310 research outputs found

    Multicenter validation of PIM3 and PIM2 in Brazilian pediatric intensive care units

    Get PDF
    ObjectiveTo validate the PIM3 score in Brazilian PICUs and compare its performance with the PIM2.MethodsObservational, retrospective, multicenter study, including patients younger than 16 years old admitted consecutively from October 2013 to September 2019. We assessed the Standardized Mortality Ratio (SMR), the discrimination capability (using the area under the receiver operating characteristic curve – AUROC), and the calibration. To assess the calibration, we used the calibration belt, which is a curve that represents the correlation of predicted and observed values and their 95% Confidence Interval (CI) through all the risk ranges. We also analyzed the performance of both scores in three periods: 2013–2015, 2015–2017, and 2017–2019.Results41,541 patients from 22 PICUs were included. Most patients aged less than 24 months (58.4%) and were admitted for medical conditions (88.6%) (respiratory conditions = 53.8%). Invasive mechanical ventilation was used in 5.8%. The median PICU length of stay was three days (IQR, 2–5), and the observed mortality was 1.8% (763 deaths). The predicted mortality by PIM3 was 1.8% (SMR 1.00; 95% CI 0.94–1.08) and by PIM2 was 2.1% (SMR 0.90; 95% CI 0.83–0.96). Both scores had good discrimination (PIM3 AUROC = 0.88 and PIM2 AUROC = 0.89). In calibration analysis, both scores overestimated mortality in the 0%–3% risk range, PIM3 tended to underestimate mortality in medium-risk patients (9%–46% risk range), and PIM2 also overestimated mortality in high-risk patients (70%–100% mortality risk).ConclusionsBoth scores had a good discrimination ability but poor calibration in different ranges, which deteriorated over time in the population studied

    Diretriz Brasileira sobre a SaĂșde Cardiovascular no ClimatĂ©rio e na Menopausa – 2024

