!
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Finally, using Eqs.~25! and~26! we can compute the ANND
as

k̄nn~k!511
1

P~k! (
h

g~kuh!r~h!k̄nn~h!, ~27!

where we have defined the ANND of ah vertex@see Eq.~8!#
as

k̄nn~h![(
h8

k̄~h8!p~h8uh!. ~28!

C. Clustering coefficient

The clustering coefficient is defined as the probability th
two vertices, adjacent to a third vertex, are also connecte
each other. In the space of hidden variables, considerh
vertex, which is connected to two other verticesh8 and h9
with probability p(h8,h9uh). On the other hand,h8 and h9
are connected with probabilityr (h8,h9). Therefore, the clus-
tering coefficient of a vertex h is given by ch
5(h8,h9p(h8,h9uh)r (h8,h9). Note that this is the natura
counterpart of Eq.~10! in the space of hidden variables
Now, since the network is Markovian at the hidden variab
level, we have thatp(h8,h9uh)5p(h8uh)p(h9uh). Thus we
have that

ch5 (
h8,h9

p~h8uh!r ~h8,h9!p~h9uh!. ~29!

The clustering coefficient of the vertices of degreek, c̄(k),
will be given by the probability that a vertexk has hidden
variableh, g* (huk), timesch , averaged over all the possibl
values ofh. Thus

c̄~k!5
1

P~k! (
h

r~h!g~kuh!ch , k52,3, . . . , ~30!

where we have used the form ofg* (huk) given by Eq.~14!.
The results derived in this section represent the gen

solution of the class of networks with hidden variables.
the rest of the paper we will show how this formalism is ab
to deal with a wide variety of models, from sparse to no
sparse networks, and from equilibrium to nonequilibriu
ones.

IV. THE INTRINSIC FITNESS MODEL

As an example of the general class of models with hidd
variables, Caldarelliet al. @32# considered the model define
by the probability distributions

r~h!5e2h for hP@0,̀ @ , ~31!

r ~h,h8!5u~h1h82z!, ~32!

whereu(x) is the Heaviside step function andz is a con-
stant. In this model, hereafter referred to as the intrinsic
ness~IF! model, vertices have assigned an exponentially d
tributed hidden variable~fitness!, and are joined by an edg
2-5



g
s

ib-
io
ou

in
a
ut

n

-
e,

o-

al
a

-
h

it

-
er
b-

ic

we

e

ion

the

-

to
d-

ient
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whenever the sum of the fitness of the end points is lar
than a given thresholdz. By means of numerical simulation
and analytical arguments, Caldarelliet al. @32# showed that
the degree distribution in this model is power-law distr
uted. This observation led to the very interesting conclus
that it is possible to generate scale-free networks with
growth not preferential attachment@34#.

A. Analytic solution

Using the general formalism developed in the preced
section, we can provide analytic expressions for the m
properties of the IF model. In order to do so, let us comp
in the first place the propagatorg(kuh). Inserting Eqs.~31!
and ~32! into Eq. ~19!, we have, substituting the summatio
by an integral,

ln ĝ~zuh!5NE
0

`

dh8e2h8ln@12~12z!u~h1h82z!#

5N ln zH eh2z if 0<h<z

1 if h.z,
~33!

from where we obtainĝ(zuh)5zNeh2z
for 0<h<z, and

ĝ(zuh)5zN for h.z. In order to invert this generating func
tion, we approximatek by a continuous variable. In this cas
the propagator takes the simple form

g~kuh!5d~k2Neh2z!uh~0,z!1d~k2N!u~h2z!,
~34!

whered(x) is the Dirac delta function and we have intr
duced the window function

ux~a,b!5H 1 for a<x<b

0 otherwise.
~35!

This approximation is expected to perform poorly for sm
values ofk, as we will see when comparing the analytic
results with computer simulations of the IF model.

Inserting the propagator, Eq.~34!, into the general expres
sion ~11!, and performing the integrals corresponding to t
Dirac d functions, we obtain the degree distribution

P~k!5Ne2z
1

k2
uk~Ne2z,N!1e2zd~k2N!. ~36!

