291 research outputs found

    Measurement of the cross section for isolated-photon plus jet production in pp collisions at √s=13 TeV using the ATLAS detector

    Get PDF
    The dynamics of isolated-photon production in association with a jet in proton–proton collisions at a centre-of-mass energy of 13 TeV are studied with the ATLAS detector at the LHC using a dataset with an integrated luminosity of 3.2 fb−1. Photons are required to have transverse energies above 125 GeV. Jets are identified using the anti- algorithm with radius parameter and required to have transverse momenta above 100 GeV. Measurements of isolated-photon plus jet cross sections are presented as functions of the leading-photon transverse energy, the leading-jet transverse momentum, the azimuthal angular separation between the photon and the jet, the photon–jet invariant mass and the scattering angle in the photon–jet centre-of-mass system. Tree-level plus parton-shower predictions from Sherpa and Pythia as well as next-to-leading-order QCD predictions from Jetphox and Sherpa are compared to the measurements

    A search for resonances decaying into a Higgs boson and a new particle X in the XH → qqbb final state with the ATLAS detector

    Get PDF
    A search for heavy resonances decaying into a Higgs boson (H) and a new particle (X) is reported, utilizing 36.1 fb−1 of proton–proton collision data at collected during 2015 and 2016 with the ATLAS detector at the CERN Large Hadron Collider. The particle X is assumed to decay to a pair of light quarks, and the fully hadronic final state is analysed. The search considers the regime of high XH resonance masses, where the X and H bosons are both highly Lorentz-boosted and are each reconstructed using a single jet with large radius parameter. A two-dimensional phase space of XH mass versus X mass is scanned for evidence of a signal, over a range of XH resonance mass values between 1 TeV and 4 TeV, and for X particles with masses from 50 GeV to 1000 GeV. All search results are consistent with the expectations for the background due to Standard Model processes, and 95% CL upper limits are set, as a function of XH and X masses, on the production cross-section of the resonance

    Immune-induced epithelial to mesenchymal transition in vivo generates breast cancer stem cells

    Get PDF
    The breast cancer stem cell (BCSC) hypotheses suggest that breast cancer is derived from a single tumor-initiating cell with stem-like properties, but the source of these cells is unclear. We previously observed that induction of an immune response against an epithelial breast cancer led in vivo to the T-cell-dependent outgrowth of a tumor, the cells of which had undergone epithelial to mesenchymal transition (EMT). The resulting mesenchymal tumor cells had a CD24(-/lo)CD44(+) phenotype, consistent with BCSCs. In the present study, we found that EMT was induced by CD8 T cells and the resulting tumors had characteristics of BCSCs, including potent tumorigenicity, ability to reestablish an epithelial tumor, and enhanced resistance to drugs and radiation. In contrast to the hierarchal cancer stem cell hypothesis, which suggests that breast cancer arises from the transformation of a resident tissue stem cell, our results show that EMT can produce the BCSC phenotype. These findings have several important implications related to disease progression and relapse

    Search for invisible Higgs boson decays in vector boson fusion at √s = 13 TeV with the ATLAS detector

    Get PDF
    We report a search for Higgs bosons that are produced via vector boson fusion and subsequently decay into invisible particles. The experimental signature is an energetic jet pair with invariant mass of O(1) TeV and O(100) GeV missing transverse momentum. The analysis uses 36.1 fb−1 of pp collision data at √s=13 TeV recorded by the ATLAS detector at the LHC. In the signal region the 2252 observed events are consistent with the background estimation. Assuming a 125 GeV scalar particle with Standard Model cross sections, the upper limit on the branching fraction of the Higgs boson decay into invisible particles is 0.37 at 95% confidence level where 0.28 was expected. This limit is interpreted in Higgs portal models to set bounds on the wimp–nucleon scattering cross section. We also consider invisible decays of additional scalar bosons with masses up to 3 TeV for which the upper limits on the cross section times branching fraction are in the range of 0.3–1.7 pb

