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Abstract 58 

NO emissions from soils and ecosystems are of outstanding importance 59 

for atmospheric chemistry. Here we review the current knowledge on 60 

processes involved in the formation and consumption of NO in soils, the 61 

importance of NO for the physiological functioning of different organisms, 62 

and for inter- and intra-species signalling and competition, e.g. in the 63 

rooting zone between microbes and plants. We also show that prokaryotes 64 

and eukaryotes are able to produce NO by multiple pathways and that 65 

unspecific enzymo-oxidative mechanisms of NO production are likely to 66 

occur in soils. Nitric oxide production in soils is not only linked to NO 67 

production by nitrifying and denitrifying microorganisms, but also linked to 68 

extracellular enzymes from a wide range of microorganisms. 69 
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Further investigations are needed to clarify molecular mechanisms of NO 70 

production and consumption, its controlling factors, and the significance of 71 

NO as a regulator for microbial, animal and plant processes. Such process 72 

understanding is required to elucidate the importance of soils as sources 73 

(and sinks) for atmospheric NO. 74 

 75 

Key words: nitric oxide, nitrification, denitrification, unspecific enzymo-76 

oxidative mechanisms, NOS, SOD, dissimilatory nitrate reduction to 77 

ammonium, chemodenitrification, NO signalling, NO consumption, NO 78 

production, archaea, protists, invertebrates 79 

 80 

Highlights 81 

 Abiotic and biotic pathways of NO transformation are discussed 82 

 Interrelation between NO transformation processes is discussed 83 

 Unspecific enzymo-oxidative mechanisms of NO transformation are 84 

proposed 85 

 Physiological NO functions/effects in/for various groups of organisms are 86 

shown 87 

 Importance of bacterial NO as signalling substance for others organisms is 88 

highlighted 89 

 90 

1. Introduction 91 

 92 

Nitric oxide (nitrogen monoxide, NO) is a highly reactive constituent of 93 

the troposphere (Fowler et al., 2009) and is considered to be the main 94 
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precursor of ground-level tropospheric ozone in rural areas (Chameides et 95 

al., 1994; Laville et al., 2011), impacting human health and plant 96 

productivity (Staffelbach et al., 1997; Ludwig et al., 2001). The main 97 

sources of NO in the troposphere are fossil fuel combustion, biomass 98 

burning, soil emissions and lightning (Delmas et al., 1997). Nevertheless 99 

agricultural soils can be the predominant NO source in rural regions, where 100 

the contribution of fossil fuel combustion is low (Bouwman et al., 2002; 101 

Butterbach-Bahl et al., 2009). 102 

The global soil NO production is estimated at ~8.9 Tg N a-1, of which 103 

~15% is produced in Europe (IPCC, 2007). However, an earlier estimate by 104 

Davidson and Kingerlee’s (1997) provided much higher values ranging 105 

from 13 to 21 Tg N a-1. Such large divergence between estimates results 106 

from insufficient knowledge of the full range of soil microbial processes 107 

involved in NO production and consumption and the interactions of these 108 

processes with environmental variables. 109 

Biological N transformation processes in soils, namely nitrification and 110 

denitrification, are usually considered the dominant sources of soil NO 111 

production. However, also abiotic chemical N transformations can be an 112 

important source (Ludwig et al., 2001; Butterbach-Bahl et al., 2011, 2013). 113 

Linking NO production, consumption and emission to the source and sink 114 

processes of nitrification and denitrification in situ still remains challenging, 115 

as they can occur simultaneously and in the same soil aggregates (Arah, 116 

1997). Moreover, they can be spatially or temporally linked to each other, 117 

using products (Garrido et al., 2002) and/or intermediates from one process 118 

by the other (Butterbach-Bahl et al., 2013). That is why in vitro 119 
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experiments, applying molecular methods, stable isotopes and inhibitors are 120 

important to disentangle processes and mechanisms involved in soil NO 121 

production and emission. Simulating field conditions for different soil types 122 

from a wide range of climate zones will allow us to crack open the veil of 123 

soil NO transformations and reveal potential mechanisms and drivers. Better 124 

process understanding is the basis to develop mitigation strategies for 125 

reducing soil NO emissions. 126 

Endogenous NO is generally considered as a freely diffusible molecule in 127 

cells with a significant importance as a signaling substance. Thus, NO acts 128 

as a short-lived messenger molecule with numerous molecular targets, 129 

playing numerous physiological roles at organelle, intra- and inter-cellular 130 

levels in both prokaryotes and eucaryotes (Jacklet, 1997; Gusarov et al., 131 

2008; Johnson et al., 2008; Leitner et al., 2009; Velayutham and Zweier, 132 

2013). 133 

The main purpose of this review is to present recent advances from field 134 

and laboratory studies focusing on NO transformation and underlying 135 

processes as well as investigating the potential of other processes not yet 136 

associated with NO production or consumption, and to highlight the 137 

physiological and ecological significance of such processes. 138 

 139 

2. Reactivity of NO 140 

 141 

NO is a stable free radical with an ionization potential of 9.26 eV and an 142 

electron affinity of 0.024 eV (Natalis et al., 1979). Its high reactivity is due 143 

to its electronic configuration, i.e. the existence of an unpaired electron 144 
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residing in a π* molecular orbital (Wong et al., 1989). Consequentely, NO 145 

can be easily oxidized to the nitrosonium ion (NO+), reduced to the 146 

nitroxide ion (NO-), or converted to nitrogen dioxide (NO2) by oxygen (O2) 147 

(McCleverty, 2004 and reference therein). NO and its ions share 148 

isoelectronic properties with other molecule and ions. For example, NO is 149 

isoelectronic with O2
+, meanwhile NO- is isoelectronic with O2 and NO+ 150 

with CO and CN- (McCleverty, 2004 and reference therein). A very 151 

important property of nitric oxide related to its redox-activity in solution is 152 

its ability to form nitrosyl as well as multi nitrosyl complexes with 153 

transitional metals (e.g., Fe, Mn, Co, Ru) and metal-containing enzymes 154 

(e.g., copper-containing nitrite reductase (NIR)) (Ruggiero et al., 1993; Ford 155 

and Lorkovic, 2002; Lee et al., 2002 and references therein). It has been 156 

shown that the reversible process NO↔NO+ in water is strongly pH-157 

dependent (Lee et al., 1990; Kim and Kochi, 1991) and NO can be produced 158 

from nitrite NO2
- under strongly basic conditions (Stanbury, 1989). 159 

 160 

3. Soil processes associated with NO production and consumption 161 

 162 

The main microbiological processes of N transformation in soils, such as 163 

nitrification, nitrifier and heterotrophic denitrification, as well as abiotic 164 

chemodenitrification are classically considered as important pathways of 165 

both soil NO production and consumption under different environmental 166 

condition (Firestone and Davidson, 1989; Conrad, 1996; Yamulki et al., 167 

1997; Skiba et al., 1997; Zumft, 1997; Gasche and Papen, 1999; Ludwig et 168 

al., 2001; Wrage et al., 2001; Garrido et al., 2002; Venterea et al., 2005; 169 
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Kesik et al., 2006; Robertson and Groffman, 2007; Skiba, 2008; Kool et al., 170 

2009a, 2009b; Bru et al., 2010; Wu et al., 2010; Baggs, 2011; Ju et al., 171 

2011; Butterbach-Bahl et al., 2011, 2013; Bakken et al., 2012; Luo et al., 172 

2012; Schreiber et al., 2012; Barton et al., 2013; Pilegaard, 2013 and many 173 

others). In a recent review Schreiber et al. (2012) provided an overview of 174 

microbial and chemical NO and N2O production processes and innovative 175 

experimental approaches, but did not include the role of NO in higher 176 

organisms.  Another recent review by Pilegaard (2013) focused on soil NO 177 

emission and its regulating factors, but did not include process description at 178 

the organism level.  To fill these gaps we have considered additional 179 

processes associated with NO exchange, for example codenitrification (e.g., 180 

Shoun et al., 1992; Tanimoto et al., 1992; Spott et al., 2011), dissimilatory 181 

nitrate reduction to ammonium (e.g., Bengtsson and Bergwall, 2000; Silver 182 

et al., 2001, 2005; Rütting et al., 2008; Templer et al., 2008; Wan et al., 183 

2009; Schmidt et al., 2011), anaerobic ammonium oxidation (e.g., Strous et 184 

al., 1996; Humbert et al., 2010; Kartal et al., 2011), nitrite-dependant 185 

anaerobic oxidation of methane (e.g., Raghoebarsingetal, 2006; Ettwig et 186 

al., 2010; Harron et al., 2013), nitric oxide synthase mediated NO 187 

production (e.g., Fritz-Laylin et al., 2009; Messner et al., 2009; Chen et al., 188 

2010; Forstermann and Sessa, 2012) and the theoretically feasible, 189 

unspecific enzyme mediated mechanisms of oxidation of soil N described 190 

for the first time in this review in detail. We also provide a brief overview of 191 

the physiological functions of NO in different groups of organisms living in 192 

and on soil (e.g., Jacklet 1997; Gusarov et al., 2008, 2009; Johnson et al., 193 
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2008; Fritz-Laylin et al., 2009; Schreiber et al., 2011; Forstermann and 194 

Sessa, 2012). 195 

 196 

3.1. Abiotic processes 197 

 198 

3.1.1. Chemodenitrification 199 

 200 

The term chemodenitrification describes the strictly chemical, non-201 

enzymatic conversion of nitrite (NO2
-) or nitrate (NO3

-) to gaseous nitrogen 202 

species at low pH (below 5). This process normally requires the presence of 203 

ammonium (NH4
+), amines or reduced metals (e.g. Fe2+), as well as high 204 

soil organic matter (Clark, 1962; Broadbent and Clark, 1965; Wullstein and 205 

Gilmour, 1966; Chalk and Smith, 1983; Zumft, 1997) and soil water 206 

contents (Venterea et al., 2005). The most important reaction of 207 

chemodenitrification (Equation (1)) is the formation of NO via nitrous acid 208 

(HNO2 (aqueous phase), HONO (gas phase)) decomposition (Van Cleemput 209 

and Baert, 1976; Chalk and Smith, 1983; Zumft, 1997; Venterea et al., 210 

2005): 211 

 212 

3NO2
- + 3H+ ↔ 3HNO2 → 2NO + HNO3 + H2O  (1) 213 

 214 

If reduced metals are available (e.g. Fe2+) the Equation (2) can be 215 

presented as: 216 

 217 

NO2
- + Fe2+ + 2H+ → NO + Fe3+ + H2O  (2) 218 
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 219 

pH is the major controlling factor for chemodenitrification in soils (Chalk 220 

and Smith, 1983; Zumft, 1997), while NO2
- concentrations (Ludwig et al., 221 

2001), temperature (Kesik et al., 2005, 2006) and soil water content 222 

(Venterea et al., 2005) have been identified as additional controllers. The 223 

chemical decomposition of NO2
- mainly occurs under acidic soil conditions 224 

(pH <4.5), and Yamulki et al. (1997) detected NO emissions from sterile 225 

acidic soil. However, also at more neutral pH (5 – 7) ranges, NO may be 226 

produced chemically or react with humic substances producing N2O and 227 

CO2 (Porter,1969; , Stevenson et al., 1970). As for every chemical reaction, 228 

reaction rates increase with rising temperature (Kesik et al., 2006) and high 229 

rates of soil NO emissions during warm periods from acidic soils were 230 

attributed partially to chemodenitrification in agricultural (Cheng et al., 231 

2004) and N-affected temperate forest soils (Kesik et al., 2006; Luo et al., 232 

2012). 233 

 234 

Another soil related source of atmospheric NO is the emission of HONO 235 

from acidic soils (Su et al., 2011): 236 

             (in air) 237 

NO2
- + H

+ ↔ HNO2 ↔ HONO ↔ NO + OH-  (3) 238 

 239 

Air concentrations of HONO determine the sink and source function of 240 

soils. If air HONO concentrations are lower than in the soil aqueous or 241 

gaseous phase, a net emission is observed, while otherwise soils function as 242 

a sink for atmospheric HONO (Su et al., 2011). For instance, in typical 243 

acidic (pH 4-5) tropical forest and boreal soils even small soil NO2
- 244 
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concentrations (ca. 0.001-0.01 μg g–1) can lead to significant HONO 245 

emissions into the atmosphere (Su et al., 2011). Therefore, this process 246 

seems to be important at least for some natural ecosystems and may be an 247 

additional source of atmospheric NO and OH- (Su et al., 2011). 248 

 249 

3.1.2. Chemical consumption 250 

 251 

It is widely known that abiotic nitrosation reactions via NO2- can result 252 

in N immobilization or ‘chemodenitrification’ including the production of 253 

NO, N2O or N2 (e.g., Bremner and Fúhr, 1966; Stevenson et al., 1970; 254 

Williams, 2004). Since both NO2
- and NO can be considered as nitroso 255 

donors and since this reaction is likely to be reversible (Spott et al., 2011 256 

and references there in), it can be assumed that under observed soil NO 257 

concentrations of 60-180 ppbv (Dong, Simon and Rennenberg, unpublished 258 

data), not only NO2
- but also NO should be involved in abiotic nitrosation 259 

reactions. In particular, the nitrosation reactions of NO2
- (and thus also of 260 

