93 research outputs found
An Experimental Exploration of the QCD Phase Diagram: The Search for the Critical Point and the Onset of De-confinement
The QCD phase diagram lies at the heart of what the RHIC Physics Program is
all about. While RHIC has been operating very successfully at or close to its
maximum energy for almost a decade, it has become clear that this collider can
also be operated at lower energies down to 5 GeV without extensive upgrades. An
exploration of the full region of beam energies available at the RHIC facility
is imperative. The STAR detector, due to its large uniform acceptance and
excellent particle identification capabilities, is uniquely positioned to carry
out this program in depth and detail. The first exploratory beam energy scan
(BES) run at RHIC took place in 2010 (Run 10), since several STAR upgrades,
most importantly a full barrel Time of Flight detector, are now completed which
add new capabilities important for the interesting physics at BES energies. In
this document we discuss current proposed measurements, with estimations of the
accuracy of the measurements given an assumed event count at each beam energy.Comment: 59 pages, 78 figure
Synaptic Transmission from Horizontal Cells to Cones Is Impaired by Loss of Connexin Hemichannels
In the vertebrate retina, horizontal cells generate the inhibitory surround of bipolar cells, an essential step in contrast enhancement. For the last decades, the mechanism involved in this inhibitory synaptic pathway has been a major controversy in retinal research. One hypothesis suggests that connexin hemichannels mediate this negative feedback signal; another suggests that feedback is mediated by protons. Mutant zebrafish were generated that lack connexin 55.5 hemichannels in horizontal cells. Whole cell voltage clamp recordings were made from isolated horizontal cells and cones in flat mount retinas. Light-induced feedback from horizontal cells to cones was reduced in mutants. A reduction of feedback was also found when horizontal cells were pharmacologically hyperpolarized but was absent when they were pharmacologically depolarized. Hemichannel currents in isolated horizontal cells showed a similar behavior. The hyperpolarization-induced hemichannel current was strongly reduced in the mutants while the depolarization-induced hemichannel current was not. Intracellular recordings were made from horizontal cells. Consistent with impaired feedback in the mutant, spectral opponent responses in horizontal cells were diminished in these animals. A behavioral assay revealed a lower contrast-sensitivity, illustrating the role of the horizontal cell to cone feedback pathway in contrast enhancement. Model simulations showed that the observed modifications of feedback can be accounted for by an ephaptic mechanism. A model for feedback, in which the number of connexin hemichannels is reduced to about 40%, fully predicts the specific asymmetric modification of feedback. To our knowledge, this is the first successful genetic interference in the feedback pathway from horizontal cells to cones. It provides direct evidence for an unconventional role of connexin hemichannels in the inhibitory synapse between horizontal cells and cones. This is an important step in resolving a long-standing debate about the unusual form of (ephaptic) synaptic transmission between horizontal cells and cones in the vertebrate retina
A Positive Feedback Synapse from Retinal Horizontal Cells to Cone Photoreceptors
Cone photoreceptors and horizontal cells (HCs) have a reciprocal synapse that
underlies lateral inhibition and establishes the antagonistic center-surround
organization of the visual system. Cones transmit to HCs through an excitatory
synapse and HCs feed back to cones through an inhibitory synapse. Here we report
that HCs also transmit to cone terminals a positive feedback signal that
elevates intracellular Ca2+ and accelerates neurotransmitter
release. Positive and negative feedback are both initiated by AMPA receptors on
HCs, but positive feedback appears to be mediated by a change in HC
Ca2+, whereas negative feedback is mediated by a change in
HC membrane potential. Local uncaging of AMPA receptor agonists suggests that
positive feedback is spatially constrained to active HC-cone synapses, whereas
the negative feedback signal spreads through HCs to affect release from
surrounding cones. By locally offsetting the effects of negative feedback,
positive feedback may amplify photoreceptor synaptic release without sacrificing
HC-mediated contrast enhancement
Systematic generation of in vivo G protein-coupled receptor mutants in the rat
G-protein-coupled receptors (GPCRs) constitute a large family of cell surface receptors that are involved in a wide range of physiological and pathological processes, and are targets for many therapeutic interventions. However, genetic models in the rat, one of the most widely used model organisms in physiological and pharmacological research, are largely lacking. Here, we applied N-ethyl-N-nitrosourea (ENU)-driven target-selected mutagenesis to generate an in vivo GPCR mutant collection in the rat. A pre-selected panel of 250 human GPCR homologs was screened for mutations in 813 rats, resulting in the identification of 131 non-synonymous mutations. From these, seven novel potential rat gene knockouts were established as well as 45 lines carrying missense mutations in various genes associated with or involved in human diseases. We provide extensive in silico modeling results of the missense mutations and show experimental data, suggesting loss-of-function phenotypes for several models, including Mc4r and Lpar1. Taken together, the approach used resulted not only in a set of novel gene knockouts, but also in allelic series of more subtle amino acid variants, similar as commonly observed in human disease. The mutants presented here may greatly benefit studies to understand specific GPCR function and support the development of novel therapeutic strategies