    Observation of photon-induced W<sup>+</sup>W<sup>−</sup> production in pp collisions at √s=13 TeV using the ATLAS detector

    Get PDF
    This letter reports the observation of photon-induced production of W-boson pairs, γγ→ WW. The analysis uses 139 fb-1 of LHC proton-proton collision data taken at √s=13 TeV recorded by the ATLAS experiment during the years 2015-2018. The measurement is performed selecting one electron and one muon, corresponding to the decay of the diboson system as WW→e±νμ∓ν final state. The background-only hypothesis is rejected with a significance of well above 5 standard deviations consistent with the expectation from Monte Carlo simulation. A cross section for the γγ→ WW process of 3.13±0.31(stat.)±0.28(syst.) fb is measured in a fiducial volume close to the acceptance of the detector, by requiring an electron and a muon of opposite signs with large dilepton transverse momentum and exactly zero additional charged particles. This is found to be in agreement with the Standard Model prediction

    Comparison between simulated and observed LHC beam backgrounds in the ATLAS experiment at Ebeam =4 TeV

    Get PDF
    Results of dedicated Monte Carlo simulations of beam-induced background (BIB) in the ATLAS experiment at the Large Hadron Collider (LHC) are presented and compared with data recorded in 2012. During normal physics operation this background arises mainly from scattering of the 4 TeV protons on residual gas in the beam pipe. Methods of reconstructing the BIB signals in the ATLAS detector, developed and implemented in the simulation chain based on the \textscFluka Monte Carlo simulation package, are described. The interaction rates are determined from the residual gas pressure distribution in the LHC ring in order to set an absolute scale on the predicted rates of BIB so that they can be compared quantitatively with data. Through these comparisons the origins of the BIB leading to different observables in the ATLAS detectors are analysed. The level of agreement between simulation results and BIB measurements by ATLAS in 2012 demonstrates that a good understanding of the origin of BIB has been reached

    Measurement of the total cross section and ρ -parameter from elastic scattering in pp collisions at √s=13 TeV with the ATLAS detector

    Get PDF
    In a special run of the LHC with β⋆=2.5 km, proton–proton elastic-scattering events were recorded at s√=13 TeV with an integrated luminosity of 340 μb−1 using the ALFA subdetector of ATLAS in 2016. The elastic cross section was measured differentially in the Mandelstam t variable in the range from −t=2.5⋅10−4 GeV2 to −t=0.46 GeV2 using 6.9 million elastic-scattering candidates. This paper presents measurements of the total cross section σtot, parameters of the nuclear slope, and the ρ-parameter defined as the ratio of the real part to the imaginary part of the elastic-scattering amplitude in the limit t→0. These parameters are determined from a fit to the differential elastic cross section using the optical theorem and different parameterizations of the t-dependence. The results for σtot and ρ are σtot(pp→X)=104.7±1.1 mb ,ρ=0.098±0.011. The uncertainty in σtot is dominated by the luminosity measurement, and in ρ by imperfect knowledge of the detector alignment and by modelling of the nuclear amplitude.publishedVersio

    Searches for lepton-flavour-violating decays of the Higgs boson in s=13\sqrt{s}=13 TeV pp\mathit{pp} collisions with the ATLAS detector

    Get PDF
    This Letter presents direct searches for lepton flavour violation in Higgs boson decays, H → eτ and H → μτ , performed with the ATLAS detector at the LHC. The searches are based on a data sample of proton–proton collisions at a centre-of-mass energy √s = 13 TeV, corresponding to an integrated luminosity of 36.1 fb−1. No significant excess is observed above the expected background from Standard Model processes. The observed (median expected) 95% confidence-level upper limits on the leptonflavour-violating branching ratios are 0.47% (0.34+0.13−0.10%) and 0.28% (0.37+0.14−0.10%) for H → eτ and H → μτ , respectively.publishedVersio
    corecore