NO) with humic substances (e.g., secondary aliphates, aromates, amides) 261 

have been widely reported and proposed to be considered as an abiotic 262 

pathway of N incorporation into soil organic matter (SOM) (Bremner and 263 

Fúhr, 1966; Smith and Chalk, 1980; van Cleemput and Samater, 1996; 264 

Thorn and Mikita, 2000). Azhar et al. (1986a,b) provide evidence that 265 

during nitrification the NO2
- (and likely NO) formed contributes to the 266 

nitrosation of organic matter under neutral or weak acidic soil pH 267 

conditions. Comparable results for the reaction of NO and organic matter 268 

have been reported by Stephenson (1970). In addition, metal-nitrosyl 269 
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complexes as formed e.g. during denitrification can function as a nitrosyl 270 

donor to a variety of N-, O-, S- and C-nucleophilic organic matter 271 

constituents (Garber and Hollocher, 1982b). This seems to be a significant 272 

process for SOM nitrosation in fertilized soils with high NH4
+/NH3 273 

concentrations (Thorn and Mikita, 2000) where NO2
- accumulates due to the 274 

inhibition of Nitrobacter spp. - driving the conversion of NO2
- to NO3

- in 275 

neutral to high pH soils –by increased levels of NH3.  276 

Chemical reactions of NO in aqueous solution are well documented (e.g. 277 

Williams, 2004) and should occur in soils too. According to Williams 278 

(2004) NO in aqueous solution (irrespective of the pH) can react with: i) 279 

amides to produce N-nitrosamides, ii) alcohols to give alkyl nitrites, iii) 280 

hydrogen peroxide to generate peroxynitrous acid, and iv) thiols to form S-281 

nitrosothiols. Moreover, in aerated water NO may react with O2 to produce 282 

NO2, which can further react with NO to form the nitrosating agent N2O3, 283 

which then hydrolyzes to NO2
- (Williams, 2004 and references therein). 284 

The main pathway of consumption of soil emitted NO in surface air 285 

and/or inside the canopy is its rapid reaction with O3 or R-OO* (derived 286 

from the reaction of mostly biogenic volatile organic carbon (VOC) with 287 

OH*) to form NO2. Plant leaves can take up NO2 and further metabolize it. 288 

Several studies (Geßler et al., 2000; Butterbach-Bahl et al., 2004; Sparks, 289 

2009) have suggested that soil NO emission and in-canopy conversion to 290 

NO2 results in re-deposition onto plant leaves and uptake as NO2. Thus, soil 291 

NO emissions can be an important process of nutrient dispersal and 292 

recycling at ecosystem scale. Also direct diffusive uptake of atmospheric 293 

NO by leaves constitutes a canopy sink. However, due to the low solubility 294 
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of NO in the aqueous solution of the apoplastic space, this process is less 295 

important than plant leaf uptake of NO2 (Hanson and Lindberg, 1991). A 296 

second possible pathway of atmospheric consumption of soil NO is the 297 

reversible reaction with OH- to form HONO (Su et al., 2011). 298 

In the troposphere, NO can react with hydroperoxy radicals (HO2
*) 299 

(Hertel et al., 2011) and organic peroxy radicals (RO2
*) (Finlayson-Pitts and 300 

Pitts, 1986; Primblecombe, 1996) to produce NO2. In sunlight (hv = 200-301 

420 nm) NO2 photo-dissociates to form NO and the very short-lived O(3P) 302 

radical, which in most cases combines with O2 to form O3; during night-303 

time NO2 can react with O3 to form the NO3
* radical and O2 (Primblecombe, 304 

1996, Hertel et al., 2011). After aldehydes are photo-dissociated or react 305 

with OH-, an alkyl radical is formed and can be converted to a peroxy acetyl 306 

radical, which can react with NO2 to form peroxy acetyl nitrate (PAN) 307 

(Primblecombe, 1996, Fowler et al., 2009). Alternatively, NO2 can react 308 

with OH- to form HNO3 at an average rate of ca. 5% per hour 309 

(Primblecombe, 1996). 310 

 311 

3.2. Biotic processes 312 

 313 

3.2.1. Nitrification 314 

 315 

Nitrification is the biological oxidation of ammonium (NH4
+) via 316 

hydroxylamine (NH2OH) to nitrite (NO2
-) and further on to nitrate (NO3

-) 317 

(Equation (4)) (Wrage et al., 2001; Butterbach-Bahl et al., 2011, 2013). It is 318 
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one of the most important processes of ecosystem N-cycling, both in 319 

agricultural and natural soils (Ludwig et al., 2001). 320 

 321 

NH4
+ → NH2OH → NO2

- → NO3
-  (4) 322 

↓ 323 

          NO 324 

Nitrification can be performed by heterotrophic and autotrophic nitrifiers. 325 

Autotrophic nitrifiers use the oxidation of NH4
+ or NO2

- as an energy source 326 

for CO2 fixation, while heterotrophic nitrifiers use N-containing organic 327 

substances as energy and C source (Prosser, 1989; Wrage et al., 2001; Arp 328 

et al., 2002; Conrad, 2002; Costa et al., 2006; Butterbach-Bahl et al., 2011). 329 

Heterothrophic nitrifiers (e.g. Arthrobacter) can oxidize both NH4
+ and 330 

organic N with similar intermediates, but use different enzymes for the 331 

transformation of these substrates (Wrage et al., 2001; Conrad, 2002). 332 

Ammonium oxidizing bacteria (AOB) are very specific organisms, e.g. 333 

Nitrosomonas, Nitrosospira, Nitrosococcus spp., that oxidize NH4
+ to 334 

NH2OH catalysed by ammonia monooxygenase (AMO) and NH2OH to 335 

NO2
- catalysed by hydroxylamine oxidoreductase (HAO). Ammonium can 336 

also be oxidized by autotrophic ammonium oxidizing archaea (AOA), 337 

belonging to the phylum Thaumarchaeota (Könneke et al., 2005; Brochier-338 

Armanet et al., 2008; Tourna et al., 2008; Martens-Habbena et al., 2009; 339 

Spang et al., 2010). AOA may even dominate NH4
+ oxidation in soils 340 

(Leininger et al., 2006; Prosser and Nicol, 2008, 2012). Nitrite-oxidizing 341 

bacteria (NOB), e.g. Nitrobacter, Nitrospira, Nitrococcus, Nitrospina spp., 342 
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perform further oxidation of NO2
- to NO3

-, catalysed by nitrite 343 

oxidoreductase (NXR). 344 

Whilst heterotrophic nitrifying bacteria can use ammonia as well as 345 

organic N forms as substrate (Papen et al., 1989), fungal nitrification seems 346 

to exclusively rely on organic pathways (Robertson and Groffman, 2007): 347 

 348 

R-NH2 → R-NHOH → R-NO → R-NO2
- → NO3

- (5) 349 

 350 

Typically this process involves oxidation of amines or amides, is not 351 

coupled to ATP production and, therefore, is not involved in heterotrophic 352 

energy production (Robertson and Groffman, 2007). Heterotrophic nitrifiers 353 

have been shown to produce NO from organic N and inorganic substrates 354 

(e.g. Papen et al., 1989). 355 

Altogether, a large number of heterotrophic bacteria (e.g. Paracoccus, 356 

Alcaligenes, Thiosphaera, Pseudomonas spp., described by Kuenen and 357 

Robertson (1994), Moir et al. (1996), Daum et al. (1998), Nishio et al. 358 

(1998)) and fungi (e.g. Ascomycota and Basidiomycota (Shoun et al., 1992, 359 

2012; Prendergast-Miller et al., 2011), and Glomeromycota groups (Cousins 360 

et al., 2003; Porras-Alfaro et al., 2011; Bates et al., 2012)) can nitrify. 361 

 362 

In soil solution with sufficient oxygen supply, nitrification is controlled 363 

predominantly by the availability of NH4
+ (Robertson, 1989; Ludwig et al., 364 

2001) or easy decomposable organic N (e.g. amines and amides), if fungal 365 

nitrification prevails (Conrad, 2002). Many studies support the idea that in a 366 

wide range of soils nitrification is the dominating process for soil NO 367 
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production as an intermediate in the oxidation of NH2OH to NO2
- (Hooper 368 

and Terry, 1979; Firestone and Davidson, 1989; Bollmann et al., 1999; 369 

Dunfield and Knowles, 1999; Gasche and Papen, 1999; Godde and Conrad, 370 

2000; Venterea and Rolston, 2000; Ludwig et al., 2001; Garrido et al., 2002; 371 

Cheng et al., 2004; Wan et al., 2009; Wu et al., 2010; Ju et al., 2011; Mei et 372 

al., 2011; Cui et al., 2012; Luo et al., 2012 and others). Rates of nitric oxide 373 

formation during nitrification were estimated as 0.1-10% of gross NH4
+ 374 

oxidation (Ludwig et al., 2001 and reference therein), but Garrido et al. 375 

(2002) reported a tighter range of 0.6-2.5%. It is also well known that some, 376 

but not all, AOB and AOA in both natural and agricultural soils are very 377 

sensitive to high substrate concentrations and that nitrification can be 378 

inhibited by substrate concentrations in the range of 1.0–5.0 mM NH4
+ or 379 

NH3 (Anthonisen et al., 1976; Stark and Firestone, 1996; Shi and Norton, 380 

2000; Carrera et al., 2004; Koper et al., 2010; Norton and Stark, 2011). 381 

AOB, less sensitive to NH3 compared to AOA (Prosser and Nicol, 2012), 382 

prefer to colonize areas with high soil NH4
+ or NH3 concentrations (Hayden 383 

et al., 2010; Ollivier et al., 2011). 384 

As for all biological processes, temperature is an important parameter 385 

determining the rate of nitrification (Machefert et al., 2002; Robertson and 386 

Groffman, 2007) with specific optima depending on the microbial 387 

community active in different environments (Singh et al., 1993; Stark, 1996; 388 

Stark and Firestone, 1996; Norton and Stark, 2011). In general temperature 389 

optima for AOB of temperate climate zone soils are around 22-30 ˚C 390 

(Koops et al., 1991; Singh et al., 1993; Stark, 1996; Stark and Firestone, 391 

1996; Norton and Stark, 2011), however, for tropical soils optima can be 392 



16 

 

close to 35 ˚C (Myers, 1975). In spite of these high temperature optima, 393 

reasonable rates of nitrifier activity were reported also at low soil 394 

temperatures, such as 2–10 ˚C (Cookson et al., 2002; Avrahami et al., 2003; 395 

Avrahami and Conrad, 2005), and were even observed in frozen soil 396 

together with detectable NO emission rates (Freppaz et al., 2007). The 397 

temperature effect on nitrification has been described by many process 398 

models. For example, Stark (1996) tested 5 different models and argued that 399 

the best fit model, the generalized Poisson density function (Parton et al., 400 

1987), successfully describes the temperature response of nitrification 401 

activity over a temperature range of 5-50 ˚C. But he also stated that the 402 

Arrhenius equation (Laudelout, 1978) can still be used, providing adequate 403 

simulation over a more narrow temperature range of 5-28 ˚C (Fig. 1). 404 

 405 

INSERT Fig. 1 HERE 406 

 407 

The increase in NO emission rates in response to temperature is site specific 408 

(Saad and Conrad, 1993; Martin et al., 1998; Gasche and Papen, 1999; 409 

Ludwig et al., 2001; Schindlbacher et al., 2004; Kitzler et al., 2006; Laville 410 

et al., 2009; Yao et al., 2010). However, over the temperature range 0 to 35 411 

˚C the average NO response shows a Q10 of ≈ 2-4 (Williams and Fehsenfeld, 412 

1991; Martin et al., 1998; Gasche and Papen, 1999; Yu et al., 2008, 2010; 413 

Laville et al., 2009; Yao et al., 2010). 414 

Optimum conditions for nitrification are normally met at a water filled 415 

pore space (WFPS) of 30-60% (Firestone and Davidson, 1989; Bouwman., 416 

1998; Davidson et al., 2000). Following the conceptual Hole-In-the-Pipe 417 
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(HIP) model of Firestone and Davidson (1989), soil moisture content seems 418 

to be the most general and robust driver for determining the proportions of 419 

soil N gases emitted from different ecosystems, with NO dominating soil N 420 

gas emissions at WFPS <30-60%, and N2O and N2 dominating soil N gas 421 

emissions at WFPS >60-65%. 422 

A soil with near neutral pH of 6.5-7.0 (Killham, 1990; Machefert et al., 423 

2002) generally appears to favor nitrification by AOB and also mesophilic 424 

archaea (Jung et al., 2014; Stieglmeier et al., 2014a). The pH optimum is 425 

much lower (ca. 4.5) for acidophilic AOA (Nicol et al., 2008; Lehtovirta-426 

Morley et al., 2011). Nitrification rates were found to be strongly (p <0.05) 427 

correlated with NO production during incubation experiments for a range of 428 

acidic, neutral and alkaline soils (Garrido et al., 2002; Cheng et al., 2004). 429 

Highest nitrification rates as well as NO emissions were observed for 430 

neutral to alkaline soils (Cheng et al., 2004). For example, nitrification is 431 

thought to be the main process for NO production in cropland on calcareous 432 

soils (Wan et al., 2009; Ju et al., 2011; Mei et al., 2011; Cui et al., 2012) and 433 

in acid forest soils receiving high rates of atmospheric N (Gasche and 434 

Papen, 1999; Wu et al., 2010; Luo et al., 2012). In other studies (Nagele and 435 