That is, the networks generated by the IF model exhib
scale-free degree distribution, with degree exponentg52,
for degrees in the rangeNe2z<k<N, plus an accumulation
point at k5N, given by thed function, with weighte2z.
This accumulation point signals the presence of acondensa-
tion of edges in the fractione2z of the vertices of the net
work with h.z, which establish connections to all the oth
vertices @48#. This condensation, reminiscent to that o
served in models with nonlinear preferential attachment@49#,
is the result of the nonsparse nature of the network, wh
from Eq. ~21!, has average degree^k&5Ne2z(z11).
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In order to characterize the correlations of the model,
compute the ANND, given by Eq.~27!. In the continuousk
approximation, the functionk̄(h) takes the form

k̄~h!5Neh2zuh~0,z!1Nu~h2z!. ~37!

Inserting this expression into the formula for the ANND, w
obtain

k̄nn~k!511
Ne22z

P~k! F ~11z!d~k2N!

1
N2

k3 H 11z1 lnS k

ND J uk~Ne2z,N!G . ~38!

The regular part of this expression~discarding thed function
singularities, signaling again the effect of the condensat
of edges in the correlation function! takes the form

k̄nn
r ~k!511

N2e2z

k F11z1 lnS k

ND Guk~Ne2z,N!. ~39!

That is, the regular part of the ANND is proportional tok21,
times a logarithmic correction term. We are therefore in
presence of disassortative mixing. Note that, in the limitN

→`, we have thatk̄nn
r (k)→`, in agreement with the theo

retical prediction made in Ref.@29#.
Finally, to estimate the clustering coefficient, we have

compute first the conditional probability at the level of hi
den variables, given by Eq.~26!. Using Eqs.~31! and ~32!,
we obtain

p~h8uh!5e2h8u~h81h2z!@ez2huh~0,z!1u~h2z!#.
~40!

From this expression we can obtain the clustering coeffic
at the level of the hidden variables

ch5uh~0,z/2!1ez22h~2h2z11!uh~z/2,z!

1e2z~z11!u~h2z!, ~41!

and the clustering coefficient as a function of the degreek,

c̄~k!5
Ne2z

k2P~k!
uk~Ne2z,Ne2z/2!1

N3e22z

k4P~k!

3F2 lnS k

ND1z11Guk~Ne2z/2,N!1
1

P~k!

3e22z~z11!d~k2N!. ~42!

The regular part of this formula is finally

c̄r~k!5uk~Ne2z,Ne2z/2!1
N2e2z

k2

3F2 lnS k

ND1z11Guk~Ne2z/2,N!. ~43!
2-6
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That is, fork<Ne2z/2, the clustering coefficient is constan
and equal to its maximum possible value 1. The presenc
this flat region in the clustering coefficient is easy to und
stand. The degree rangek<Ne2z/2 corresponds, from Eq
~37!, to vertices with fitnessh,z/2. These vertices can onl
establish connections with vertices withh8.z/2, which are
on their turn fully interconnected among them. From here
follows a maximum clustering coefficient equal to 1 for a
vertices with h,z/2. On the other hand, forNe2z/2<k
<N, the clustering coefficient decreases ask22, modulated
again by a logarithmic correction term.

B. Numerical simulations

In order to check the validity of the proposed analytic
expressions, we have performed numerical simulations of
IF model. To simplify the comparison, we have conside
the particular casez5 ln N, in which the relevant expression
take the form

P~k!5
1

k2
uk~1,N!1

1

N
d~k2N!, ~44!

k̄nn
r ~k!5F11N

11 ln k

k Guk~1,N!, ~45!

c̄r~k!5uk~1,N1/2!1
2N

k2 F lnS k

N1/2D 1
1

2Guk~N1/2,N!.

~46!

Simulations were performed for networks of sizeN5104

~corresponding toz5 ln104'9.2103), averaging all statisti
cal distributions over 103 to 105 network realizations.