    Get PDF
    Women, who represent approximately half of the global population according to estimates as of January 2024, may experience signs and symptoms of menopause for at least one-third of their lives, during which they have a higher risk of cardiovascular morbidity and mortality. The effects of menopausal hormone therapy (MHT) on the progression of atherosclerosis and cardiovascular disease (CVD) events vary depending on the age at which MHT is initiated and the time since menopause until its initiation. Beneficial effects on CVD outcomes and all-cause mortality have been observed when MHT was initiated before the age of 60 or within 10 years after menopause. The decision regarding the initiation, dose, regimen, and duration of MHT should be made individually after discussing the benefits and risks with each patient. For primary prevention of postmenopausal chronic conditions, the combined use of estrogen and progestogen is not recommended in asymptomatic women, nor is the use of estrogen alone in hysterectomized women. Hormone-dependent neoplasms contraindicate MHT. For the treatment of genitourinary syndrome of menopause, vaginal estrogen therapy may be used in patients with known cardiovascular risk factors or established CVD. For women with contraindications to MHT or who refuse it, non-hormonal therapies with proven efficacy (antidepressants, gabapentin, and fezolinetant) may improve vasomotor symptoms. Compounded hormonal implants, or "bioidentical" and "compounded" hormones, and "hormone modulation" are not recommended due to lack of scientific evidence of their effectiveness and safety.Mujeres, que representan aproximadamente la mitad de la poblaciĂłn mundial segĂșn estimaciones de enero de 2024, pueden experimentar signos y sĂ­ntomas de la menopausia durante al menos un tercio de sus vidas, durante los cuales tienen un mayor riesgo de morbilidad y mortalidad cardiovascular. Los efectos de la terapia hormonal de la menopausia (THM) en la progresiĂłn de la aterosclerosis y los eventos de enfermedad cardiovascular (ECV) varĂ­an segĂșn la edad en que se inicia la THM y el tiempo transcurrido desde la menopausia hasta su inicio. Se han observado efectos beneficiosos en los resultados de ECV y la mortalidad por todas las causas cuando la THM se iniciĂł antes de los 60 años o dentro de los 10 años posteriores a la menopausia. La decisiĂłn sobre la iniciaciĂłn, dosis, rĂ©gimen y duraciĂłn de la THM debe tomarse individualmente despuĂ©s de discutir los beneficios y riesgos con cada paciente. Para la prevenciĂłn primaria de condiciones crĂłnicas en la posmenopausia, no se recomienda el uso combinado de estrĂłgeno y progestĂĄgeno en mujeres asintomĂĄticas, ni el uso de estrĂłgeno solo en mujeres histerectomizadas. Las neoplasias dependientes de hormonas contraindican la THM. Para el tratamiento del sĂ­ndrome genitourinario de la menopausia, se puede usar terapia estrogĂ©nica vaginal en pacientes con factores de riesgo cardiovascular conocidos o ECV establecida. Para mujeres con contraindicaciones a la THM o que la rechazan, las terapias no hormonales con eficacia demostrada (antidepresivos, gabapentina y fezolinetant) pueden mejorar los sĂ­ntomas vasomotores. Los implantes hormonales compuestos, o hormonas "bioidĂ©nticas" y "compuestas", y la "modulaciĂłn hormonal" no se recomiendan debido a la falta de evidencia cientĂ­fica sobre su efectividad y seguridad.As mulheres, que representam cerca de metade da população mundial segundo estimativas de janeiro de 2024, podem sofrer com sinais e sintomas da menopausa durante pelo menos um terço de suas vidas, quando apresentam maiores risco e morbimortalidade cardiovasculares. Os efeitos da terapia hormonal da menopausa (THM) na progressĂŁo de eventos de aterosclerose e doença cardiovascular (DCV) variam de acordo com a idade em que a THM Ă© iniciada e o tempo desde a menopausa atĂ© esse inĂ­cio. Efeitos benĂ©ficos nos resultados de DCV e na mortalidade por todas as causas ocorreram quando a THM foi iniciada antes dos 60 anos de idade ou nos 10 anos que se seguiram Ă  menopausa. A decisĂŁo sobre o inĂ­cio, a dose, o regime e a duração da THM deve ser tomada individualmente apĂłs discussĂŁo sobre benefĂ­cios e riscos com cada paciente. Para a prevenção primĂĄria de condiçÔes crĂŽnicas na pĂłs-menopausa, nĂŁo se recomendam o uso combinado de estrogĂȘnio e progestagĂȘnio em mulheres assintomĂĄticas nem o uso de estrogĂȘnio sozinho em mulheres histerectomizadas. Neoplasias hormĂŽnio-dependentes contraindicam a THM. Para tratamento da sĂ­ndrome geniturinĂĄria da menopausa, pode-se utilizar terapia estrogĂȘnica por via vaginal em pacientes com fatores de risco cardiovascular conhecidos ou DCV estabelecida. Para mulheres com contraindicação Ă  THM ou que a recusam, terapias nĂŁo hormonais com eficĂĄcia comprovada (antidepressivos, gabapentina e fezolinetante) podem melhorar os sintomas vasomotores. Os implantes hormonais manipulados, ou hormĂŽnios “bioidĂȘnticos” “manipulados”, e a ‘modulação hormonal’ nĂŁo sĂŁo recomendados pela falta de evidĂȘncia cientĂ­fica de sua eficĂĄcia e segurança

    Les droits disciplinaires des fonctions publiques : « unification », « harmonisation » ou « distanciation ». A propos de la loi du 26 avril 2016 relative à la déontologie et aux droits et obligations des fonctionnaires