Conrad, 1990; Yamulki et al., 1997; Ste-Marie and Pare, 1999) increasing 436 

pH stimulated nitrification rates and N2O and NO release under aerobic 437 

conditions. Prevailing NO production was also shown in aerobic soils by 438 

Garrido et al. (2002). In aerobic and anaerobic incubation experiments with 439 

five soil types plus or minus the addition of 10 Pa of the nitrification 440 

inhibitor acetylene (C2H2) to the headspace the authors showed that NO was 441 

likely to be produced exclusively from nitrification. Zhu et al. (2013) 442 
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suggested that at high O2 concentration (21%) nitrification seems to be the 443 

main responsible process for NO formation from NH3. 444 

 445 

3.2.1.1. AOB vs. AOA: distribution and contribution to nitrification 446 

 447 

In terrestrial ecosystems where the total soil N concentration is greater 448 

than 0.7%, nitrification is a highly significant and important process 449 

(Ollivier et al., 2011). Based on data of alpine glacier forefields in Austria 450 

(Nicol et al., 2005; Deiglmayr et al., 2006; Kandeler et al., 2006; Hämmerli 451 

et al., 2007) and Switzerland (Duc et al., 2009; Lazzaro et al., 2009; 452 

Brankatschk et al., 2011) it was summarized by Ollivier et al. (2011) that 453 

nitrification activity was predominantly driven by AOA, despite of its lower 454 

abundance compared to AOB. Apparently, archaea were more active 455 

compared to bacteria under extreme conditions, such as ammonium-poor 456 

environments (Di et al., 2009), low pH (Nicol et al., 2008; Lehtovirta-457 

Morley et al., 2011) and temperature stress (Schleper et al., 2005; Valentine, 458 

2007). A surprisingly large abundance of AOA was also demonstrated by 459 

Su et al. (2010) in soils from moderate climatic zones (arable land 460 

(Cambisol), Southern Germany), where AOB were exhausted by freeze-461 

thaw cycles, whilst archaeal communities thrived. Thus, AOA may be 462 

important players for ammonia oxidation processes, and may contribute 463 

substantially to NO production during freeze-thaw events. 464 

So far there is only little evidence that AOA are involved in soil NO 465 

production or that AOA do express the HAO enzyme. For example, Vajrala 466 

et al. (2013) demonstrated by a combined physiological and stable isotope 467 
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tracer analyses that NH2OH is an intermediate product of NH3 oxidation to 468 

NO2
- in the archeon Nitrosopumilus maritimus. The authors proposed that 469 

an archeal AMO homolog is responsible for NH2OH formation, while the 470 

oxidation of NH2OH to NO2
- is likely performed by an archaea unique 471 

enzyme system. This enzyme system may be connected to soluble 472 

periplasmic multicopper oxidases (MCO) and membrane-anchored copper-473 

binding proteins described by Walker et al. (2010). The latter authors also 474 

found nirK genes in archaea, though its role remained unclarified (Walker et 475 

al., 2010 and references therein; Jung et al., 2014; Park et al., 2014). Thus, 476 

in analogy to AOB, NO production by AOA may be linked to NH2OH 477 

oxidation to NO2
- or AOA produced NH2OH may be used as substrate by 478 

other microorganisms to produce NO. Another NO production pathway for 479 

AOA may be the formation of nitroxyl hydride (HNO) during NH3 480 

oxidation (Schleper and Nicol, 2010; Walker et al., 2010), with HNO being 481 

converted to NO by copper-complexes/copper-containing proteins (Hughes, 482 

1999). A significant importance of NO in the AOA energy metabolism, 483 

earlier postulated by Walker et al. (2010) and Schleper and Nicol (2010), 484 

has been recently confirmed experimentally (Yan et al., 2012; Shen et al., 485 

2013). Apparently, AOA can form N2O by direct oxidation of NH3 rather 486 

than from NH2OH (Vajrala et al., 2013), while Stieglmeier et al. (2014b) 487 

described N2O formation as a hybrid of NO2
- reduction and NH3 oxidation. 488 

 489 

3.2.2. Denitrification 490 

 491 
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Denitrification is the stepwise reduction of nitrate to nitrite, nitric oxide, 492 

nitrous oxide and dinitrogen gas (Equation (6)), catalyzed by the enzymes 493 

nitrate reductase (membrane-bound (NAR) or periplasmic (NAP)), nitrite 494 

reductase (NIR), nitric oxide reductase (NOR), and nitrous oxide reductase 495 

(N2OR) (Payne, 1973, 1981; Knowles, 1982; Stouthamer, 1988; Revsbech 496 

and Sørensen, 1990; Zumft, 1992, 1997). 497 

 498 

NO3
- → NO2

- → NO → N2O → N2  (6) 499 

 500 

The absence of NO emission during denitrification may be explained by 501 

the “diffusion limitation” hypothesis (Firestone and Davidson, 1989; Skiba 502 

et al., 1997). This hypothesis suggests that at low O2 concentrations, i.e. 503 

conditions which favour denitrification such as waterlogging, the NO 504 

produced is unlikely to escape from the soil to the atmosphere due to limited 505 

gas diffusion. Thus, the NO is trapped and is available as denitrification 506 

substrate for further reduction to N2O and/or N2. This has recently been 507 

experimentally confirmed in river sediments using 15NO stable isotops 508 

(Schreiber et al., 2014). However, under such conditions plant NO 509 

production and emission may be an important source of atmospheric NO 510 

(see below sections 3.2.9 and 3.2.10). 511 

Controlling factors for denitrification are soil moisture content, soil 512 

temperature, N-NO3
- and easily decomposable C availability, soil properties 513 

affecting soil aeration and microbial activity (e.g. texture and organic matter 514 

content), and agricultural management (Stouthamer, 1988; Revsbech and 515 

Sørensen, 1990; Zumft, 1997; Bouwman et al., 2002; Skiba, 2008; Rees et 516 
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al., 2013). High rates of denitrification tend to be observed in N fertilized 517 

soils and highly irrigated loam soils when mineral N as well as C is not 518 

limiting (Barton et al., 1999; Groffman et al., 2009). Based on numerous 519 

published studies with agricultural (grassland and cropland) and forest soils, 520 

Barton et al. (1999) concluded that denitrification rates tended to be higher 521 

in agricultural soils (mean rate 13 kg N ha-1 a-1) than in natural forest soils 522 

(e.g. mean rate 1.9 kg N ha-1 a-1). However, these estimates are mainly based 523 

on the acetylene blockage technique with results being highly questionable 524 

if used under aerobic conditions (Bollmann and Conrad, 1997; Butterbach-525 

Bahl et al., 2013). 526 

Soil moisture content and soil temperature are key drivers of 527 

denitrification and their alterations can commonly explain up to 95% of the 528 

variation of the N2O emission (Butterbach-Bahl et al., 2013). In addition, 529 

freeze-thaw events can trigger pulses of soil N2O emissions and can 530 

contribute significantly to the annual N2O emission rate in regions 531 

experiencing several weeks of subzero winter temperatures (Mørkved et al., 532 

2006; Sharma et al., 2006; Wagner-Riddle et al., 2008; Kim et al., 2012; 533 

Luo et al., 2012). Freeze-thaw induced N2O emissions are due to a complex 534 

mix of soil physical and microbial processes that require anaerobic 535 

conditions and a surplus of easily degradable substrates (De Bruijn et al., 536 

2009). Little is known if freeze-thaw periods also significantly stimulate soil 537 

NO emissions. The multi-year data set on soil NO emissions from an acid 538 

forest soil in the South of Germany reported by Gasche and Papen (1999) 539 

and Luo et al. (2012) does not indicate that freeze-thaw periods trigger high 540 

NO emissions, though at the same site high pulse emissions of N2O were 541 
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observed in approximately 1 out of 3 years (Luo et al., 2012). However, it 542 

has been recently confirmed that NO emissions during the cold seasons (16 543 

of October – 15 of April periods) contribute ca. 29% to the annual NO 544 

budget based on 16 years of measurement data in a forest stand (Höglwald) 545 

in South Germany (Medinets et al., unpublished data). The microbial 546 

processes involved have not been identified; however, we assume that 547 

denitrification plays an important role, since high denitrifier activity has 548 

been demonstrated during freeze-thaw events (Mørkved et al., 2006; Sharma 549 

et al., 2006; Wagner-Riddle et al., 2008; Kim et al., 2012; Luo et al., 2012). 550 

There is a need for more continuous NO flux measurements during cold 551 

periods and  winter/spring transition periods, in order to improve our 552 

estimates of  annual flux rates. 553 

Soil pH is another important factor determining denitrification rates. 554 

Bakken et al. (2012) showed that the ratio of N2O/(N2+N2O) is negatively 555 

correlated with soil pH over the pH range 5-8, which is typical for 556 

agricultural soils. The authors concluded that low pH interfers with the 557 

synthesis of the N2O reductase enzyme, most likely by affecting the enzyme 558 

assembly in the periplasm. Thus, liming can be an efficient way to reduce 559 

N2O (Bakken et al., 2012) and also NO emissions (Gasche and Papen 560 

(1999). Comparing limed and non-limed areas in the Höglwald Forest, 561 

Gasche and Papen (1999) concluded that an increase in NO consumption 562 

rather than a decrease in NO production was driving the decrease in soil 563 

surface NO emissions. 564 

 565 

3.2.2.1. Heterothrophic (classical) denitrification 566 
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 567 

Most denitrifiers are facultative aerobes (including bacteria (e.g. 568 

Alcaligenes faecalis, Pseudomonas stutzeri, Paracoccus denitrificans), 569 

fungi (e.g. Fusarium oxysporum, Cylindrocarpon tonkinense) and archaea 570 

(e.g. Methanosaeta concilii, Pyrobaculum aerophilum)), but in case of O2 571 

depletion they can switch to anaerobic respiration using NO3
- as electron 572 

acceptor (Payne, 1981; Knowles, 1982; Stouthamer, 1988; Revsbech and 573 

Sørensen, 1990; Zumft, 1992, 1997; Kobayashi et al., 1996; Park et al., 574 

1997; Cabello et al., 2004; Hayatsu et al., 2008; Shoun et al., 2012). 575 

Although large denitrification rates are linked to low O2 concentrations, 576 

aerobic denitrification has been demonstrated for some bacteria (Lloyd, 577 

1993). For example, Bateman and Baggs (2005) used isotopic tracer to 578 

identify aerobic denitrification in dry soil (20% WFPS).  579 

It is well known that NO and N2O can be produced in soils 580 

simultaneously, and the emission ratio of N-NO/N-N2O is conventionally 581 

used to assess the dominance of microbial production pathways for NO and 582 

N2O. At a ratio >1 nitrification is supposed to be the main process, while at 583 

a ratio <1 denitrification is generally assumed to dominate N trace gas 584 

production (Davidson, 1991; FAO and IFA, 2001; Parton et al., 2001; 585 

Garrido et al., 2002; Akiyama and Tsuruta, 2003; Cheng et al., 2004; 586 

Nakajima et al., 2005; del Prado et al., 2006). Contradictory to this 587 

suggestion, Wang et al. (2011) observed during gas-flow-soil-core 588 

incubation experiments of soils enriched with NO3
- and excess glucose 589 

(ratio of C:N = 6) and maintained under anaerobic condition that 590 

denitrification was the main process of NO production even though the N-591 
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NO/N-N2O ratio was above 1. Similarly in a previous laboratory study 592 

(Anderson and Levine, 1986), the emission ratio of N-NO/N-N2O was 3 for 593 

a pure denitrifier culture of A. faecalis under micro-aerobic conditions. 594 

These results suggest that at high soil NO3
- concentrations and micro-595 

aerobic or anaerobic conditions, NO production is exclusively associated 596 

with denitrification (Ludwig et al., 2001; Russow et al., 2009; Wang et al., 597 

2011). Bergaust et al. (2012) observed that NOR-deficient strains of 598 

denitrifying bacteria could grow by denitrification under conditions that 599 

allow NO to escape and/or be consumed by other organisms, thus avoiding 600 

NO toxicity. These findings indicate that the role of denitrification as source 601 

of atmospheric NO should be revisited. 602 

 603 

3.2.2.2. Nitrifier denitrification 604 

 605 

Nitrifier denitrification (Equation (7)) is a process in which NO2
- is 606 

reduced to gaseous NO, N2O and N2 by AOB with NH4
+ as an electron 607 

donor under O2 limitation (Poth and Focht, 1985; Poth, 1986; Wrage et al., 608 

2001). Basically the same enzymes (NIR, NOR, N2OR) involved in the 609 

stepwise denitrification reduction cascade from nitrate to nitrous oxide or di-610 

nitrogen are also activated during nitrifier denitrification. Ammonia 611 

oxidizing bacteria are responsible for this process and were found to 612 

denitrify under a wide range of environmental conditions from arctic to 613 

tropical climatic zones (Kool et al., 2009a, 2009b, 2010; Szukics et al., 614 

2010; Baggs, 2011; Banerjee et al., 2011; Toyoda et al., 2011; Wertz et al., 615 

2012; Vanitchung et al., 2013). This process is important to avoid 616 
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accumulation of toxic levels of NO2
- (Stein and Arp, 1998; Beaumont et al., 617 