In Fig. 1 we depict the results corresponding to the deg
distribution. As we can see, the theoretical prediction~solid
line! overestimates the value of the actual degree distribu

FIG. 1. Comparison between the theoretical prediction Eq.~44!
for the degree distribution~solid line! and computer simulations
~hollow circles! of the IF model. The isolated point atk5N corre-
sponds to the analytical Diracd function, with strengthe2z

5N21.
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for small k. This is a natural effect of the continuousk ap-
proximation, which can be readily understood from the fo
of Eq. ~44!: The form P(k);k22 cannot be correct in a
discrete approximation, since it does not fulfill the norm
ization condition. The condensation of edges atk5N is
clearly visible in the presence of an isolated peak, of hei
approximately equal toN21. Figures 2 and 3, on the othe
hand, represent the ANND and the clustering coefficient a
function of the degreek, respectively. As we can see, the
between the computer simulations and the analytical exp
sions is quite good.

V. A PRACTICAL ALGORITHM TO GENERATE
CORRELATED RANDOM NETWORKS

The hidden variable class of models represents a nat
extension of the Erdo¨s-Rényi random graph model that al
lows to generate a broad class of correlated networks f
which it is possible to compute the most relevant topologi
properties. From a practical point of view, however, it is s

FIG. 2. Comparison between the theoretical prediction, Eq.~45!,
for the ANND ~solid line! and computer simulations~hollow
circles! of the IF model.

FIG. 3. Comparison between the theoretical prediction, Eq.~46!,
for the clustering coefficient as a function of degreek ~solid line!
and computer simulations~hollow circles! of the IF mode.
2-7
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missing an important point. Indeed, there are many situat
in which it is desirable to generate a network with a partic
lar correlation structure given by a certain joint distributi
P(k,k8). For a hidden variable model it is possible to com
pute this quantity as a function of the initial probabilitie
r(h) andr (h,h8). However, this relation is nontrivial, and
is generally not possible to invert it. Therefore, in order
implement an algorithm capable of generating networks w
any a priori correlation structure, one must carefully choo
the distribution of hidden variables and the connection pr
ability.

One possible way to proceed is to define hidden variab
h that have themselves the structure of the degrees of a
network ~hidden degrees!, with correlations given by a join
distribution P̃(h,h8). Those hidden degrees will then b
natural numbers that are assigned to the vertices accordin
the probability distribution@see Eq.~7!#

r~h!5
^h&
h (

h8
P̃~h,h8!, ~47!

with ^h&5(hhr(h). In order to define the connection prob
ability, we consider that, if the hidden degrees were the
tual degrees characterizing the network, then the total n
ber of edges between verticesh and h8 would be Ehh8
5^h&P̃(h,h8)N. Since the total number ofh vertices isNh
5Nr(h), it is therefore natural to define

r ~h,h8!5
^h&
N

P̃~h,h8!

r~h!r~h8!
. ~48!

On the other hand, the conditional probability that a verteh
is connected to a vertexh8 is given by@see Eq.~5!#

p~h8uh!5
^h&P̃~h,h8!

hr~h!
. ~49!

The quantitiesr(h) andp(h8uh) will be, in this case, related
through the hidden degree detailed balance condition,

hp~h8uh!r~h!5h8p~huh8!r~h8!5^h&P̃~h,h8!, ~50!

as can be checked by inserting into the definition ofp(h8uh),
Eq. ~26!, the expression of Eq.~48!. It is interesting to note
that, if two-point correlations are absent at the level of
hidden variables, then we have thatP̃0(h,h8)
5hh8r(h)r(h8)/^h&2. Thus, the connection probabilit
reads

r 0~h,h8!5
hh8

N^h&
, ~51!

recovering the model recently introduced by Chung and
@50# ~see also Ref.@51#!.

Assuming that the connection probability is bounded a
decreases for large network sizes asN21, we can compute
the propagator g(kuh) applying Eq. ~23! with k̄(h)
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5N(h8r(h8)r(h,h8)5h, where we have used Eq.~48!. There-
fore, the propagator is a simple Poisson distribution, w
average valueh, i.e.,

g~kuh!5
e2hhk

k!
. ~52!

Note that the validity of this result levers on a quite stro
assumption for the boundedness of the connection proba
ity r (h,h8). The nature of this condition is more clearly se
in the case of uncorrelated networks, withr 0(h,h8)
5hh8/N^h&. If r 0(h,h8) has to decrease asN21, then the
maximum value of the hidden degree must be smaller t
hc(N)5(N^h&)1/2 @50#, a condition that imposes restriction
on the maximum degree available for any vertex.

