581 research outputs found

    Remote Capacitive Sensing in Two-Dimensional Quantum-Dot Arrays

    Get PDF
    We investigate gate-induced quantum dots in silicon nanowire field-effect transistors fabricated using a foundry-compatible fully depleted silicon-on-insulator (FD-SOI) process. A series of split gates wrapped over the silicon nanowire naturally produces a 2 × n bilinear array of quantum dots along a single nanowire. We begin by studying the capacitive coupling of quantum dots within such a 2 × 2 array and then show how such couplings can be extended across two parallel silicon nanowires coupled together by shared, electrically isolated, “floating” electrodes. With one quantum dot operating as a single-electron-box sensor, the floating gate serves to enhance the charge sensitivity range, enabling it to detect charge state transitions in a separate silicon nanowire. By comparing measurements from multiple devices, we illustrate the impact of the floating gate by quantifying both the charge sensitivity decay as a function of dot-sensor separation and configuration within the dual-nanowire structure

    Magnetoelastic coupling in the cobalt adipate metal-organic framework from quasi-harmonic lattice dynamics

    Get PDF
    Magnetic interactions in hybrid materials are poorly understood compared to those in purely inorganic materials. The high flexibility of many metal-organic systems introduces a strong temperature dependence of the magnetic exchange interactions owing to changes in the crystal structure. Here, we study the cobalt adipate system, for which anisotropic thermal expansion was recently shown to be a result of magnetoelastic coupling. The combination of density functional theory with quasi-harmonic lattice dynamics is shown to be a powerful tool for describing temperature dependent thermodynamic potentials that determine magnetic interactions. It is demonstrated that the effect of phonons can be sufficient to switch the preference for ferromagnetic versus antiferromagnetic ordering

    Spin readout of a CMOS quantum dot by gate reflectometry and spin-dependent tunnelling

    Get PDF
    Silicon spin qubits are promising candidates for realising large scale quantum processors, benefitting from a magnetically quiet host material and the prospects of leveraging the mature silicon device fabrication industry. We report the measurement of an electron spin in a singly-occupied gate-defined quantum dot, fabricated using CMOS compatible processes at the 300 mm wafer scale. For readout, we employ spin-dependent tunneling combined with a low-footprint single-lead quantum dot charge sensor, measured using radiofrequency gate reflectometry. We demonstrate spin readout in two devices using this technique, obtaining valley splittings in the range 0.5-0.7 meV using excited state spectroscopy, and measure a maximum electron spin relaxation time (T1T_1) of 9±39 \pm 3 s at 1 Tesla. These long lifetimes indicate the silicon nanowire geometry and fabrication processes employed here show a great deal of promise for qubit devices, while the spin-readout method demonstrated here is well-suited to a variety of scalable architectures

    Impact of glucocorticoids on the incidence of lupus-related major organ damage: a systematic literature review and meta-regression analysis of longitudinal observational studies

    Get PDF
    OBJECTIVE: In systemic lupus erythematosus (SLE), disease activity and glucocorticoid (GC) exposure are known to contribute to irreversible organ damage. We aimed to examine the association between GC exposure and organ damage occurrence. METHODS: We conducted a literature search (PubMed (Medline), Embase and Cochrane January 1966–October 2021). We identified original longitudinal observational studies reporting GC exposure as the proportion of users and/or GC use with dose information as well as the occurrence of new major organ damage as defined in the Systemic Lupus International Collaborating Clinics/American College of Rheumatology Damage Index. Meta-regression analyses were performed. Reviews, case-reports and studies with <5 years of follow-up, <50 patients, different outcomes and special populations were excluded. RESULTS: We selected 49 articles including 16 224 patients, 14 755 (90.9%) female with a mean age and disease duration of 35.1 years and of 37.1 months. The mean follow-up time was 104.9 months. For individual damage items, the average daily GC dose was associated with the occurrence of overall cardiovascular events and with osteoporosis with fractures. A higher average cumulative dose adjusted (or not)/number of follow-up years and a higher proportion of patients on GC were associated with the occurrence of osteonecrosis. CONCLUSIONS: We confirm associations of GC use with three specific damage items. In treating patients with SLE, our aim should be to maximise the efficacy of GC and to minimise their harms

    Modified Gravity and Cosmology

    Get PDF
    In this review we present a thoroughly comprehensive survey of recent work on modified theories of gravity and their cosmological consequences. Amongst other things, we cover General Relativity, Scalar-Tensor, Einstein-Aether, and Bimetric theories, as well as TeVeS, f(R), general higher-order theories, Horava-Lifschitz gravity, Galileons, Ghost Condensates, and models of extra dimensions including Kaluza-Klein, Randall-Sundrum, DGP, and higher co-dimension braneworlds. We also review attempts to construct a Parameterised Post-Friedmannian formalism, that can be used to constrain deviations from General Relativity in cosmology, and that is suitable for comparison with data on the largest scales. These subjects have been intensively studied over the past decade, largely motivated by rapid progress in the field of observational cosmology that now allows, for the first time, precision tests of fundamental physics on the scale of the observable Universe. The purpose of this review is to provide a reference tool for researchers and students in cosmology and gravitational physics, as well as a self-contained, comprehensive and up-to-date introduction to the subject as a whole.Comment: 312 pages, 15 figure