2004, 2005; Baggs, 2011). 618 

 619 

NH4
+ → NH2OH → NO2

- → NO → N2O → N2   (7) 620 

      ↓ 621 

                NO 622 

Nitrifier denitrification is a significant source of NO emitted from soils. 623 

NO is an intermediate of NO2
- reduction by nitrifiers (Remde and Conrad, 624 

1990; Wrage et al., 2001) with N2O production being often the final step of 625 

nitrifier denitrification (Poth and Focht, 1985). However, further reduction 626 

to N2 may also be possible (Poth, 1986), although a NOR homolog has so 627 

far not been identified in AOB. WFPS (Garrido et al., 2002) and pH (Nagele 628 

and Conrad, 1990; Yamulki et al., 1997; Ste-Marie and Pare, 1999; Cheng 629 

et al., 2004) can affect NO and N2O emission rates under aerobic conditions. 630 

Soil core incubation experiments using a range of agricultural soil types 631 

collected in France showed that under aerobic condition around 0.6-2.5% of 632 

the NH4
+ applied was emitted as N-NO, while 0.06-1% was emitted as N-633 

N2O (Garrido et al., 2002). Recently, Zhu et al. (2013) during laboratory 634 

experiments on loam, sandy loam and clay loam soils (sampled in 635 

California, USA) found under controlled condition (temperature, O2 636 

concentration, N-application) that at O2 >0% (0.5-21%) most of the released 637 

NO (72-97%) was produced by the NH3 oxidation pathways (nitrifier 638 

denitrification, nitrification-coupled denitrification and nitrification). 639 

Moreover NO production increased while the O2 concentration declined. 640 

This demonstrates that nitrifier denitrification and/or partially coupled 641 
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nitrification-denitrification processes (Wrage et al., 2001; Zhu et al., 2013) 642 

could have been responsible for the observed NO emission. Nitrifier 643 

denitrification may contribute significantly to losses of NH4
+ as NO and 644 

N2O emission from soils (Zumft, 1997; Zhu et al., 2013), however, a 645 

contribution of nitrification (at least up to the formation of NO2
- or directly 646 

via NH2OH aerobically) cannot be excluded (Zhu et al., 2013). 647 

 648 

3.2.3. The contribution of nitrification and denitrification to NO 649 

production 650 

 651 

Both, the nitrifier and denitrifier microbial communities can play 652 

significant roles in NO production in the soil of terrestrial ecosystems under 653 

a wide range of oxygen concentrations. This was recently confirmed by 654 

Russow et al. (2009), who demonstrated significant increases of NO 655 

emission rates with declining O2 partial pressure during soil laboratory 656 

incubation experiments. They carried out three separate experiments using 657 

the tracers 15N-NH4
+, 15N-NO3

- or 15N-NO2
- in a soil reactor with a 658 

continuously well-mixed headspace (Russow et al., 2009) under a range of 659 

O2 concentrations (Table 1).  660 

 661 

INSERT Table 1 HERE 662 

 663 

The results clearly showed that NO2
- was the main precursor of NO under 664 

any oxygen condition, but that the source of NO2
- was different. Under 665 

aerobic conditions (O2 = 20 vol. %) NO2
- formed by nitrification from 666 
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ammonium contributed 70% of the emitted NO and 10% of the emitted NO 667 

came from NO2
- which was formed from the reduction of nitrate by 668 

denitrification (Table 1). However, it is likely that in the described 669 

experiment nitrifier denitrification contributed to the aerobic NO 670 

production. In contrast, under anaerobic condition 87% of the emitted NO 671 

was generated by denitrification of nitrate. However, the emission rate under 672 

anaerobic (denitrification prevailing) condition was ca. 4-fold higher than 673 

under aerobic (nitrification prevailing) conditions (Table 1). Russow et al. 674 

(2009) also reported that the fate of NO2
- freshly added to the soil was 675 

different from endogenous NO2
-, i.e. NO2

- generated by nitrification and 676 

denitrification in the soil. Apparently, exogenous or freshly added NO2
- 677 

undergoes rapid microbial as well as chemical decomposition (Van 678 

Cleemput and Baert, 1976; Van Cleemput and Samater, 1996; Venterea and 679 

Rolston, 2000; Islam et al., 2008). 680 

Russow et al. (2009) demonstrated very clearly that NO was the 681 

exclusive precursor of N2O under anaerobic condition, i.e. NO produced by 682 

denitrification was also consumed by denitrification. This confirms the 683 

“diffusion limitation” hypothesis (Firestone and Davidson, 1989; Skiba et 684 

al., 1997), which assumes that diffusion limitation in soils with a WFPS 685 

>>60% increases the likeliness that NO produced under anaerobic condition 686 

in situ is further reduced to N2O (and N2) by the denitrifying microbial 687 

community. 688 

 689 

3.2.4. Codenitrification 690 

 691 
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Codenitrification is a metabolic process, co-occurring during 692 

conventional denitrification, where NO2
- or NO is reduced by other 693 

nucleophilic N compounds (e.g., amines (R-NH2), NH2OH, NH4
+, azide (N3

-694 

), hydrazine (N2H4) and salicylhydroxamic acid) to form N2O and/or N2 695 

(Shoun et al., 1992; Tanimoto et al., 1992; Spott et al., 2011) (Equation (8)).  696 

  697 

(8) 698 

 699 

It is assumed that the codenitrification pathway is based on biotically 700 

mediated N-nitrosation via enzyme (E) bound NO complexes (e.g., E-NO, 701 

E-NO- and E-NO+) (Stamler et al., 1992; Kumon et al., 2002; Spott et al., 702 

2011 and references therein). Both NO2
- and NO are considered as nitroso 703 

donors for nitrosating agents (e.g., E-NO, E-NO- and E-NO+) and the 704 

reaction is catalyzed by cd1 NIR (Averill, 1996; Kim and Hollocher, 1984; 705 

Weeg-Aerssens et al., 1988). Thus, NO2
- as well as NO can be directly 706 

involved in the biological formation of hybrid N-N gas, and under certain 707 

conditions the reaction between NO2
- and NO can be reversible (Su et al., 708 

2004; Spott et al., 2011 and references therein). This is in-line with the 709 

statement by Averill (1996) that NIR and NOR enzymes of many 710 

denitrifiers are likely to be strongly coupled and may function as multi-711 

enzyme complexes and, therefore, are likely to play a key role as biotic 712 

catalysts of the codenitrification process. 713 

Evidence for codenitrification has been found in archaea (order 714 

Sulfolobales) (Immoos et al., 2004), bacteria (orders Actinomycetales, 715 

Burkholderiales, Enterobacteriales, Pseudomonadales, Rhizobiales and 716 



29 

 

Rhodobacterales) (e.g., Garber and Hollocher 1982a,b; Goretski and 717 

Hollocher, 1991; Ye et al., 1991; Okada et al., 2005) and fungi (order 718 

Hypocreales) (e.g., Shoun et al., 1992; Tanimoto et al., 1992; Usuda et al., 719 

1995, Sameshima-Saito et al., 2004; Su et al., 2004). Codenitrification 720 

seems to be a widely distributed process across terrestrial as well as aquatic 721 

ecosystems. But only a few studies provide direct evidence of 722 

codenitrification in natural environments, for example in grassland 723 

(Laughlin and Stevens, 2002) and agricultural soils (Spott and Stange, 2011; 724 

Long et al., 2013). 725 

Controlling factors for codenitrification appear to be closely related to 726 

those for denitrification. Accordingly, oxygen availability, pH and 727 

availability of respirable organic carbon substrates are the main controllers 728 

of codenitrification (Spott et al., 2011), and as for denitrification, may occur 729 

under micro-aerobic conditions (Kumon et al., 2002; Okada et al., 2005).  730 

Assuming that most denitrifiers are heterotrophic microorganisms, Spott 731 

et al. (2011) have suggested that codenitrification as well as denitrification 732 

are related to the availability of respirable organic carbon substances. Short-733 

term experiments showed that decreasing availability of organic carbon 734 

compounds (e.g., succinate) diminish denitrification rates, but enhance the 735 

codenitrification/denitrification ratio of N2 produced (Weeg-Aerssens et al., 736 

1998).   737 

In studies where NH2OH (as naturally occurring nucleophilic compound) 738 

was added to denitrifier cultures (Garber and Hollocher, 1982b; Kim and 739 

Hollocher, 1984; Weeg-Aerssens et al., 1987, 1988; Goretski and Hollocher, 740 
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1991) or soil (Spott and Strange, 2011) 98% of the N2O produced was 741 

formed by codenitrification. 742 

The importance of codenitrification as a key process of N2O and N2 743 

production has also been shown under natural conditions. Laughlin and 744 

Stevens (2002) showed that up to 92% of released N2 in grassland soils was 745 

produced by codenitrification. 746 

In addition, increasing NO production by denitrification has been 747 

observed in the presence of codenitrification (e.g., Garber and Hollocher, 748 

1982a,b, Goretski and Hollocher, 1991). Goretsky and Hollocher (1991) 749 

have pointed out that azide (as a nucleophilic compound) partially inhibited 750 

NOR activity, thus resulting in NO accumulation. It is quite possible that 751 

others nucleophilic compunds could act analogically on NOR enzymes. In 752 

addition, it may be also attributed to a sort of abortive reaction of 753 

denitrification (Spott and Strange, 2011) as well as may indicate the 754 

underconsumption of NO2
- and NO by a microbial N-nitrosation (i.e. 755 

codenitrification). 756 

 757 

3.2.5. Dissimilatory nitrate reduction to ammonium 758 

 759 

Nitrate ammonification or dissimilatory nitrate reduction to ammonium 760 

(DNRA) is a fermentative process, using NO3
- as electron acceptor during 761 

its conversion via NO2
- to NH4

+ (Cole and Brown, 1980; Cole, 1990): 762 

 763 

NO3
- → NO2

- → NH4
+  (9) 764 

              ↓ 765 
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      NO → N2O 766 

 767 

Two types of DNRA have been determined, acting in different 768 

subcellular compartments. 1) Periplasmic, energy-conserving (respiratory) 769 

nitrate reduction to ammonium, which catalyzes the electron transport from 770 

formate or H2 to NO2
- (using NAP-NRF (nitrite reduction to formate 771 

dehydrogenase or hydrogenase enzymes) was described in Escherichia coli, 772 

Desulfovibrio, and Wolinella spp. (Simon, 2002; Simon et al., 2003; Cabello 773 

et al., 2012). 2) Cytoplasmic dissimilatory NO3
-/NO2

- reduction to NH4
+, 774 

which functions as both electron sink and detoxification of NO2
- formed in 775 

NO3
- respiration in the cytoplasm (using NAR-NIR enzymes). Both 776 

processes can result in NO as well as N2O production. These processes have 777 

been reported for E. coli and Klebsiella spp. (Moreno-Vivián et al., 1999; 778 

Cabello et al., 2012), but may also occur in other microorganisms. 779 

DNRA can be performed by different groups of bacteria, including 780 

obligate anaerobes (e.g. Clostridium spp.), facultative anaerobes (e.g. 781 

Enterobacter spp.) and aerobes (e.g. Bacillus spp.) (Tiedje, 1988). Very 782 

reduced and carbon rich environments (C/N ratio >4) favour DNRA (Buresh 783 

and Patrick, 1978; Tiedje et al., 1982; Tiedje, 1988; Fazzolari et al., 1998). 784 

Positive correlations of DNRA rates with soil pH, C/NO3
- ratio, bulk soil 785 

density, sand content and NO2
- concentration were reported by Schmidt et 786 

al. (2011) for temperate arable soils. 787 

The DNRA pathway was reported to be responsible for up to >99% of 788 

the NO3
- consumption in forest soils (Bengtsson and Bergwall, 2000; Silver 789 

et al., 2001, 2005; Pett-Ridge et al., 2006; Huygens et al., 2007; Rütting et 790 
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al., 2008; Templer et al., 2008), and for up to 21% of NO3
- consumption in 791 

rice paddies (Chen et al., 1995a, b; Yin et al., 2002). DNRA was attributed 792 

to NO3
- consumption in calcareous agricultural soils following glucose 793 

addition (Wan et al., 2009), and in temperate arable soils, depending on the 794 

presence of low weight C sources (Schmidt et al., 2011). Based on 795 

correlation and regression analyses, Rütting et al. (2011) concluded that 796 

highest gross DNRA rates can be expected in soils with high organic matter 797 

content in humid temperate regions in soil with lower soil moisture. 798 

Since NO2
- was suggested as an intermediate during the reduction of 799 

NO3
- to NH4

+ (Cole, 1990; Baggs, 2011) in both periplasm and cytoplasm, 800 

evidence is increasing that N2O is produced during DNRA (Stevens et al., 801 

1998; Baggs, 2011; Rütting et al., 2011). Therefore, it may be assumed that 802 

NO (e.g. as an intermediate for N2O) is produced during reduction of NO2
- 803 

in the cytoplasmic or/and the periplasmatic space. Thus, DNRA may be 804 

considered as an additional source not only for N2O, but also for NO in 805 

soils. However, the role of DNRA, as a source for soil NO, remains to be 806 

investigated. 807 

 808 

3.2.6. Anaerobic ammonium oxidation 809 

 810 

Anaerobic ammonium oxidation (anammox) is a biological process 811 

where NH4
+ serves as electron donor and NO2

- as electron acceptor to form 812 

N2 (van de Graaf et al., 1990, 1995; Strous et al., 1996; Kuypers et al., 2003; 813 