From the propagator, Eq.~52!, the degree distribution as
function of r(h) follows immediately from Eq.~11!:

P~k!5(
h

e2hhk

k!
r~h!. ~53!

This relation between distributions implies a relation b
tween the respective moments. Indeed, it is straightforw
to prove that

^hn&5^k~k21!•••~k2n11!&, ~54!

and, in particular, the first two moments read

^h&5^k&, ^h2&5^k2&2^k&. ~55!

It is also instructive to see how we can recover the class
Erdös-Rényi random graph model from this formalism. Th
Erdös-Rényi model corresponds to joining pairs of vertice
with a constant probabilityp. Such connection probability
results from imposing uncorrelated hidden degrees with
tribution rER(h)5d^k&,h , which yields a Poisson degree di
tribution with average degreêk&.

In order to compute the ANND function from Eq.~27!,
we observe that in this casek̄(h)5h. From here we obtain

k̄nn~k!511
1

P~k! (
h

e2hhk

k!
r~h!h̄nn~h!, ~56!

where, in this case, the average hidden degree of the ne
neighbors as a function ofh @see Eq.~28!# is

h̄nn~h!5(
h8

h8p~h8uh!5
^h&

hr~h! (
h8

h8P̃~h,h8!. ~57!

For uncorrelated networks at the hidden level, the ANN
yields

k̄nn
0 ~k!511

^h2&

^h&
5

^k2&

^k&
, ~58!

recovering the well-known result@52#. Finally, the clustering
coefficient takes, from Eq.~30!, the form
2-8
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c̄~k!5
1

P~k! (
h

e2hhk

k!
r~h!ch , ~59!

where the clustering coefficient in terms of the hidden
grees is given by

ch5 (
h8,h9

p~h8uh!r ~h8,h9!p~h9uh!

5
^h&3

h2r~h!2N
(

h8,h9

P̃~h,h8!P̃~h8,h9!P̃~h9,h!

r~h8!r~h9!
. ~60!

When correlations are missing in the hidden degree distr
tion, we obtain

c̄0~k!5
^h2&2

N^h&3
5

~^k2&2^k&!2

N^k&3
, ~61!

recovering the result previously derived by Newman@53#.
The key point to notice in the above expressions is t

the Poisson propagator, Eq.~52!, is a sharply peaked func
tion atk5h, which in the largek limit is analogous to a delta
function dh,k . Therefore, in the limitk→`, we expect to
observe the behavior

P~k!;r~k!, ~62!

k̄nn~k!;11h̄nn~k!, ~63!

c̄~k!;ck . ~64!

That is, the main topological properties referred to the ac
degreek tend to their analogs computed for the hidden d
greeh, with the sole exception of a constant of order u
added to the ANND function. We can take advantage of t
observation to propose the following algorithm to generat
correlated random network with theoretical degree distri
tion Pt(k) and joint distributionPt(k,k8).

~1! Assign to each vertexi an integer random variablek̃i ,
i 51, . . . ,N, drawn from the probability distributionPt(k).

~2! For each pair of verticesi and j, draw an undi-
rected edge with probability r ( k̃i ,k̃ j )5^k&Pt( k̃i ,k̃ j )/
NPt( k̃i)Pt( k̃ j ).

The outcome of this process will be a random netwo
whose actual degree structure, in the largek limit, will be
distributed according to the probabilityPt(k), with correla-
tions given byPt(k,k8).

In order to check the accuracy of the previous algorith
we have tested it with the joint probability distribution

Pt~k,k8!5Aqkk8, k,k851,2, . . . , ~65!

whereA is a normalization constant andq,1 is a constant
parameter. With this choice, the degree distribution takes
form