Gaia Data Release 1: Open cluster astrometry: performance, limitations, and future prospects
Context. The first Gaia Data Release contains the Tycho-Gaia Astrometric Solution (TGAS). This is a subset of about 2 million stars for which, besides the position and photometry, the proper motion and parallax are calculated using Hipparcos and Tycho-2 positions in 1991.25 as prior information.Aims. We investigate the scientific potential and limitations of the TGAS component by means of the astrometric data for open clusters.Methods. Mean cluster parallax and proper motion values are derived taking into account the error correlations within the astrometric solutions for individual stars, an estimate of the internal velocity dispersion in the cluster, and, where relevant, the effects of the depth of the cluster along the line of sight. Internal consistency of the TGAS data is assessed.Results. Values given for standard uncertainties are still inaccurate and may lead to unrealistic unit-weight standard deviations of least squares solutions for cluster parameters. Reconstructed mean cluster parallax and proper motion values are generally in very good agreement with earlier HIPPARCOS-based determination, although the Gaia mean parallax for the Pleiades is a significant exception. We have no current explanation for that discrepancy. Most clusters are observed to extend to nearly 15 pc from the cluster centre, and it will be up to future Gaia releases to establish whether those potential cluster-member stars are still dynamically bound to the clusters.Conclusions. The Gaia DR1 provides the means to examine open clusters far beyond their more easily visible cores, and can provide membership assessments based on proper motions and parallaxes. A combined HR diagram shows the same features as observed before using the HIPPARCOS data, with clearly increased luminosities for older A and F dwarfs
FINE-TUNING OF BULKY-PHOSPHITE MODIFIED RHODIUM CATALYSTS BY BINDING THEM TO COPOLYMERS
The influence of the chain loading on the activity and complex formation of a copolymer-bound rhodium hydroformylation catalyst in comparison with its low molecular weight analogue has been studied in detail. As polymer support a perfectly random copolymer of styrene and 2,2'-bis(4,6-di-t-butylphenyl)-p-styryl phosphite (2) was used. The chain loading, alpha, of this copolymer with phosphite ligands has a large influence on the complex formation of the catalyst. With high chain loadings moderately active bis-phosphite catalysts are formed. Low chain loadings give active, easily accessible, mono-phosphite complexes. Study of the copolymer-bound catalysts yielded mechanistic information about the catalytic species involved in the hydroformylation of styrene and cyclooctene. The active species in the hydroformylation of sterically hindered alkenes is a mono-phosphite rhodium complex. The activity of the catalyst can be enhanced if excess phosphite is used. This effect was ascribed to faster reaction with hydrogen of bis-phosphite rhodium intermediate(s). The activity of the copolymer-bound catalyst towards the hydroformylation of cyclooctene is found to be as high as the activity of its low molecular weight analogue. The hydroformylation of styrene proceeds more slowly
Seroprevalence of Mycobacterium avium SSP paratuberculosis infection in Ethiopian dairy farms
This study aimed to determine the seroprevalence of antibodies for Mycobacterium avium subspecies paratuberculosis (MAP) in dairy cattle in the Jimma zone of Ethiopia in 2011. A random sample of 29 herds was selected, and all mature cattle within these herds had a blood sample taken. Serum was tested in duplicate, as recommended by the manufacturer, for evidence of infection with MAP, using an antibody ELISA. A questionnaire was used to collect information from the owner or farm manager on cow and herd demographics and management to allow for comparisons of our results with other studies. Herd sizes ranged from 3 to 17 cows per herd, with 95% of cows being Holstein crosses, ranging in age from 3 to 15 years old (mean of 5.5 years). Milk production ranged from 1 to 20 kg/cow/day, with an average of 8.4 kg/cow/day. All farms used tie-stalls for their cows, 59% of farms allowed newborn calves to suckle their dams on the day of calving, and 54% of farms purchased cattle in the last 5 years. Of the 242 cattle tested, 5 cows (2.1% with a 95% confidence interval – 95%CI - of 0.2% to 3.9%) were seropositive. Due to the low test sensitivity, the true animal prevalence estimate was calculated to be 2.6% (95%CI: 0.6% to 4.6%). At least one animal tested positive in 3 of the 29 herds (10.3% - 95%CI: 0% to 21.7%). Adjusting for the low test sensitivity, the true herd prevalence estimate was calculated to be 32.6 % (95%CI: 15.2% to 50.0%). This study provides the first immunological evidence of the prevalence of exposure of Ethiopian cattle to MAP, and at levels similar to other countries with small-scale dairy production. Corroboration of these prevalences with pathological, microbiological, and/or immunological MAP research in Ethiopia iswarranted.Keywords: Dairy Cattle, Johne’s, Paratuberculosis, Seroprevalence, Western Ethiopi
- …