Kuenen, 2008). The anammox pathway is restricted to some slow-growing, 814 

strictly anoxic, and lithotropic bacteria belonging to the order 815 
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Planctomycetales of the phylum Planctomycetes (Kartal et al., 2011, 2013). 816 

Up to date 10 species of five genera (Candidatus Brocadia (Strous et al., 817 

1999a; Kartal et al., 2008; Oshiki et al., 2011), Candidatus Kuenenia 818 

(Strous et al., 2006), Candidatus Scalindua (Schmid et al., 2003; Woebken 819 

et al., 2008; van de Vossenberg et al., 2013), Candidatus Anammoxoglobus 820 

(Kartal et al., 2007b) and Candidatus Jettenia (Quan et al., 2008; Hu et al., 821 

2011)) have been described. Representatives of four from five genera, 822 

except Candidatus Anammoxoglobus, have been identified in terrestrial 823 

ecosystems (Humbert et al., 2010; Long et al., 2013; Wang and Gu, 2013). 824 

Anammox bacteria were first discovered in probes from wastewater 825 

treatment bioreactors (van de Graaf et al., 1995, 1996; Mulder et al., 1995; 826 

Jetten et al., 1997; Strous et al., 1997), but since then have been found in 827 

various ecosystems such as marine oxygen-limited zones and sediments 828 

(Rysgaard et al. 2004; Dalsgaard et al. 2005; Kuypers et al. 2005; Lam et al. 829 

2007; van de Vossenberg et al. 2008; Hong et al. 2011), marine surface 830 

sediments (Hietanen and Kuparinen, 2008; Rich et al., 2008), sea ice 831 

(Rysgaard et al., 2008), estuaries (Trimmer et al., 2003; Dale et al. 2009), 832 

freshwater ecosystem (Schubert et al. 2006; Rich et al. 2008), oil reservoirs 833 

(Li et al. 2010a), marshlands (Koop-Jakobsen and Giblin 2009; Li et al., 834 

2011a), wetlands (Jetten et al. 2003; Zhu et al. 2010; Humbert et al., 2012), 835 

permafrost soils (Philipot et al., 2007; Humbert et al., 2010), peat soils (Hu 836 

et al., 2011), rice paddy soils (Zhu et a., 2011; Wang and Gu, 2013), 837 

grassland soils (Humbert et al., 2010), agricultural soils (Long et al., 2013), 838 

and the rhizosphere (Humbert et al., 2010) 839 
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The anammox process occurs in a special intracytoplasmic compartment 840 

(organelle), the anammoxosome, which is surrounded by ladderane lipids 841 

(Lindsay et al., 2001; van Niftrik et al., 2004; Kuypers et al., 2003; Kartal et 842 

al., 2011). The reaction pathway is likely structured in three distinctive steps  843 

Strous et al., 2006) (Equation (10)): During the first stage NO2
- is reduced to 844 

NO by cytochrome cd1 NIR. Subsequently, the reaction between NH4
+ and 845 

NO to hydrazine (N2H4) is catalyzed by a hydrazine synthase (HZS). Finally 846 

N2H4 is enzymatically dehydrogenized by a hydrazine dehydrogenase 847 

(DHD) resulting in N2 production. Meanwhile a part of NO2
- is oxidized for 848 

carbon fixation with NO3
- formation. 849 

 850 

(10) 851 

 852 

Kartal et al. (2010b; 2011) showed that N2H4 and NO are obligatory 853 

intermediates of anammox, that anammox bacteria are tolerant to extremely 854 

high concentrations of NO (3500-5000 ppm), and that the reduction of NO 855 

is exclusively linked to the catabolic activity of the anammox pathway 856 

(Kartal et al., 2010). 857 

Data describing controlling factors of the anammox process are scarce.  858 

Strictly anoxic condition and substrate availability (Kartal et al., 2013) 859 

under stable environmental conditions are assumed to favour anammox 860 

bacteria in natural ecosystems (Dalsgaard et al., 2003; Humbert et al., 2010). 861 

Anammox bacteria can grow at very low substrate concentrations, but 862 

require NO2
- as well as NH4

+. Interestingly, NO2
- serves as both the electron 863 

acceptor for the ammonium oxidation and the ultimate electron donor in the 864 
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reaction with bicarbonate (HCO3
-) for biomass formation and NO3

- 865 

production as a by-product (Strous et al., 1998; Kartal et al., 2013). 866 

Substrate consumption for anammox, including that for carbon fixation, are 867 

1.27 moles of NO2
- (including conversion of 1 mole via NO for NH4

+ 868 

oxidation and 0.27 moles for carbon fixation) and 1 mole of NH4
+ per 0.066 869 

mole of fixed carbon (Strous et al., 1998; Kartal et al., 2013). Therefore, for 870 

the fixation of one mole of carbon into biomass 15 catabolic cycles of 871 

ammonium oxidation, resulting in significant N2 production, are needed, 872 

which explains the slow growth rate of the bacteria (Kartal et al., 2013). 873 

N2O production has not been observed so far, despite targeted experiments 874 

using a range of NO concentrations (Kartal et al., 2010). Anammox bacteria 875 

can also grow heterotrophically thereby converting organic compounds, e.g. 876 

formate, acetate, propionate, methanol, mono- and dimethylamine into 877 

biomass C (Strous et al., 2006; Kartal et al., 2007a,b, 2008, 2013) or even to 878 

CO2 (Kartal et al., 2007a,b, 2008, 2013). 879 

 880 

Dalsgaard and Thamdrup (2002) reported that the temperature optimum 881 

for NH4
+ oxidation by anammox bacteria isolated from marine sediments 882 

was ca. 15 °C, though it may vary from 6 °C (Dalsgaard and Thamdrup, 883 

2002) to temperatures >50°C (Jaeschke et al., 2009; Byrne et al., 2009; Li et 884 

al., 2010).  885 

High NH3 concentrations as found at high pH values may inhibit 886 

anammox (Aktan et al., 2012; Yang et al., 2014), while accumulation of 887 

heavy metals (e.g., As, Cd and Pb) in sediments affects the diversity of 888 

anammox bacteria (Li et al., 2011a; Yang et al., 2014). Generally, the 889 
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diversity of anammox bacteria is higher in terrestrial systems as compared 890 

to marine systems (Humbert et al., 2010). Also increased soil or sediment 891 

aeration is negatively affecting anammox activity (Long et al., 2013) while 892 

reported effects of increasing N availability remains controversial: Koop-893 

Jakobsen and Giblin (2009) did not find statistically significant differences 894 

between fertilized and unfertilized marsh lands while Hu et al. (2011) found 895 

that in NO2
- and NH4

+ amended peat soils the abundance of  Ca. Jettenia 896 

asiatca increased.  897 

However, it remains unknown if anamox bacteria are significant sources 898 

of NO or possibly even sinks in terrestrial ecosystems. 899 

 900 

3.2.7. Nitrite-dependent anaerobic oxidation of methane 901 

 902 

Nitrite-dependent anaerobic oxidation of methane (N-AOM) is an “intra-903 

aerobic” pathway of methane (CH4) oxidation to CO2 by O2. However, in 904 

this reaction the O2 is produced by NO2
- reduction via NO dismutation to O2 905 

and N2 (Equation (11)) (Ettwig et al., 2010). 906 

 907 

 (11) 908 

 909 

The process itself requires a set of enzymes: methane monooxygenase 910 

(MMO), methanol dehydrogenase (MDH), formate dehydrogenase (FDH) 911 

and nitrite or nitric oxide reductase, which has been found in slow-growing 912 

Gram-negative bacteria Candidatus ‘Methylomirabilis oxyfera’ belonging to 913 

the phylum NC10 (Ettwig et al., 2010). M. oxyfera has been enriched from 914 
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freshwater sediments (Raghoebarsingetal, 2006; Ettwig et al., 2008, 2009), 915 

and its complete genome has recently been published (Ettwig et al., 2010). 916 

Ettwig et al. (2010) have speculated that NOR may be involved in NO 917 

detoxification. Exogenous NO as well as NO2
- has been demonstrated to be 918 

rapidly reduced to N2 and O2, thus stimulating CH4 oxidation.  919 

Very recently Harron et al. (2013) described an anaerobic, methane-920 

oxidizing and nitrate-reducing archaeon Candidatus ‘Methanoperedens 921 

nitroreducens’, which was enriched from a mixture of freshwater sediments 922 

and anaerobic wastewater sludge. This archaeon has been demonstrated to 923 

oxidize CH4 to CO2 while reducing NO3
- to NO2

-. Moreover M. 924 

nitroreducens was able to oxidize CH4 in the presence of NH4
+ through a 925 

syntrophic relationship with the anaerobic ammonium oxidizing bacteria 926 

Kuenenia spp. (Harron et al., 2013). Anammox bacteria have been shown to 927 

utilize NO2
-, reduced by M. nitroreducens for NH4

+ oxidation, thereby 928 

producing NO3
- as byproduct (Harron et al., 2013).  929 

Occurrence of N-AOM has been widely reported for freshwater 930 

sediments (Deutzmann and Schink, 2011; Kampman et al., 2012; Kojima et 931 

al., 2012; Shen et al., 2014a), estuarine sediments (Shen et al., 2014b), 932 

wastewater sludge (Luesken et al., 2011a), peat lands (Zhu et al., 2012), 933 

wetlands (Hu et al., 2014) and rice paddy soils (Wang et al., 2012; Shen et 934 

al., 2013; Hu et al., 2014). 935 

Generally, oxic/anoxic interfaces with high CH4
+ and NO3

-/NO2
- 936 

concentrations are favourable for the N-AOM process (Oremland, 2010; 937 

Shen et al., 2012). For example, highest N-AOM activity has been found at 938 
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a depths of 50-60 cm for wetlands (Hu et al., 2014), 80-85 cm for peatlands 939 

(Zhu et al., 2012) and 90-100 cm for paddy soils (Hu et al., 2014). 940 

Temperature optimum for ‘intra-aerobic’ CH4 oxidation has been 941 

detected to be 25-30 °C for bacteria (Ettwig et al., 2010) and a bit widely 942 

22-35 °C for archaea (Harron et al., 2013). N-AOM microorganisms are 943 

mesophilic to pH with optimum of 7-8 (Raghoebarsingetal, 2006; Ettwig et 944 

al., 2010), although are still active at more acidic (5.9) pH (Zhu et al., 2012). 945 

However, to date there is no evidence that N-AOM contributes to NO 946 

production in soils, though NO is an obligatory intermediate. 947 

 948 

3.2.8. Unspecific enzymo-oxidative mechanisms related to soil NO 949 

contents 950 

 951 

The similarity of biochemical processes in different groups of living 952 

organisms is not surprising. Therefore, we briefly outline the seven known 953 

pathways of NO production in plants (Table 2), as described by Gupta et al. 954 

(2011) and compare it with soil microbial processes of NO production were 955 

appropriate. In this context, different pathways of NO biosynthesis could be 956 

classified either as reductive or as oxidative (Table 2). 957 

 958 

INSERT Table 2 HERE 959 

 960 

The ‘hydroxylamine-mediated NO production’ in plants may be due to 961 

the same or a very similar biochemical mechanism as soil NO production 962 

during nitrification. In plants, hydroxylamine reacts directly with superoxide 963 
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(O2
-) to form NO under aerobic conditions (Vetrovsky et al., 1996), whereas 964 

this conversion in nitrifiers (Nitrosomonas spp.) is catalyzed by the enzyme 965 

hydroxylamine oxidase (Lees, 1952; Hooper and Terry, 1979; Hooper et al., 966 

1997). In vitro experiments adding hydroxylamine (NH2OH) to plant cells 967 

confirmed that NH2OH is indeed converted to NO and NO2
- (Rümer et al., 968 

2009a, 2009b; Gupta et al., 2011). 969 

The enzyme superoxide dismutase (SOD) (Beyer et al., 1991) was 970 

considered to be essential for the conversion of NH2OH to NO and NO2
- in 971 

plant cells and cell-free laboratory experiments (Rümer et al., 2009a, b). In 972 

cell-free systems NO emissions increased up to 10-fold in air and 25-fold in 973 

a N2 environment in the presence of SOD and hydroxylamine compared to 974 

controls where only hydroxylamine was added. As both, substrate (NH2OH) 975 

and by-products (NO and NO2
-) are able to penetrate membranes (Rümer et 976 

al., 2009a) and extracellular SOD (EC-SOD) can originate from excretion 977 

by bacteria (Tullius et al., 2001; Takahashi et al., 2003) as well as plant cells 978 

(Alscher et al., 2002), oxidation of both endogenous and exogenous 979 

hydroxylamine may take place inside or outside plant cells (Rümer et al., 980 

2009a). Murphy and Sies (1991) reported that SOD can faciliate the 981 

reversible conversion of nitroxyl anion (NO-) to NO in vitro. The actual 982 

mechanism of the SOD-catalyzed reaction of NO and NO2
- production from 983 

hydroxylamine is still unclear and its presence in the soil so far has not been 984 

demonstrated. It is noteworthy, that soil NH2OH concentrations (e.g., 0.3-985 

34.8 μg N kg-1 dry forest soil) can be comparable with those of NO2
- (Liu et 986 

al., 2014). 987 
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We assume that similar enzymatic environments as those described 988 

above, can be found in soils with high microbial activity and high nutrient 989 

concentrations, especially in the rhizosphere, when nutrients and enzymes 990 

are released into the soil, for example after rewetting/thawing of dry/frozen 991 

soils. Thus, theoretically, an unspecific enzymo-oxidative mechanisms 992 

could trigger NO and NO2
- production in soils. 993 

SOD is widely produced by most organisms (Beyer et al., 1991; 994 

Scandalios, 1997; Tullius et al., 2001; Alscher et al., 2002; Takahashi et al., 995 