Pt~k!5
^k&Aqk

k~12qk!
, ~66!
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which, for q→1, approaches a power-law distribution wi
exponentg52. In Figs. 4–6 we present the results for t
degree distribution, the ANND function, and the clusteri
coefficient, respectively, from computer simulations of t
proposed algorithm, using the joint probability distributio
given by Eq.~65!. The plots have been obtained for networ
of size N5104 and a parameterq50.999, averaging ove
103 realizations. In the same graphs we also represent
theoretical values corresponding to a network with a cor
lation structure given byPt(k,k8), plus the transformed
functions given by Eqs.~53!, ~56!, and ~59!, respectively,
that correspond to the actual topological properties of
network. As discussed previously, and to ease the comp
son of the plots, a factor 1 has been subtracted to the AN
function obtained from computer simulations and the tra
formation, Eq.~56!. We can see that for all three quantitie
the matching between the computer simulations and the
oretical results is very good for values ofk larger than 10.
Being the discrepancy limited to such small degree valu

FIG. 4. Degree distribution obtained from numerical simulatio
of the proposed algorithm, applied to the joint distribution, Eq.~65!,
compared with the theoretical and transformed values.

FIG. 5. ANND function obtained from numerical simulations
the proposed algorithm, applied to the joint distribution, Eq.~65!,
compared with the theoretical and transformed values.
2-9
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we conclude that the proposed algorithm reproduces the
sired correlation structure with an accuracy that is more t
satisfactory for any purpose dealing with the large sc
properties of the network.

VI. NONEQUILIBRIUM CORRELATED
RANDOM NETWORKS

The class of models we have introduced so far are st
models, in which, starting from a fixed numberN of vertices,
edges are assigned with a given probability. As we have s
this construction is extremely useful because it gives us c
trol over the final network structure and, at the same tim
the possibility to calculate important structural properti
Many real networks, however, are far from being static.
stead, many of them are the result of an evolving process@3#,
in which vertices are added to the network following som
growing process~linear, exponential, etc.!, establishing con-
nections to other existing vertices with a given attachm
rule ~preferential attachment@34#, deactivation of vertices
@35#, etc!. From this growing mechanism the netwo
reaches a nonequilibrium steady state where the statis
properties are time independent.

In the following we will see how it is possible to ma
nonequilibrium growing networks into a particular kind
model with hidden variables. The key point is to realize th
after the growth of the network, all vertices that joined t
network at the same time are statistically equivalent a
thus, the hidden variable of a vertex must correspond to
injection time t @33#. We consider a time windowt
P@ t0 ,T#, with T@t0 , in which the initial time can be taken
as t051, without lack of generality. Ifl is the rate of cre-
ation of new vertices per unit time@54# the network size is
given by N5l(T21). In this case, the density of hidde
variables,r(t), is a uniform distribution defined in the rang
@1,T#, that is,r(t)51/(T21), reflecting the linear growth
of the network. The main difference between this class
nonequilibrium networks and the classes discussed in
previous sections lies in the fact that the distributionr(t) has

FIG. 6. Clustering coefficient obtained from numerical simu
tions of the proposed algorithm, applied to the joint distribution, E
~65!, compared with the theoretical and transformed values.
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now an explicit dependence on the system sizeN ~or the final
time T).

The next step is to define the connection probability
two vertices that joined the network at timest and t8,
r (t,t8). The choice of this function is equivalent to the co
nection probability at the time that the vertices were add
and its specific form will determine the final properties of t
network. For instance, an homogeneous form forr (t,t8),
that is,r (t,t8)5 f (ut2t8u), will produce, in the largeT limit,
networks in which all the vertices will have the same sta
tical properties, independent of the injection time. In the o
posite case of inhomogeneous networks, vertices introdu
at early times will have different topological properties th
those added later, giving rise toaging ~that is, an explicit
dependence on the injection timet of all the vertex properties
evaluated at timeT.t).

In order to provide a particular example, we focus on t
class of growing scale-free networks, whose most charac
istic element is the Baraba´si-Albert model@34#. From gen-
eral scaling arguments@2,3#, it is possible to see that growin
scale-free networks are described by a power-law degree
tribution P(k);k2g, while the average degree at timet of a
vertex introduced at timet8 is given by

kt8~ t !;S t

t8
D b

, 0,b,1, t.t8@1, ~67!

where the exponentsb andg fulfill the scaling relation

g511
1

b
. ~68!