    Get PDF
    The production of tt‟ , W+bb‟ and W+cc‟ is studied in the forward region of proton–proton collisions collected at a centre-of-mass energy of 8 TeV by the LHCb experiment, corresponding to an integrated luminosity of 1.98±0.02 fb−1 . The W bosons are reconstructed in the decays W→ℓΜ , where ℓ denotes muon or electron, while the b and c quarks are reconstructed as jets. All measured cross-sections are in agreement with next-to-leading-order Standard Model predictions.The production of tt‟t\overline{t}, W+bb‟W+b\overline{b} and W+cc‟W+c\overline{c} is studied in the forward region of proton-proton collisions collected at a centre-of-mass energy of 8 TeV by the LHCb experiment, corresponding to an integrated luminosity of 1.98 ±\pm 0.02 \mbox{fb}^{-1}. The WW bosons are reconstructed in the decays W→ℓΜW\rightarrow\ell\nu, where ℓ\ell denotes muon or electron, while the bb and cc quarks are reconstructed as jets. All measured cross-sections are in agreement with next-to-leading-order Standard Model predictions

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    The Eleventh and Twelfth Data Releases of the Sloan Digital Sky Survey: Final Data from SDSS-III

    Get PDF
    The third generation of the Sloan Digital Sky Survey (SDSS-III) took data from 2008 to 2014 using the original SDSS wide-field imager, the original and an upgraded multi-object fiber-fed optical spectrograph, a new near-infrared high-resolution spectrograph, and a novel optical interferometer. All of the data from SDSS-III are now made public. In particular, this paper describes Data Release 11 (DR11) including all data acquired through 2013 July, and Data Release 12 (DR12) adding data acquired through 2014 July (including all data included in previous data releases), marking the end of SDSS-III observing. Relative to our previous public release (DR10), DR12 adds one million new spectra of galaxies and quasars from the Baryon Oscillation Spectroscopic Survey (BOSS) over an additional 3000 deg2 of sky, more than triples the number of H-band spectra of stars as part of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE), and includes repeated accurate radial velocity measurements of 5500 stars from the Multi-object APO Radial Velocity Exoplanet Large-area Survey (MARVELS). The APOGEE outputs now include the measured abundances of 15 different elements for each star. In total, SDSS-III added 5200 deg2 of ugriz imaging; 155,520 spectra of 138,099 stars as part of the Sloan Exploration of Galactic Understanding and Evolution 2 (SEGUE-2) survey; 2,497,484 BOSS spectra of 1,372,737 galaxies, 294,512 quasars, and 247,216 stars over 9376 deg2; 618,080 APOGEE spectra of 156,593 stars; and 197,040 MARVELS spectra of 5513 stars. Since its first light in 1998, SDSS has imaged over 1/3 of the Celestial sphere in five bands and obtained over five million astronomical spectra. \ua9 2015. The American Astronomical Society

    Measurement of forward W→eÎœW\to e\nu production in pppp collisions at s=8 \sqrt{s}=8\,TeV