2003). In the soil, SOD is a rather thermo- and chemo-stable protein (Hunter 996 

et al., 2002; Khanna-Chopra and Sabarinath, 2004) that may originate from 997 

the active microbial community (Tullius et al., 2001; Takahashi et al., 998 

2003), or recently decaying organisms. Considering these processes and 999 

mechanisms, we hypothesize that not only nitrifying (AOB and AOA) 1000 

microbes are responsible for soil NO production, but that also other 1001 

microbes via the release of extracellular SOD (directly) or SOD (after cell 1002 

damage) contribute to soil NO production. More research is required to 1003 

investigate activating factors for SOD in bacteria, since up to now only data 1004 

for plant (Bowler et al., 1994; Scandalios, 1997; Babithaa et al., 2002; 1005 

Baranenko, 2006) and animal cells (Yamakura and Kawasaki, 2010; Miller, 1006 

2012) are available. 1007 

 1008 

3.2.9. Nitric oxide synthase 1009 

 1010 

Nitric oxide synthase (NOS) is a common ubiquitous enzyme, which is 1011 

responsible for NO synthesis in cells of bacteria as well as higher 1012 
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organisms, including mammals. NOS is present in protists, such as 1013 

myxomycetes (Messner et al., 2009) and eukaryotic single cells (Fritz-1014 

Laylin et al., 2009). Active NOS enzymes are ubiquitously present in 1015 

invertebrates, such as echinoderms, coelenterates, nematodes, annelids, 1016 

insects, crustaceans and molluscs (Jacklet, 1997 and reference therein). In 1017 

mammals, many cell types such as endothelial cells, neurons, myocytes, 1018 

smooth muscle cells, and activated mune cells (e.g. leucocytes and 1019 

macrophages) produce NO by both enzymatic and non-enzymatic pathways 1020 

(Zweier et al., 1995; Velayutham and Zweier, 2013 and reference therein). 1021 

Enzymatic NO synthesis by NOS appears to be much more important than 1022 

non-enzymatic production (Zhou and Zhu, 2009; Chen et al., 2010; 1023 

Forstermann and Sessa, 2012). 1024 

NOS-derived NO synthesis proceeds in a two step oxidation of the amino 1025 

acid precursor L-arginine (L-Arg) via N-hydroxy-L-arginine to L-citrulline 1026 

(L-Cit) (Griffith and Stuehr, 1995) in the presence of 5,6,7,8-1027 

tetrahydrobiopterin (BH4), reduced nicotinamide-adenine-dinucleotide 1028 

phosphate (NAD(P)H), molecular oxygen (O2) and Ca2+/calmodulin (CaM) 1029 

(Zhou and Zhu, 2009; Chen et al., 2010; Forstermann and Sessa, 2012): 1030 

 1031 

(12) 1032 

 1033 

It is known that three phyla of Gram-positive bacteria (Firmicutes, 1034 

Actinobacteria, and Deinococcus-thermus), at least one phylum of archaea 1035 

(Euryarchaeota) and one representative of the Proteobacteria phylum of 1036 

Gram-negative bacteria (Sorangium cellulosum) possess NOS-like enzymes 1037 
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that are highly homologous to the oxygenase domain of eukaryotic NOS 1038 

(Stuehr, 1999; Gusarov et al., 2008; Sudhamsu and Crane, 2009 and 1039 

reference therein; Crane et al., 2010 and reference therein). These specific 1040 

proteins were found in pathogenic as well as in non-pathogenic soil bacteria 1041 

(Gusarov et al., 2008, 2009). Indeed, a high level of functional and 1042 

structural similarity between bacterial NOS (bNOS) and eukaryotic NOS 1043 

was reported (Pant et al., 2002; Pant and Crane, 2006; Salard et al., 2006; 1044 

Gusarov et al., 2008; Sudhamsu and Crane, 2009). Bacterial and archaeal 1045 

NOS were thought to be unable to produce NO in vivo because of a lacking 1046 

reductase domain (Adak et al., 2002) and only more recent studies have 1047 

provided evidence of bNOS mediated bacterial NO production thereby 1048 

using various nonspecific cellular reductases as their redox partners 1049 

(Johnson et al., 2008; Gusarov et al., 2008; Shatalin et al., 2008). In the 1050 

mentioned works it is proposed that NO, escaping from the cellular lumen, 1051 

is readily oxidized in the culture medium under aerobic conditions forming 1052 

NO2
- and NO3

-. Shatalin et al. (2008) and Schreiber et al. (2011) have 1053 

demonstrated directly that NO was produced by B. anthracis and B. subtilis, 1054 

using an NO sensitive dye. Furthermore, it has been shown in plant-1055 

pathogenic Streptomyces spp. that bNOS-derived NO production 1056 

considerably exceeds the requirement of phytotoxin thaxtomin A nitration. 1057 

Johnson et al. (2008) confirmed that surplus NO was produced by bNOS, 1058 

and was detected in the gas phase above the culture medium by 1059 

chemiluminescence. It is also known that other, NOS-independent 1060 

mechanisms of L-Arg conversion to L-Cit in the urea cycle catalysed by 1061 

arginine deiminase (Yamasaki and Sakihama, 2000, equation 12), arginase 1062 
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or ornithine carbamoyl transferase (Jansson and Lindblad, 1998; Viator et 1063 

al., 2008) are present in bacteria (Sudhamsu and Crane, 2009). 1064 

In mammals, three isoforms of NOS originating from separate genes 1065 

have been described, i.e. endothelial NOS (eNOS), neuronal NOS (nNOS) 1066 

and inducible NOS (iNOS). The first two types of NOS are constitutively 1067 

expressed in the cells and are called cNOS; iNOS is typically expressed 1068 

under infectious and inflammatory conditions at dramatically higher rates 1069 

compared to cNOS (Wu, 1995; Siervo et al., 2011). Furthermore, NO3
- and 1070 

NO2
- can also be reduced to NO via other enzymatic (NAP/NIR) and non-1071 

enzymatic reactions (e.g. via deoxygenated haemoglobin in acidic 1072 

environment, via neuroglobin, by xanthine oxydo-reductase) in mammalian 1073 

cells (Burmester and Hankeln, 2004; Gladwin and Kim-Shapiro, 2008; 1074 

Jansson et al., 2008; Li et al., 2009). It is likely that eukaryotes have 1075 

acquired the NOS enzyme from bacteria, which possess the most ancient 1076 

primitive NOS type (Gusarov et al., 2008), by horizontal gene transfer, as 1077 

supported by recent phylogenetic tree analysis (Sudhamsu and Crane, 2009). 1078 

In plant cells, a gene with significant homology to that encoding animal 1079 

NOS has not been detected (Moreau et al., 2010; Gupta et al., 2011), and 1080 

NOS-derived NO production has not been confirmed as an enzymatic 1081 

pathway of Arg-derived NO production in plants (Zemojtel et al., 2006; Gas 1082 

et al., 2009; Moreau et al., 2010). However, several studies showed 1083 

evidence for an NOS-like enzymatic reaction in plants that is involved in 1084 

various processes, based on a correlation between the supply with L-Arg 1085 

and its analogs with NO production (Mackerness et al., 2001; Lum et al., 1086 

2002).  1087 
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There are at least 6 other pathways of NO production in plant cells, 1088 

mentioned in Table 2, but not described here, because in our opinion they 1089 

most probably are not relevant for unspecific enzymo-oxidative pathways in 1090 

soil. 1091 

 1092 

3.2.10. Biotic consumption of NO in the soil 1093 

 1094 

Soils are a net source of NO (IPCC, 2007), but also a sink for 1095 

atmospheric of NO ( IPCC, 2007; Slemr and Seiler, 1984, 1991; Ludwig 1096 

and Meixner, 1994; Ludwig et al., 2001; Laville et al., 2009) or can be re-1097 

deposited as NO or/and NO2 onto plant surfaces (Wesely and Hicks, 2000; 1098 

Butterbach-Bahl et al., 2004; Horii et al., 2004; Seok et al., 2013; Shen et 1099 

al., 2013). Plants can use atmospheric NO and NO2 as additional nitrogen 1100 

source (Neubert et al., 1993; Geßler et al. 2000; Butterbach-Bahl et al., 1101 

2004; Teklemariam and Sparks, 2006;). Plant uptake of atmospheric NO 1102 

and NO2 is a diffusive process through the stomata and flux rates depend on 1103 

the compensation points of NO and NO2 and their atmospheric gas mixing 1104 

ratios. The atmospheric gas mixing ratios can vary significantly between 1105 

ecosystems (Conrad, 1996; Geßler et al., 2000; Ludwig et al., 2001), and 1106 

enhanced mixing ratios can stimulate the growth of chemolithoautotrophic 1107 

nitrite oxidizers colonizing the phyllosphere (Geßler et al., 2002; Papen et 1108 

al., 2002). 1109 

NO production during denitrification and nitrifier denitrification, is much 1110 

larger than the NO emitted (Firestone and Davidson, 1989; Skiba et al, 1111 

1997), because a significant proportion of NO produced by denitrification is 1112 
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immediately consumed by denitrification for energy production (Zumft and 1113 

Cardenas, 1979) and simultaneous detoxification (Zumft, 1997). Thus, the 1114 

net NO emission rate from denitrification processes is typically very small. 1115 

Some heterotrophic bacteria can oxidize rather than reduce NO via 1116 

aerobic co-oxidation reactions (Baumgärtner et al., 1996; Koschorreck et al. 1117 

1996; Rudolph et al. 1996; Koschorreck and Conrad 1997; Dunfield and 1118 

Knowles 1997, 1998, 1999; Conrad, 1999). Increased NO consumption was 1119 

demonstrated after manure or compost application (Dunfield and Knowles 1120 

1998). The magnitude of NO consumption in soils remains uncertain, but 1121 

concentrations in the soil atmosphere can be significant. E.g., in temperate 1122 

forest soils NO concentrations varied in a range of 60-180 ppbv at 0 to 10 1123 

cm soil depth (Dong, Simon and Rennenberg, unpublished data).  1124 

It is well known that NO is an important free diffusive signalling 1125 

molecule in higher organisms with many direct and indirect functions, such 1126 

as transcriptional gene regulation, post-translational protein modification, 1127 

cytoprotection, cytotoxicity, pathogenesis, memory modulation and 1128 

learning, or vasodilation (vascular smooth muscle relaxation) (for detailed 1129 

information see section 2 below). For these specific purposes, NO is 1130 

produced by the NOS enzyme or/and other enzymatic reactions, but also 1131 

exogenous NO is consumed (Gusarov et al., 2013). The contibution of 1132 

exogenous NO in intracellular signalling processes has rarely been studied 1133 

and, therefore, is poorly understood. NO is also consumed for cell 1134 

detoxification mainly via forming reactive N species (RNS), such as the NO 1135 

radical (NO*), nitroxyl (NO-), S-nitrosothiols (RSNOs), NO-soluble 1136 

guanylyn cyclase (NO-sGC), and dinitrosyl-iron complexes (DNICs). Not 1137 
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all NOS-derived NO is stored and converted to RNS and surplus will be 1138 

emitted (Johnson et al., 2008); unfortunately, quantitative data are not 1139 

available. 1140 

Many bacteria (including those not engaged in the N-cycle) are able 1141 

to detoxify NO by a range of enzymes, such as NO dioxygenase 1142 

(flavohemoglobin, Hmp), flavodiiron NO reductase (flavorubredoxin, 1143 

norVW) and periplasmic cytochrome C nitrite reductase (NrfA), under both 1144 

oxic and anoxic conditions (Poole et al., 2005; Koul et al., 2014; Mühlig et 1145 

al., 2014). Under aerobic conditions Hmp catalizes the oxidation of NO to 1146 

NO3
- (Crawford and Goldberg, 1998; Gardner et al., 1998; Hausladen et al., 1147 

2001;); and  Hmp was shown to protect Salmonella typhimurium against the 1148 

growth inhibitory affect of NO (Mills et al. (2008). Meanwhile under anoxic 1149 

conditions Hmp and NorVW facilitated the reduction of NO to N2O (Kim et 1150 

al. 1999; Gardner et al. 2002; Mills et al., 2005). The enzyme NrfA can  1151 

catalize the five-electron-reduction of NO to NH3/NH4
+ undr anaerobic 1152 

conditions (Poock et al., 2002; van Wonderen et al., 2008) and other 1153 

proteins possessing an ability to mediate NO detoxification have been found 1154 

across bacteria, e.g., truncated globin (HbN) in Mycobecterium bovis 1155 

(Ouellet et al., 2002), vitreoscilla globin (Vgb) in Vitreoscilla spp. (Frey et 1156 

al., 2002), cytochrome c’ (CycP) in Rhodobacter capsulatus (Cross et al., 1157 

2001) and single-domain globin (Cgb) in Campilobacter coli and C. jejuni 1158 

(Elvers et al., 2004). 1159 

For eucaryota the rate of NO consumption by cells is directly 1160 

dependent on, and proportional to, the oxygen concentration. According to 1161 

Thomas et al. (2001, 2008) this directly points to an important regulatory 1162 
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relationship between NO signaling and tissue oxygen concentration. 1163 