In the Baraba´si-Albert model, corresponding tob51/2 and
g53, new edges are joined to old vertices following a pr
erential attachment prescription, that is, with probability p
portional to the degree of the existing vertices. We can g
eralize this prescription and consider a preferen
attachment as a function of timet, mapping the degree to th
time by means of Eq.~67!. In this case, however, when
new vertex is added at timet, it can establish connection
with nodes introduced between 1 andt and, consequently
the connection probability is to be rescaled by a fac
* tkt8(t)dt8, which is proportional tot. Therefore, the prob-
ability that a new vertex, created at timet, will be joined to
a vertex injected at timet8,t is proportional to (t/t8)b/t.

Following this reasoning we propose a connection pr
ability as a function of timest and t8 given by

r ~ t,t8!5aF1

t S t

t8
D b

u~ t2t8!1
1

t8
S t8

t D b

u~ t82t !G , ~69!

wherea is a parameter that controls the final average deg
of the network. The connection probability has been symm
trized for t and t8 to comply with the general conditions o
this function. Its symmetric property, however, does not i
ply that the average properties of the vertices are indep
dent of t. For example, computing the average degree oft

-
.

2-10
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vertex ~introduced at timet), evaluated at the final timeT,
using Eq.~20!, we obtain@55#

k̄~ t !5lE
1

T

r ~ t,t8!dt85
al

12b S 12
1

t12bD 1
al

b F S T

t D
b

21G .
~70!

For largeT, we havek̄(t);(T/t)b, recovering the behavio
obtained in growing network models, Eq.~67!, if we con-
sider the timeT as the observation time. On the other han
k̄(t) is a decreasing function oft between the limitst51,
yielding k̄max;alTb/b, andt5T, where it converges to the
constant k̄min;al/(12b). This functional form implies
that the oldest vertices~with smallert) have a larger averag
degree, which is the signature of aging in the network@34#.

From Eq.~21!, the average degree of the network can
computed as

^k&5
1

T21E1

T

k̄~ t !dt5
2al

12b S 12
1

b

Tb21

T21 D , ~71!

which, in the limit of large T and b,1, tends to ^k&
52al/(12b), from where we identify the normalizatio
parametera as a function of the average degree. Forb
51, on the other hand, the average degree diverges as^k&
;2al ln T. Note that this choice of the connection probab
ity, independent of the network size, yields forb,1 a sparse
network ~with finite average degree in the thermodynam
limit !, in opposition with the case discussed in Sec. III. T
fact is due to the explicit dependence onN of the distribution
of timesr(t), and signals the crucial difference of nonequ
librium networks with hidden variables.

In order to obtain the form of the degree distribution, w
observe that, even though the network is sparse, sincer (t,t8)
is not proportional toN21 we cannot rigorously apply Eq
~23!. However, we note that the maximum value ofr (t,t8)
takes place att5t8, namely,

r ~ t,t !5
a

t
5

^k&~12b!

2lt
. ~72!

For not very large values of̂k& and larget, the connection
probability is bounded by an small value, and therefore
can still approximate its propagator by means of Eq.~23!.
Working for simplicity with the generating function of th
degree distribution,P̂(z)5(kz

kP(k), we therefore write,
from Eq. ~22!,

P̂~z!5
1

T21E1

T

e(z21)k̄(t)dt. ~73!

Performing the change of variablest[t/T, and considering
the limit T→`, we obtain
03611
,

e

s

e

P̂~z!5expH al~2b21!~z21!

b~12b! J E
0

1

e2al(12z)t2b/bdt

5Fal

b
~12z!G1/b G„21/b,al~12z!/b…

b

3expH al~2b21!~z21!

b~12b! J , ~74!

whereG(x,y) is the incomplete Gamma function. Expandin
P̂(z) aroundz51, we obtain the leading terms

P̂~z!.12^k&~12z!1S al

b D 1/b G~21/b!

b
~12z!1/b.

~75!

Applying Tauberian theorems@56#, it follows from the sin-
gularity P̂(z);(12z)1/b in the vicinity of z51, the largek
behavior of the degree distribution, namely,P(k)
;k2121/b; that is, the model recovers a scale-free netwo
P(k);k2g, with a degree exponentg5111/b, and a cutoff
given by the maximum degreek̄max;Tb;N1/(g21), in
agreement with the results obtained for growing netwo
models@3#.