    Get PDF
    A measurement of the cross-section for W→eÎœW \to e\nu production in pppp collisions is presented using data corresponding to an integrated luminosity of 2 2\,fb−1^{-1} collected by the LHCb experiment at a centre-of-mass energy of s=8 \sqrt{s}=8\,TeV. The electrons are required to have more than 20 20\,GeV of transverse momentum and to lie between 2.00 and 4.25 in pseudorapidity. The inclusive WW production cross-sections, where the WW decays to eÎœe\nu, are measured to be \begin{align*} \begin{split} \sigma_{W^{+} \to e^{+}\nu_{e}}&=1124.4\pm 2.1\pm 21.5\pm 11.2\pm 13.0\,\mathrm{pb},\\ \sigma_{W^{-} \to e^{-}\bar{\nu}_{e}}&=\,\,\,809.0\pm 1.9\pm 18.1\pm\,\,\,7.0\pm \phantom{0}9.4\,\mathrm{pb}, \end{split} \end{align*} where the first uncertainties are statistical, the second are systematic, the third are due to the knowledge of the LHC beam energy and the fourth are due to the luminosity determination. Differential cross-sections as a function of the electron pseudorapidity are measured. The W+/W−W^{+}/W^{-} cross-section ratio and production charge asymmetry are also reported. Results are compared with theoretical predictions at next-to-next-to-leading order in perturbative quantum chromodynamics. Finally, in a precise test of lepton universality, the ratio of WW boson branching fractions is determined to be \begin{align*} \begin{split} \mathcal{B}(W \to e\nu)/\mathcal{B}(W \to \mu\nu)=1.020\pm 0.002\pm 0.019, \end{split} \end{align*} where the first uncertainty is statistical and the second is systematic.A measurement of the cross-section for W→eÎœW \to e\nu production in pppp collisions is presented using data corresponding to an integrated luminosity of 2 2\,fb−1^{-1} collected by the LHCb experiment at a centre-of-mass energy of s=8 \sqrt{s}=8\,TeV. The electrons are required to have more than 20 20\,GeV of transverse momentum and to lie between 2.00 and 4.25 in pseudorapidity. The inclusive WW production cross-sections, where the WW decays to eÎœe\nu, are measured to be \begin{equation*} \sigma_{W^{+} \to e^{+}\nu_{e}}=1124.4\pm 2.1\pm 21.5\pm 11.2\pm 13.0\,\mathrm{pb}, \end{equation*} \begin{equation*} \sigma_{W^{-} \to e^{-}\bar{\nu}_{e}}=\,\,\,809.0\pm 1.9\pm 18.1\pm\,\,\,7.0\pm \phantom{0}9.4\,\mathrm{pb}, \end{equation*} where the first uncertainties are statistical, the second are systematic, the third are due to the knowledge of the LHC beam energy and the fourth are due to the luminosity determination. Differential cross-sections as a function of the electron pseudorapidity are measured. The W+/W−W^{+}/W^{-} cross-section ratio and production charge asymmetry are also reported. Results are compared with theoretical predictions at next-to-next-to-leading order in perturbative quantum chromodynamics. Finally, in a precise test of lepton universality, the ratio of WW boson branching fractions is determined to be \begin{equation*} \mathcal{B}(W \to e\nu)/\mathcal{B}(W \to \mu\nu)=1.020\pm 0.002\pm 0.019, \end{equation*} where the first uncertainty is statistical and the second is systematic.A measurement of the cross-section for W → eÎœ production in pp collisions is presented using data corresponding to an integrated luminosity of 2 fb−1^{−1} collected by the LHCb experiment at a centre-of-mass energy of s=8 \sqrt{s}=8 TeV. The electrons are required to have more than 20 GeV of transverse momentum and to lie between 2.00 and 4.25 in pseudorapidity. The inclusive W production cross-sections, where the W decays to eÎœ, are measured to be σW+→e+Îœe=1124.4±2.1±21.5±11.2±13.0pb, {\sigma}_{W^{+}\to {e}^{+}{\nu}_e}=1124.4\pm 2.1\pm 21.5\pm 11.2\pm 13.0\kern0.5em \mathrm{p}\mathrm{b}, σW−→e−Μ‟e=809.0±1.9±18.1±7.0±9.4 pb, {\sigma}_{W^{-}\to {e}^{-}{\overline{\nu}}_e}=809.0\pm 1.9\pm 18.1\pm \kern0.5em 7.0\pm \kern0.5em 9.4\,\mathrm{p}\mathrm{b}, where the first uncertainties are statistical, the second are systematic, the third are due to the knowledge of the LHC beam energy and the fourth are due to the luminosity determination

    Measurement of the J/ψ pair production cross-section in pp collisions at s=13 \sqrt{s}=13 TeV