Increased oxygen levels will increase NO consumption, and in reverse NO 1164 

regulates oxygen consumption via inhibition of mitochondrial respiration. 1165 

This important interdependent relationship between NO and O2 provides a 1166 

direct feedback mechanism to regulate their respective concentrations 1167 

(Thomas et al., 2008). There are indications that such a mechanism may also 1168 

regulate NO concentration in soil air, though simultaneous measurements of 1169 

the dynamics of NO and O2 concentrations in soil air are still needed for 1170 

further judegement. 1171 

Quantification of the contribution of different NO consumption 1172 

processes has so far not been achieved. However, Koschorreck and Conrad 1173 

(1997) have measured a pseudo-first-order uptake rate constant (k) of NO 1174 

consumption in soil samples from four differens ecosystems (primary forest, 1175 

tree seedling plantation, flooded savanna, soil after tree burning). They 1176 

reported that under aerobic conditions the consumption rate was low and 1177 

varied between 12 and 28 cm3 h-1 g-1, while at anaerobic condition the 1178 

consumption rate was 1-2 orders of magnitude higher (227-3861 cm3 h-1 g-1 1179 

dw). Further studies are needed to fill this large knowledge gap. 1180 

 1181 

3.3. Interrelation between main abiotic and biotic processes of NO 1182 

transformations in soils 1183 

 1184 

Based on recently published literature, we have created a conceptual 1185 

diagram of all known and theoretical microbial, chemical and enzymatic 1186 

processes where NO is an obligatory player (Fig. 2). It is likely that NO2
-, a 1187 
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precursor of NO, is the central intermediate connecting all microbial 1188 

processes and processes associated with chemodenitrification. 1189 

 1190 

INSERT Fig. 2 HERE 1191 

 1192 

 As shown in Fig. 2, all processes are interrelated, interacting, and can 1193 

operate in parallel and/or partially stepwise, utilizing intermediates or 1194 

products, which were formed during other processes. The unique integrity 1195 

of interconnections between all components of the system in situ, presents 1196 

the greatest challenge for research, in particular under field conditions. 1197 

Unraveling these interactions requires controlled laboratory experiments 1198 

applying state-of-the-art methods such as multi-isotope tracing (e.g. Kool et 1199 

al., 2009a, b) together with combined gene expression and functional 1200 

analyses (e.g. Bru et al., 2010) of microbial mono-cultures and mixtures 1201 

(e.g. Rümer et al., 2009a, b; Russow et al., 2009). 1202 

 1203 

Nitrification and denitrification are considered to be the main soil 1204 

microbial processes leading to NO production. In situ and in vivo laboratory 1205 

studies have suggested that nitrification rates can be estimated from initial 1206 

and final substrate concentrations, assuming that oxidation of NH4
+ via 1207 

NH2OH to NO2
- and NO3

- is prerogative for aerobic nitrification. However, 1208 

we cannot ignore that part of the NH2OH formed from NH4
+ is decomposed 1209 

chemically or by non-specific enzymo-oxidative mechanisms. Thus, we 1210 

cannot answer the following simple questions due to a lack of knowledge: 1211 
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i) - What is the relative contribution of oxidative (nitrification) and reductive 1212 

(denitrification, codenitrification, DNRA, anammox, N-AOM) processes to 1213 

NO2
- production in soils; and can nitrifiers also utilize NO2

- formed by other 1214 

microbial processes? 1215 

ii) - What is the exact fate of NO2
- in soils, i.e. to what extend is NO2

- further 1216 

oxidized to NO3
- or reduced to NO, N2O, N2 or even NH3? 1217 

iii) - What are the dynamics of N oxidizing and reducing processes in soils, 1218 

since current lack of adequate measuring techniques limits the identification 1219 

of individual processes in bulk soil? 1220 

- What are the gross NO production and consumption rates and what is 1221 

the contribution of different processes to this consumption? 1222 

iv)  1223 

In situ studies have enabled us to estimate with reasonable confidence 1224 

rates of production and consumption of by- or end-products of 1225 

nitrification/denitrification pathways under certain environmental condition. 1226 

However, we can only speculate about the processes involved. In other 1227 

words, we are studying ‘symptoms’ (substances), but not ‘diseases’ 1228 

(processes). The future challenge is to characterize and quantify these 1229 

processes with new experimental approaches to better understand drivers 1230 

and processes leading to NO emissions from soil. 1231 

 1232 

4. Physiological functions of NO in different groups of organisms 1233 

 1234 

Generally NO-related signalling functions are attributed to various 1235 

reactive N species (RNS), which are derivatives of NO, e.g. NO radical 1236 
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(NO.), nitroxyl (NO-), nitrosonium (NO+), peroxynitrite (ONOO-), S-1237 

nitrosothiols (RSNOs), NO-soluble guanylyn cyclase (NO-sGC), dinitrosyl-1238 

iron complexes (DNICs), N2O5, etc. 1239 

 1240 

4.1. Functions of NO in bacteria 1241 

 1242 

In Gram-positive bacteria (e.g. B. subtilis, B. anthracis), endogenous NO 1243 

produced by bNOS as well as exogenous NO mainly possess the function of 1244 

rapid protection against oxidative stress. Direct protection is achieved 1245 

through catalase activation and transient inhibition of the rate of enzymatic 1246 

reduction of free cysteine. This sulphur amino acid is involved in the re-1247 

reduction of Fe3+ to Fe2+, thus suppressing Fe2+-mediated formation of 1248 

hydroxyl radicals (a Fenton reaction) (Gusarov and Nudler, 2005; Shatalin 1249 

et al., 2008). In addition, it was demonstrated (Gusarov et al., 2009) that the 1250 

enzyme bNOS protects bacteria (e.g. B. subtilis, Staphylococcus aureus) 1251 

against a wide spectrum of antibiotics by endogenous NO production, either 1252 

directly by nitrosation (acridines) or indirectly by NO-mediated suppression 1253 

of oxidative stress (pyocyanin, cephalosporins, lactams). Corker and Poole 1254 

(2003) showed that anaerobic NO accumulation in E.coli grown in the 1255 

presence of  NO3
- but absence of Hmp inactivated the anaerobic regulator 1256 

Fnr (fumarate and nitrate reductase). Fnr controls periplasmic cytochrome c 1257 

nitrite reductase (NrfA), Nir and Nar, and thereby blocks further NO 1258 

production from NO3
- via NO2

-. In addition, Mühlig et al. (2014) proposed 1259 

that in S. typhimurium NO can initiate detoxification via inactivation of Fnr 1260 

and/or NO-responsive regulator (NsrR) derepressing Hmp expression as 1261 
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well as via activation of an anaerobic nitric oxide reductase transcription 1262 

regulator (NorR) derepressing NorV expression. 1263 

bNOS-dependent NO production is involved in the synthesis of a nitrated 1264 

phytotoxin thaxtomin A and thereby plays a major role in the pathogenesis 1265 

of Streptomyces spp., (Johnson et al., 2008). Endogenous NO produced by 1266 

NOS indirectly protects Deinococcus radiodurans against ultraviolet 1267 

radiation (Patel et al., 2009). 1268 

In bacteria, where NOS is expressed (e.g. S. aureus, B. subtilis, B. 1269 

anthracis), flavohemoglobins (flavoHbs) are co-expressed and in the 1270 

presence of O2 may convert bNOS-derived NO to NO3
- with electron 1271 

transfer from NAD(P)H to the ferric heme iron ligand via FAD (Bang et al., 1272 

2006; Ilari and Boffi, 2008; Nobre et al., 2008): 1273 

 1274 

 1275 

 1276 

(13) 1277 

 1278 

 1279 

Hence NOS-produced NO may be consumed by bacteria in a balanced 1280 

way, although evidence for and the rate of NO consumption in a reaction 1281 

with endogenous flavoHbs have to be elucidated in further studies (Rafferty, 1282 

2011). 1283 

Moreover, it was observed that also SOD A expression in B. subtilis is 1284 

significantly increased by bNOS activity. From this observation it was 1285 

speculated that NO can act as a transcriptional regulator, however, a 1286 
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mechanism of this regulation has not been revealed (details in Rafferty, 1287 

2011). 1288 

Recently, Schreiber et al. (2011) showed that biofilm dispersal of B. 1289 

subtilis appears to be affected by NOS activity. The authors suggested that 1290 

NO is involved in the fine-tuning decision between adaptation to anoxic 1291 

conditions (in the biofilm) or dispersal from the biofilm. A role of NO for 1292 

biofilm dispersion was reported for the pathogens Pseudomonas aeruginosa 1293 

(Barraud et al., 2006, 2009a) and S. aureus (Schlag et al., 2007), the 1294 

myxomycete Candida albicans, as well as in mixed-species biofilms 1295 

(Barraud et al., 2009b). In contrast, in many Gram-negative bacteria, where 1296 

NO is mainly synthesized as a by-product by NAR/NAP during 1297 

denitrification, NO can play a signalling function to enhance biofilm 1298 

formation. For instance, NO not only induces biofilm formation, but also 1299 

up-regulates the genes involved in NIR and NAP synthesis and oxidative 1300 

stress tolerance in Neisseria gonorrhoeae (Falsetta et al., 2011). Moreover, 1301 

NO triggers the transcription of a gene obligatory for attachment and initial 1302 

biofilm formation in a number of nitrifying bacteria (e.g. Nitrosomonas 1303 

europaea, Nitrosolobus multiformis and Nitrospira briensis) (Schmidt et al., 1304 

2004). 1305 

Increasing the NO concentration in the medium induced the formation of 1306 

biofilms by the Gram-negative rhizobacteria Azospirillum brasilense, whilst 1307 

a gradual decrease of NO in the medium appears to mobilize cell motility 1308 

(Arruebarrena Di Palma et al., 2013). The authors showed that both 1309 

endogenously produced and exogenously added NO (e.g. GSNO as NO-1310 

donor) caused the same response. Apparently, NO-mediated effects on 1311 
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bacterial biofilm formation or dispersal are species-specific phenomena, 1312 

depending on N availability (e.g. at the soil microsite or the host 1313 

environment). 1314 

 1315 

4.2. Functions of NO in protists 1316 

 1317 

NOS activity in myxomycetes (e.g. Physarum polycephalum) is induced 1318 

under nutrient limitation and is involved in sporulation, but the mechanisms 1319 

responsible so far have not been described (Messner et al., 2009). 1320 

Recently, a NOS enzyme without a reductase domain, but resembling 1321 

bacterial NOS, was found in the eukaryotic unicellular algi Naegleria 1322 

gruberi (Fritz-Laylin et al., 2009). Characterization of the enzyme and its 1323 

function has not been reported. 1324 

 1325 

4.3. Functions of NO in animals 1326 

 1327 

Invertebrates and vertebrates (i.e. worms, beetles,, rodents, moles,, 1328 

ruminants) influence the physical and chemical composition of soil, by 1329 

burrowing, compaction and deposition of nutrients (i.e. faeces, urine and 1330 

saliva), thereby indirectly influence NO production and consumption 1331 

processes. 1332 

 1333 

4.3.1. Invertebrates 1334 

 1335 
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In invertebrates (e.g. roundworms) NO can prolong life and mediate 1336 

stress resistance to heat (Gusarov et al., 2013), Cd2+ toxicity (Cui et al., 1337 

2007) and the response to pathogenic bacteria (e.g. P. aeruginosa) (Troemel 1338 

et al., 2006). 1339 

In addition, in invertebrates (e.g. echinoderms, coelenterates, nematodes, 1340 

annelids, insects, crustaceans and molluscs) NO is of ubiquitous importance 1341 

as an orthograde transmitter and a co-transmitter in signalling cascades as 1342 

well as a modulator of conventional transmitter release (Jacklet 1997). 1343 

These signalling functions of NOS-derived NO include neuronal sensory, 1344 

including chemosensory (Gelperin, 1994; Jacklet and Gruhn, 1994; Elphick 1345 

et al., 1995), as well as signalling in learning processes (Robertson et al., 1346 

1995; Kendrick et al., 1997; Müller, 1997) and development (Davis and 1347 

Murphey, 1994; Kuzin et al., 1996; Froggett and Leise, 1997; Jacklet, 1997; 1348 

Meleshkevitch et al., 1997). In the bug Rhodnius NO mediated vasodilation 1349 

(Nussenzveig et al., 1995); the exact mechanism is not clear, but may 1350 

resemble that identified in mammals (Jacklet, 1997). Comprehensive studies 1351 

carried out (Susswein and Chiel, 2012) on the sea slug Aplysia elucidated 1352 

that NO plays a major role in neuron mediated control of food finding and 1353 

food consumption. Thus, NO is associated with the neural function of the 1354 

swallow-rejecting mechanism, i.e. the rejection and reposition of 1355 

mechanically resistant food, and the formation of memories of food 1356 

inedibility (learning function), when food could not be swallowed 1357 

successfully (Susswein and Chiel, 2012). 1358 

 1359 
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NO produced by bacteria (e.g. B. subtilis, E. coli with a NOS plasmid), 1360 

previously eaten by the roundworm Caenorhabditis elegans (lacking its own 1361 

NOS), diffuses into the worm’s intestine tissues and triggers a cascade of 1362 

signalling reactions causing a specific transcriptional response that promotes 1363 

thermotolerance and prolongs life (Gusarov et al., 2013). The anti-aging 1364 

effects of bacterial NO, were demonstrated by adding exogenous NO to the 1365 

growth medium of the worm (Gusarov et al., 2013). The authors suggested 1366 

that similar mechanisms may be relevant in higher organisms, one example 1367 

may be the beneficial effect of ‘normal’ gastrointestinal microbiota. Such 1368 

gastrointestinal microbes, predominately Gram-positive lactic acid bacteria 1369 

(e.g. Lactobacillus, Streptococcus, Lactococcus spp.) possess NOS (Masson 1370 

et al., 2011 and references therein) and NOS-derived NO may be used by 1371 

the host. Thus, bacterial NO may diffuse into gastrointestinal tract cells and 1372 

increase the level of available NO, which together with endogenous 1373 

produced NO by the host may be involved in vasodilation, vasoprotection, 1374 

cytoprotection, neuroprotection, etc. (Lundberg et al., 1994, 2008; 1375 

Velayutham and Zweier, 2013 and references therein). However, this 1376 

suggestion requires further investigations. 1377 

 1378 

4.3.2. Mammals (including humans) 1379 

 1380 

It has been clearly demonstrated that in mammals NO is involved in the 1381 

regulation of synaptic signalling events, blood pressure, gut peristalsis, 1382 

vasodilation, penile erection, developing retinal tissue at the level of gene 1383 

transcription, mRNA translation and post-translational modifications of 1384 
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proteins (Forstermann and Sessa, 2012; Socodato et al., 2013). Zhou and 1385 