In order to check this result, we have numerically gen
ated networks of sizeN5106, with the connection probabil-
ity, Eq. ~69!. For a rate of addition of new verticesl51, the
numerical prefactor inr (t,t8) is a5^k&(12b)/2; we im-
pose^k&56. Figure 7 shows the numerical cumulated d
gree distributions obtained for valuesb51/3, 1/2, and
10/11. The plots show a clear power-law behavior in
three cases, with a degree exponent, estimated from a li
fit in the scaling region, given byg53.90, 3.07, and 2.14,

FIG. 7. Cumulative distribution for the mapping of the growin
model for different values of the parameterb (b51/3,1/2, and
10/11). The average degree is in all cases set to^k&56. The size of
the network isN5106.
2-11
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respectively. These values compare very well with the th
retical predictiong5111/b, which provides the expecte
exponents 4, 3, and 2.1.

The ANND function k̄nn(k) can also be analyzed usin
our formalism. By means of Eq.~27!, assuming a Poisso
form for the propagator, we can define the generating fu
tion Ĉ(z)5(kz

kkP(k)@ k̄nn(k)21#, which takes the form

Ĉ~z!5
lz

T21E1

T

dtek̄(t)(z21)E
1

T

dt8r ~ t,t8!k̄~ t8!, ~76!

from where it is possible to derive the largek limit of the
ANND. We are primarily interested in the caseb>1/2, that
is, the scale-free range of the model. Focusing inb.1/2, the
limit T→` of Eq. ~76! is

Ĉ~z!5
a2l2z

b~2b21!
T2b21E

0

1 1

t12b
e(z21)k̄(t)dt, ~77!

where we have used the same change of variables as be
An expansion of this equation aroundz51 leads to

Ĉ~z!.
a2l2T2b21

b2~2b21!
S 11

al~12z!

b
ln

al~12z!

b D .

~78!

Applying again Tauberian theorems, we can write that, in
largek limit,

kP~k!@ k̄nn~k!21#;T2b21
1

k2
, ~79!

from where it is straightforward to derive the largek limit of
the ANND:

k̄nn~k!;N(32g)/(g21)k2(32g). ~80!

The caseb51/2 is very similar to the previous one, exce
for the type of divergence with the system size appearing
a prefactor. In the largeT limit, we can write

Ĉ~z!;2a2l2z ln TE
0

1 1

t1/2
e22al(12z)t21/2

dt. ~81!

Using the same arguments we conclude that the right-h
side of this equation scales ask22 and, therefore, the ANND
converges to a constant value proportional to lnN.
03611
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VII. CONCLUSIONS

In this paper we have analyzed in detail a general clas
complex network models that are based on the existence
hidden space, in which vertices are located, and a connec
probability that depends on the hidden variable of each v
tex. The Markovian character at the hidden level allows
calculate analytical expressions for the most important str
tural properties, such as degree distribution, the ANN
function—quantifying two vertices correlations—and clu
tering coefficient, as a measure of three vertices correlat
Our formalism is valid for both sparse and nonsparse n
works, extending the applicability of our results to a wid
range of complex networks. At this respect, one of the ap
cations of our formalism is to provide the analytical soluti
of a recently introduced model with intrinsic fitness, whic
has recently attracted a great deal of interest as a wa
obtain scale-free networks without preferential attachme
Our solution has been successfully contrasted with numer
simulations, thus validating the accuracy of our formalism

Another interesting result of our analysis is to provide
new algorithm for generating correlated random netwo
with an a priori specified correlation structure. In this cas
we also calculate exact formulas for the relevant quantit
We have tested the algorithm using a probe joint distribut
P(k,k8), with very encouraging results.

Perhaps the most striking result concerns the applica
of the formalism to growing networks. Even though, in th
case, the network is out of equilibrium, it is possible to m
it to a specific kind of hidden variable model by the iden
fication of the injection time as the hidden variable. In ord
to check this point we have applied the method to a gen
class of growing networks, which, as a particular case, c
tains the Baraba´si-Albert model. Using our formalism, we
have recovered all the known results for this models, both
the degree distribution and the correlation structure. It is
markable that, from a static approach, our formalism is a
to derive correct results for nonequilibrium evolving ne
works. Therefore, this approach opens an appealing wa
study such systems.
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