    The Leishmania donovani Lipophosphoglycan Excludes the Vesicular Proton-ATPase from Phagosomes by Impairing the Recruitment of Synaptotagmin V

    Get PDF
    We recently showed that the exocytosis regulator Synaptotagmin (Syt) V is recruited to the nascent phagosome and remains associated throughout the maturation process. In this study, we investigated the possibility that Syt V plays a role in regulating interactions between the phagosome and the endocytic organelles. Silencing of Syt V by RNA interference revealed that Syt V contributes to phagolysosome biogenesis by regulating the acquisition of cathepsin D and the vesicular proton-ATPase. In contrast, recruitment of cathepsin B, the early endosomal marker EEA1 and the lysosomal marker LAMP1 to phagosomes was normal in the absence of Syt V. As Leishmania donovani promastigotes inhibit phagosome maturation, we investigated their potential impact on the phagosomal association of Syt V. This inhibition of phagolysosome biogenesis is mediated by the virulence glycolipid lipophosphoglycan, a polymer of the repeating GalÎČ1,4Manα1-PO4 units attached to the promastigote surface via an unusual glycosylphosphatidylinositol anchor. Our results showed that insertion of lipophosphoglycan into ganglioside GM1-containing microdomains excluded or caused dissociation of Syt V from phagosome membranes. As a consequence, L. donovani promatigotes established infection in a phagosome from which the vesicular proton-ATPase was excluded and which failed to acidify. Collectively, these results reveal a novel function for Syt V in phagolysosome biogenesis and provide novel insight into the mechanism of vesicular proton-ATPase recruitment to maturing phagosomes. We also provide novel findings into the mechanism of Leishmania pathogenesis, whereby targeting of Syt V is part of the strategy used by L. donovani promastigotes to prevent phagosome acidification

    First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data

    Get PDF
    Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a fully coherent search, based on matched filtering, which uses the position and rotational parameters obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signalto- noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch between the assumed and the true signal parameters. For this reason, narrow-band analysis methods have been developed, allowing a fully coherent search for gravitational waves from known pulsars over a fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of 11 pulsars using data from Advanced LIGO’s first observing run. Although we have found several initial outliers, further studies show no significant evidence for the presence of a gravitational wave signal. Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of the 11 targets over the bands searched; in the case of J1813-1749 the spin-down limit has been beaten for the first time. For an additional 3 targets, the median upper limit across the search bands is below the spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried out so far

    Uncovering the Dynamics of Cardiac Systems Using Stochastic Pacing and Frequency Domain Analyses

    Get PDF
    Alternans of cardiac action potential duration (APD) is a well-known arrhythmogenic mechanism which results from dynamical instabilities. The propensity to alternans is classically investigated by examining APD restitution and by deriving APD restitution slopes as predictive markers. However, experiments have shown that such markers are not always accurate for the prediction of alternans. Using a mathematical ventricular cell model known to exhibit unstable dynamics of both membrane potential and Ca2+ cycling, we demonstrate that an accurate marker can be obtained by pacing at cycle lengths (CLs) varying randomly around a basic CL (BCL) and by evaluating the transfer function between the time series of CLs and APDs using an autoregressive-moving-average (ARMA) model. The first pole of this transfer function corresponds to the eigenvalue (λalt) of the dominant eigenmode of the cardiac system, which predicts that alternans occurs when λalt≀−1. For different BCLs, control values of λalt were obtained using eigenmode analysis and compared to the first pole of the transfer function estimated using ARMA model fitting in simulations of random pacing protocols. In all versions of the cell model, this pole provided an accurate estimation of λalt. Furthermore, during slow ramp decreases of BCL or simulated drug application, this approach predicted the onset of alternans by extrapolating the time course of the estimated λalt. In conclusion, stochastic pacing and ARMA model identification represents a novel approach to predict alternans without making any assumptions about its ionic mechanisms. It should therefore be applicable experimentally for any type of myocardial cell

    Bi-galileon theory II: phenomenology

    Get PDF
    We continue to introduce bi-galileon theory, the generalisation of the single galileon model introduced by Nicolis et al. The theory contains two coupled scalar fields and is described by a Lagrangian that is invariant under Galilean shifts in those fields. This paper is the second of two, and focuses on the phenomenology of the theory. We are particularly interesting in models that admit solutions that are asymptotically self accelerating or asymptotically self tuning. In contrast to the single galileon theories, we find examples of self accelerating models that are simultaneously free from ghosts, tachyons and tadpoles, able to pass solar system constraints through Vainshtein screening, and do not suffer from problems with superluminality, Cerenkov emission or strong coupling. We also find self tuning models and discuss how Weinberg's no go theorem is evaded by breaking Poincar\'e invariance in the scalar sector. Whereas the galileon description is valid all the way down to solar system scales for the self-accelerating models, unfortunately the same cannot be said for self tuning models owing to the scalars backreacting strongly on to the geometry
    • 

    corecore