Zhu (2009) indicated that NO is also engaged in modulating memory, 1386 

learning and neurogenesis. The functions of NO in mammals include a 1387 

whole set of both positive and negative effects listed in Table 3. 1388 

 1389 

INSERT Table 3 HERE 1390 

 1391 

The presumably healthy human population of Earth (7.22 billion in March, 1392 

2014 according to Worldometers, 2014) annually exhales approximately 92 1393 

Gg N-NO a-1 (estimated using Antczak et al. (2011), Davies and Moores 1394 

(2003) and Levitzky (2003) data), which is equally to 1% of total soil 1395 

emission (IPCC, 2007). Undoubtedly, this value is an underestimation, as 1396 

people suffering from inflammatory diseases or physiological problems 1397 

exhale higher rates of NO (Kharitonov et al., 1996; Fuchs et al., 2012). 1398 

Exhaled NO has been proposed as an inflammatory disease marker for 1399 

humans, since iNOS can be triggered to a greater degree by inflammatory 1400 

cytokines, endotoxines and viral infections (Asano et al., 1994; Hunt et al., 1401 

2000; Antczak et al., 2011). We can speculate with confidence that NO is 1402 

also exhaled by other mammals, including those living in the soil. Hence, 1403 

the total exhaled NO rate of mammals is likely to be much higher than the 1404 

estimate for the human population. 1405 

 1406 

4.4. Functions of NO in plants 1407 

 1408 
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In plants NO is a ubiquitous endogenous key mediator of numerous 1409 

physiological and developmental processes (Guo et al., 2003; Lamattina et 1410 

al., 2003; Wendehenne et al., 2004; Delledonne, 2005; Besson-Bard et al., 1411 

2008; Neill et al., 2008). In the aboveground parts of the plant, it is, for 1412 

example, involved in flowering, seed germination and floral development; 1413 

in belowground parts in root organogenesis, lateral root development, and 1414 

formation of root hairs and adventitious roots (see review by Mur et al., 1415 

2012 and references therein). NO also plays a role in plant-microbe 1416 

interaction including host defense, pathogen virulence and symbiotic 1417 

interaction (Mur et al., 2012). In addition, it fulfills functions in stomatal 1418 

regulation (Garcı́a-Mata and Lamattina, 2001; Desikan et al., 2002; Neill et 1419 

al., 2002), root nitrogen uptake and metabolism (Simon et al., 2009; 2013) 1420 

and adaptive responses to abiotic stress (Neill et al., 2003; 2008; Besson-1421 

Bard et al., 2008; Mur et al., 2012). Abiotic stress reactions with proven 1422 

participation of NO signaling include drought (Garcı́a-Mata and Lamattina, 1423 

2001; Desikan et al., 2002; Neill et al., 2002; Freschi et al. 2010), salinity 1424 

(Zhang et al., 2004, 2006; Liu et al., 2007; Shi et al., 2007; Zhao et al., 1425 

2007; David et al., 2010; Chen et al., 2013), heat (Leshem et al., 1998; 1426 

Gould et al., 2003), cold (Zhao et al. 2009) and flooding (Dean and Harper, 1427 

1986; Guo et al., 2003; Zhang et al., 2006; Ferreira et al., 2010; Gupta and 1428 

Kaiser, 2010; Gupta et al., 2012). All these environmental factors cause 1429 

oxidative stress in plants; it is therefore suggested that NO stimulates 1430 

antioxidative defense mechanisms during periods of elevated production 1431 

and abundance of reactive oxygen species (ROS) (Neill et al., 2008). 1432 



58 

 

NO production by plants is of particular significance upon nitrate 1433 

reduction in roots under hypoxia (Dean and Harper, 1986; Dordas et al., 1434 

2003, 2004; Igamberdiev et al., 2004; Igamberdiev and Hill, 2009; Gupta 1435 

and Kaiser, 2010; Gupta et al., 2012). NO formation was determined in 1436 

these studies directly in the tissue affected by hypoxia stress. Recently, NO 1437 

emissions were measured fom the leaves of trees, where only the root 1438 

system was flooded (Copolovici and Niinemets, 2010). Because NO 1439 

emissions were highest in flooding sensitive and lowest in flooding tolerant 1440 

species, NO emissions were suggested to be a marker of flooding tolerance. 1441 

In addition, a regulatory function of NO in stomatal conductance of flooded 1442 

plants was postulated (Copolovici and Niinemets, 2010). The significance of 1443 

NO produced in plant roots upon hypoxia for other soil biota has so far not 1444 

been elucidated. In addition, the contribution of plant derived NO for NO 1445 

emissions from the soil and from aboveground parts of plants into the 1446 

atmosphere has so far not been quantified. 1447 

In plants, NO is involved in protein modification as posttranslational 1448 

regulator of enzymes both directly and indirectly via its derivatives (RNS). 1449 

S-nitrosylation of cysteine, nitrosylation of transition metals and tyrosine 1450 

nitration appear to be the main NO-associated protein modifications. S-1451 

nitrosylation is involved in gene regulation, modulates phytohormon 1452 

signalling and can control programmed cell death (PCD) in opposing ways 1453 

(promote or inactivate) (Hara et al., 2005; Melotto et al., 2006; Belenghi, 1454 

2007; Forman et al., 2008; Tada et al., 2008). NO regulation of gene 1455 

expression via S-nitrosylation has been widely reported (Grün et al., 2006 1456 

and reference therein). However, the regulatory mechanisms involved in this 1457 
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regulation are still unclear (Grün et al., 2006; Leitner et al., 2009). NO 1458 

appears to modulate the response of phytohormones, involved in pathogen-1459 

induced stomatal movements via S-nitrosylation of K+ outward channels 1460 

(Sokolovski et al., 2004; Melotto et al., 2006). An opposite function of NO-1461 

mediated S-nitrosylation in apoptosis is connected with cytosolic 1462 

glyceraldehyde 3-phosphate dehydrogenase (GAPDH) inactivation. The role 1463 

of metal nitrosylation in plants has not been revealed yet, but it seems that 1464 

cytochrome P450s could be a target (Leitner et al., 2009). NO can easily 1465 

neutralize harmful O2
- to form peroxynitrite (ONOO-); ONOO- can further 1466 

react with tyrosine residues by nitration, thereby enhancing tyrosine residue 1467 

containing proteins’ susceptibility to proteolysis (Grune et al., 1998; Souza 1468 

et al., 2000). Tyrosine nitration is associated with disease resistance 1469 

response (Sailto et al., 2006; Romero-Puertas et al., 2007; Cecconi et al., 1470 

2009), plant resistance to abiotic and biotic stresses, but is also important for 1471 

normal growth, fertility and reproduction of plants (Rusterucci et al., 2007; 1472 

Lee et al., 2008; Leitner et al., 2009). 1473 

The following pathways of NO scavenging have been considered in plant 1474 

cells. NO can be transformed to nitrate by non-symbiotic haemoglobins 1475 

under hypoxic stress (Perazolli et al., 2004), providing cells with NO3
-, an 1476 

important nutrient which acts as a signal for plant growth and regulates of 1477 

genes expression (Crawford and Glass, 1998 and reference therein; Stitt et 1478 

al., 2002 and reference therein). NO can easily react with glutathione (GSH) 1479 

to form S-nitrosolated glutathione (GSNO). Further, GSNO can be used as a 1480 

NO storage pool and/or act a transnitrosylation agent, or can be reduced by 1481 

S-nitrosoglutathione reductase (GSNOR), producing oxidised glutathione 1482 
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(GSSG) and NH3. Great significance is attributed to the reaction of NO with 1483 

superoxide to form ONOO-, which can be detoxified by peroxiredoxins with 1484 

nitrite production or react with tyrosine residues. Resistance during biotic 1485 

and abiotic stresses appears to be associated with NO-mediated GSNO 1486 

formation and transport in systemic stress signalling, as well as tyrosine 1487 

nitration (Saito et al., 2006; Corpas et al., 2008). 1488 

 1489 

4.4.1. Microbial NO and plant pathogenesis 1490 

 1491 

Plant-pathogenic Streptomyces spp. produce endogenous NO catalysed 1492 

by the bNOS enzyme at the host-pathogen interface, and is induced by 1493 

cellobiose, a disaccharide product of cellulose degradation (Johnson et al., 1494 

2008). In fact, bNOS-derived NO is used for nitration of thaxtomin A, a 1495 

dipeptide phytotoxin), which inhibits cellulose biosynthesis (Johnson et al., 1496 

2008; Fry and Loria, 2002; Scheible et al., 2003). Since NO can easily 1497 

diffuse through biological membranes and is also well known as a defence 1498 

and signalling molecule in plants, the NO produced by Streptomyces spp. in 1499 

response to the degradation  of the host plant cell wall is likely to penetrate 1500 

into plant tissues, thereby affecting the plant signalling systems (Johnson et 1501 

al., 2008). 1502 

 1503 

4.4.2. Soil microbial NO and plant root processes 1504 

 1505 

NO plays a significant role in legume-rhizobium symbiosis, since both 1506 

plant and bacteria are involved in production and metabolism of NO 1507 
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(Meilhoc et al., 2011). NOS-like activity was observed in free living 1508 

rhizobia under anaerobic condition (Pii et al., 2007) as well as during the 1509 

symbiosis establishment phase (Meilhoc et al., 2011). In mature N2-fixing 1510 

nodules denitrification and the plant NR/mitochondrial electron transport 1511 

chain (ETC) system seem to be basic NO sources under micro-oxic 1512 

condition (Sanchez et al., 2010; Horchani et al., 2011). Signalling functions 1513 

of NO are attributed to the expression of genes involved in nodule 1514 

organogenesis, C- and N-metabolism, redox response, and cell division 1515 

(Cooper, 2004; Frendo et al., 2005; Pii et al., 2007). It also has been shown 1516 

that functional nodules of Glycine max (Meakin et al., 2007), and Medicago 1517 

truncatula (Horchani et al., 2011) increased their NO production under 1518 

oxygen limiting condition. 1519 

In greenhouse experiments it was shown that the rhizosphere NO 1520 

concentration modulated uptake of N compounds by tree roots (Simon et al., 1521 

2009, 2013). It is therefore assumed that soil microbial NO is sensed by 1522 

roots and acts as a signal determining the competitive strength of roots in 1523 

the acquisition of N sources from the soil. At the ecosystem level, this 1524 

signalling function of NO appears highly important, particularly in low N 1525 

soils, since plant root and bacteria compete for the same inorganic and 1526 

organic N sources (Stoelken et al., 2010). It is currently unknown if N 1527 

acquisition by mycorrhizal fungi is also subject to bacterial NO mediated 1528 

modulation. It is also unclear if this signalling process is based on root 1529 

surface interactions or requires NO influx into the root. Since NO action is 1530 

thought to take place at the level of posttranslational protein modification 1531 

(Leitner et al., 2009), it is feasible that NO of microbial origin acts on the 1532 
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outer surface of the plasmalemma on transmembrane proteins responsible of 1533 

N transport processes. If microbial NO would pass the plasmalemma, it 1534 

would directly interact with plant responses to abiotic stress such as salinity, 1535 

high temperature, high light intensity and anoxia. These environmental 1536 

factors are all subject to signalling by posttranslational modifications 1537 

mediated by NO internally produced by plants (Leitner et al., 2009). 1538 

Therefore, it appears that a clear separation of external NO of bacterial 1539 

origin and internally produced NO is highly desirable for the interaction of 1540 

plants with its ever changing environment. Still NO influx into the roots is 1541 

likely to take place, since other trace gases of soil microbial origin such as 1542 

CH4 and N2O, are subject to root influx, plant mediated transport, and 1543 

release from the shoot into the atmosphere (Schütz et al., 1991; Butterbach-1544 

Bahl et al., 1997; Machacova et al., 2013). The contribution of this pathway 1545 

to the release of soil microbial NO into the atmosphere is currently 1546 

unknown. It also remains to be analysed if some of the NO produced inside 1547 

plant cells is emitted into the atmosphere. 1548 

 1549 

5. