119 research outputs found

    Denitrificatie met opgelost methaan uit anaerobe vergisting: nieuwe mogelijkheid voor afvalwaterbehandeling

    Get PDF
    Huishoudelijk afvalwater bevat veel energie. Rioolwaterzuiveringsinstallaties hebben zodoende de potentie om energieproducerend te worden in plaats van energieconsumerend. Er zijn reeds initiatieven in gang gezet die zich richten op het terugwinnen van energie in de vorm van biogas door het vergisten van primair en secundair slib. Een meer directe route naar biogas is de anaerobe zuivering van het afvalwater. Het effluent van een anaerobe reactor bevat echter nog wel ammonium en opgelost methaan (een sterk broeikasgas). Beide kunnen omgezet worden met de recentelijk ontdekte DAMO-bacteriën: denitrificatie gekoppeld aan anaerobe methaanoxidatie. Dit biedt nieuwe mogelijkheden voor een energie-efficiënte afvalwaterbehandeling

    Diversity and enrichment of nitrite-dependent anaerobic methane oxidizing bacteria from wastewater sludge

    Get PDF
    Recently discovered microorganisms affiliated to the bacterial phylum NC10, named “Candidatus Methylomirabilis oxyfera”, perform nitrite-dependent anaerobic methane oxidation. These microorganisms could be important players in a novel way of anaerobic wastewater treatment where ammonium and residual dissolved methane might be removed at the expense of nitrate or nitrite. To find suitable inocula for reactor startup, ten selected wastewater treatment plants (WWTPs) located in The Netherlands were screened for the endogenous presence of M. oxyfera using molecular diagnostic methods. We could identify NC10 bacteria with 98% similarity to M. oxyfera in nine out of ten WWTPs tested. Sludge from one selected WWTP was used to start a new enrichment culture of NC10 bacteria. This enrichment was monitored using specific pmoA primers and M. oxyfera cells were visualized with fluorescence oligonucleotide probes. After 112 days, the enrichment consumed up to 0.4 mM NO2− per day. The results of this study show that appropriate sources of biomass, enrichment strategies, and diagnostic tools existed to start and monitor pilot scale tests for the implementation of nitrite-dependent methane oxidation in wastewater treatment at ambient temperature

    Peroxicretion: a novel secretion pathway in the eukaryotic cell

    Get PDF
    Background: Enzyme production in microbial cells has been limited to secreted enzymes or intracellular enzymes followed by expensive down stream processing. Extracellular enzymes consists mainly of hydrolases while intracellular enzymes exhibit a much broader diversity. If these intracellular enzymes could be secreted by the cell the potential of industrial applications of enzymes would be enlarged. Therefore a novel secretion pathway for intracellular proteins was developed, using peroxisomes as secretion vesicles. Results: Peroxisomes were decorated with a Golgi derived v-SNARE using a peroxisomal membrane protein as an anchor. This allowed the peroxisomes to fuse with the plasma membrane. Intracellular proteins were transported into the peroxisomes by adding a peroxisomal import signal (SKL tag). The proteins which were imported in the peroxisomes, were released into the extracellular space through this artificial secretion pathway which was designated peroxicretion. This concept was supported by electron microscopy studies. Conclusion: Our results demonstrate that it is possible to reroute the intracellular trafficking of vesicles by changing the localisation of SNARE molecules, this approach can be used in in vivo biological studies to clarify the different control mechanisms regulating intracellular membrane trafficking. In addition we demonstrate peroxicretion of a diverse set of intracellular proteins. Therefore, we anticipate that the concept of peroxicretion may revolutionize the production of intracellular proteins from fungi and other microbial cells, as well as from mammalian cells.

    Activity of type I methanotrophs dominates under high methane concentration: methanotrophic activity in slurry surface crusts as influenced by methane, oxygen, and inorganic nitrogen

    Get PDF
    Livestock slurry is a major source of atmospheric methane (CH4), but surface crusts harboring methane-oxidizing bacteria (MOB) could mediate against CH4 emissions. This study examined conditions for CH4 oxidation by in situ measurements of oxygen (O2) and nitrous oxide (N2O), as a proxy for inorganic N transformations, in intact crusts using microsensors. This was combined with laboratory incubations of crust material to investigate the effects of O2, CH4, and inorganic N on CH4 oxidation, using 13CH4 to trace C incorporation into lipids of MOB. Oxygen penetration into the crust was 2 to 14 mm, confining the potential for aerobic CH4 oxidation to a shallow layer. Nitrous oxide accumulated within or below the zone of O2 depletion. With 102 ppmv CH4 there was no O2 limitation on CH4 oxidation at O2 concentrations as low as 2%, whereas CH4 oxidation at 104 ppmv CH4 was reduced at ≀5% O2. As hypothesized, CH4 oxidation was in general inhibited by inorganic N, especially NO2–, and there was an interaction between N inhibition and O2 limitation at 102 ppmv CH4, as indicated by consistently stronger inhibition of CH4 oxidation by NH4+ and NO3– at 3% compared with 20% O2. Recovery of 13C in phospholipid fatty acids suggested that both Type I and Type II MOB were active, with Type I dominating high-concentration CH4 oxidation. Given the structural heterogeneity of crusts, CH4 oxidation activity likely varies spatially as constrained by the combined effects of CH4, O2, and inorganic N availability in microsites

    A review of soil NO transformation: associated processes and possible physiological significance on organisms

    Get PDF
    NO emissions from soils and ecosystems are of outstanding importance for atmospheric chemistry. Here we review the current knowledge on processes involved in the formation and consumption of NO in soils, the importance of NO for the physiological functioning of different organisms, and for inter- and intra-species signaling and competition, e.g. in the rooting zone between microbes and plants. We also show that prokaryotes and eukaryotes are able to produce NO by multiple pathways and that unspecific enzymo-oxidative mechanisms of NO production are likely to occur in soils. Nitric oxide production in soils is not only linked to NO production by nitrifying and denitrifying microorganisms, but also linked to extracellular enzymes from a wide range of microorganisms. Further investigations are needed to clarify molecular mechanisms of NO production and consumption, its controlling factors, and the significance of NO as a regulator for microbial, animal and plant processes. Such process understanding is required to elucidate the importance of soils as sources (and sinks) for atmospheric NO

    The pH dependency of N-converting enzymatic processes, pathways and microbes: effect on net N<sub>2</sub>O production

    Get PDF
    Nitrous oxide (N2O) is emitted during microbiological nitrogen (N) conversion processes, when N2O production exceeds N2O consumption. The magnitude of N2O production vs. consumption varies with pH and controlling net N2O production might be feasible by choice of system pH. This article reviews how pH affects enzymes, pathways and microorganisms that are involved in N-conversions in water engineering applications. At a molecular level, pH affects activity of cofactors and structural elements of relevant enzymes by protonation or deprotonation of amino acid residues or solvent ligands, thus causing steric changes in catalytic sites or proton/electron transfer routes that alter the enzymes' overall activity. Augmenting molecular information with, e.g., nitritation or denitrification rates yields explanations of changes in net N2O production with pH. Ammonia oxidizing bacteria are of highest relevance for N2O production, while heterotrophic denitrifiers are relevant for N2O consumption at pH &gt; 7.5. Net N2O production in N-cycling water engineering systems is predicted to display a ‘bell-shaped’ curve in the range of pH 6.0–9.0 with a maximum at pH 7.0–7.5. Net N2O production at acidic pH is dominated by N2O production, whereas N2O consumption can outweigh production at alkaline pH. Thus, pH 8.0 may be a favourable pH set-point for water treatment applications regarding net N2O production
    • 

    corecore