    Get PDF
    The production cross-section of J/ψ pairs is measured using a data sample of pp collisions collected by the LHCb experiment at a centre-of-mass energy of s=13 \sqrt{s}=13 TeV, corresponding to an integrated luminosity of 279 ±11 pb−1^{−1}. The measurement is performed for J/ψ mesons with a transverse momentum of less than 10 GeV/c in the rapidity range 2.0 < y < 4.5. The production cross-section is measured to be 15.2 ± 1.0 ± 0.9 nb. The first uncertainty is statistical, and the second is systematic. The differential cross-sections as functions of several kinematic variables of the J/ψ pair are measured and compared to theoretical predictions.The production cross-section of J/ψJ/\psi pairs is measured using a data sample of pppp collisions collected by the LHCb experiment at a centre-of-mass energy of s=13 TeV\sqrt{s} = 13 \,{\mathrm{TeV}}, corresponding to an integrated luminosity of 279±11 pb−1279 \pm 11 \,{\mathrm{pb^{-1}}}. The measurement is performed for J/ψJ/\psi mesons with a transverse momentum of less than 10 GeV/c10 \,{\mathrm{GeV}}/c in the rapidity range 2.0<y<4.52.0<y<4.5. The production cross-section is measured to be 15.2±1.0±0.9 nb15.2 \pm 1.0 \pm 0.9 \,{\mathrm{nb}}. The first uncertainty is statistical, and the second is systematic. The differential cross-sections as functions of several kinematic variables of the J/ψJ/\psi pair are measured and compared to theoretical predictions

    Measurement of CP violation parameters and polarisation fractions in Bs0→J/ψK‟∗0 {\mathrm{B}}_{\mathrm{s}}^0\to \mathrm{J}/\psi {\overline{\mathrm{K}}}^{\ast 0} decays

    Get PDF
    The first measurement of C ⁣P{C\!P} asymmetries in the decay Bs0→J/ψK‟∗(892)0{B_s^0\to J/\psi \overline{K}^{*}(892)^{0}} and an updated measurement of its branching fraction and polarisation fractions are presented. The results are obtained using data corresponding to an integrated luminosity of 3.0 fb−13.0\,fb^{-1} of proton-proton collisions recorded with the LHCb detector at centre-of-mass energies of 77 and 8 TeV8\,\mathrm{TeV}. Together with constraints from B0→J/ψρ0{B^0\to J/\psi \rho^0}, the results are used to constrain additional contributions due to penguin diagrams in the C ⁣P{C\!P}-violating phase ϕs{{\phi}_{s}}, measured through Bs0{B_s^0} decays to charmonium.The first measurement of CP asymmetries in the decay Bs0→J/ψK‟∗(892)0 {B}_s^0\to J/\psi {\overline{\mathrm{K}}}^{\ast }{(892)}^0 and an updated measurement of its branching fraction and polarisation fractions are presented. The results are obtained using data corresponding to an integrated luminosity of 3.0 fb^{−}^{1} of proton-proton collisions recorded with the LHCb detector at centre-of-mass energies of 7 and 8 TeV. Together with constraints from B0^{0} → J/ψ ρ0^{0}, the results are used to constrain additional contributions due to penguin diagrams in the CP -violating phase ϕs_{s} , measured through Bs0_{s}^{0} decays to charmonium.The first measurement of C ⁣P{C\!P} asymmetries in the decay Bs0→J/ψK‟∗(892)0{B_s^0\to J/\psi \overline{K}^{*}(892)^{0}} and an updated measurement of its branching fraction and polarisation fractions are presented. The results are obtained using data corresponding to an integrated luminosity of 3.0 fb−13.0\,fb^{-1} of proton-proton collisions recorded with the LHCb detector at centre-of-mass energies of 77 and 8 TeV8\,\mathrm{TeV}. Together with constraints from B0→J/ψρ0{B^0\to J/\psi \rho^0}, the results are used to constrain additional contributions due to penguin diagrams in the C ⁣P{C\!P}-violating phase ϕs{{\phi}_{s}}, measured through Bs0{B_s^0} decays to charmonium

    Measurements of prompt charm production cross-sections in pp collisions at s=5 \sqrt{s}=5 TeV

    Get PDF
    Production cross-sections of prompt charm mesons are measured using data from pppp collisions at the LHC at a centre-of-mass energy of 5 5\,TeV. The data sample corresponds to an integrated luminosity of 8.60±0.33 8.60\pm0.33\,pb−1^{-1} collected by the LHCb experiment. The production cross-sections of D0D^0, D+D^+, Ds+D_s^+, and D∗+D^{*+} mesons are measured in bins of charm meson transverse momentum, pTp_{\text{T}}, and rapidity, yy. They cover the rapidity range 2.0<y<4.52.0 < y < 4.5 and transverse momentum ranges 0<pT<10 GeV/c0 < p_{\text{T}} < 10\, \text{GeV}/c for D0D^0 and D+D^+ and 1<pT<10 GeV/c1 < p_{\text{T}} < 10\, \text{GeV}/c for Ds+D_s^+ and D∗+D^{*+} mesons. The inclusive cross-sections for the four mesons, including charge-conjugate states, within the range of 1<pT<8 GeV/c1 < p_{\text{T}} < 8\, \text{GeV}/c are determined to be \begin{equation*} \sigma(pp\rightarrow D^0 X) = 1190 \pm 3 \pm 64\,\mu\text{b} \end{equation*} \begin{equation*} \sigma(pp\rightarrow D^+ X) = 456 \pm 3 \pm 34\,\mu\text{b} \end{equation*} \begin{equation*} \sigma(pp\rightarrow D_s^+ X) = 195 \pm 4 \pm 19\,\mu\text{b} \end{equation*} \begin{equation*} \sigma(pp\rightarrow D^{*+} X)= 467 \pm 6 \pm 40\,\mu\text{b} \end{equation*} where the uncertainties are statistical and systematic, respectively.Production cross-sections of prompt charm mesons are measured using data from pp collisions at the LHC at a centre-of-mass energy of 5 TeV. The data sample corresponds to an integrated luminosity of 8.60 ± 0.33 pb−1^{−1} collected by the LHCb experiment. The production cross-sections of D0^{0}, D+^{+}, Ds+_{s}^{+} , and D∗+^{∗+} mesons are measured in bins of charm meson transverse momentum, pT_{T}, and rapidity, y. They cover the rapidity range 2.0 < y < 4.5 and transverse momentum ranges 0 < pT_{T} < 10 GeV/c for D0^{0} and D+^{+} and 1 < pT_{T} < 10 GeV/c for Ds+_{s}^{+} and D∗+^{∗+} mesons. The inclusive cross-sections for the four mesons, including charge-conjugate states, within the range of 1 < pT_{T} < 8 GeV/c are determined to be σ(pp→D0X)=1004±3±54ÎŒb,σ(pp→D+X)=402±2±30ÎŒb,σ(pp→Ds+X)=170±4±16ÎŒb,σ(pp→D∗+X)=421±5±36ÎŒb, \begin{array}{l}\sigma \left( pp\to {D}^0X\right)=1004\pm 3\pm 54\mu \mathrm{b},\\ {}\sigma \left( pp\to {D}^{+}X\right)=402\pm 2\pm 30\mu \mathrm{b},\\ {}\sigma \left( pp\to {D}_s^{+}X\right)=170\pm 4\pm 16\mu \mathrm{b},\\ {}\sigma \left( pp\to {D}^{\ast +}X\right)=421\pm 5\pm 36\mu \mathrm{b},\end{array} where the uncertainties are statistical and systematic, respectively.Production cross-sections of prompt charm mesons are measured using data from pppp collisions at the LHC at a centre-of-mass energy of 5 5\,TeV. The data sample corresponds to an integrated luminosity of 8.60±0.33 8.60\pm0.33\,pb−1^{-1} collected by the LHCb experiment. The production cross-sections of D0D^0, D+D^+, Ds+D_s^+, and D∗+D^{*+} mesons are measured in bins of charm meson transverse momentum, pTp_{\text{T}}, and rapidity, yy. They cover the rapidity range 2.0<y<4.52.0<y<4.5 and transverse momentum ranges 0<pT<10 GeV/c0 < p_{\text{T}} < 10\, \text{GeV}/c for D0D^0 and D+D^+ and 1<pT<10 GeV/c1 < p_{\text{T}} < 10\, \text{GeV}/c for Ds+D_s^+ and D∗+D^{*+} mesons. The inclusive cross-sections for the four mesons, including charge-conjugate states, within the range of 1<pT<8 GeV/c1 < p_{\text{T}} < 8\, \text{GeV}/c are determined to be \sigma(pp\rightarrow D^0 X) = 1004 \pm 3 \pm 54\,\mu\text{b} \sigma(pp\rightarrow D^+ X) = 402 \pm 2 \pm 30\,\mu\text{b} \sigma(pp\rightarrow D_s^+ X) = 170 \pm 4 \pm 16\,\mu\text{b} \sigma(pp\rightarrow D^{*+} X)= 421 \pm 5 \pm 36\,\mu\text{b} where the uncertainties are statistical and systematic, respectively

    Measurement of the B0s→Ό+Ό− Branching Fraction and Effective Lifetime and Search for B0→Ό+Ό− Decays

    Get PDF
    A search for the rare decays Bs0→Ό+ÎŒ- and B0→Ό+ÎŒ- is performed at the LHCb experiment using data collected in pp collisions corresponding to a total integrated luminosity of 4.4  fb-1. An excess of Bs0→Ό+ÎŒ- decays is observed with a significance of 7.8 standard deviations, representing the first observation of this decay in a single experiment. The branching fraction is measured to be B(Bs0→Ό+ÎŒ-)=(3.0±0.6-0.2+0.3)×10-9, where the first uncertainty is statistical and the second systematic. The first measurement of the Bs0→Ό+ÎŒ- effective lifetime, τ(Bs0→Ό+ÎŒ-)=2.04±0.44±0.05  ps, is reported. No significant excess of B0→Ό+ÎŒ- decays is found, and a 95% confidence level upper limit, B(B0→Ό+ÎŒ-)<3.4×10-10, is determined. All results are in agreement with the standard model expectations.A search for the rare decays Bs0→Ό+Ό−B^0_s\to\mu^+\mu^- and B0→Ό+Ό−B^0\to\mu^+\mu^- is performed at the LHCb experiment using data collected in pppp collisions corresponding to a total integrated luminosity of 4.4 fb−1^{-1}. An excess of Bs0→Ό+Ό−B^0_s\to\mu^+\mu^- decays is observed with a significance of 7.8 standard deviations, representing the first observation of this decay in a single experiment. The branching fraction is measured to be B(Bs0→Ό+Ό−)=(3.0±0.6−0.2+0.3)×10−9{\cal B}(B^0_s\to\mu^+\mu^-)=\left(3.0\pm 0.6^{+0.3}_{-0.2}\right)\times 10^{-9}, where the first uncertainty is statistical and the second systematic. The first measurement of the Bs0→Ό+Ό−B^0_s\to\mu^+\mu^- effective lifetime, τ(Bs0→Ό+Ό−)=2.04±0.44±0.05\tau(B^0_s\to\mu^+\mu^-)=2.04\pm 0.44\pm 0.05 ps, is reported. No significant excess of B0→Ό+Ό−B^0\to\mu^+\mu^- decays is found and a 95 % confidence level upper limit, B(B0→Ό+Ό−)<3.4×10−10{\cal B}(B^0\to\mu^+\mu^-)<3.4\times 10^{-10}, is determined. All results are in agreement with the Standard Model expectations
    • 

    corecore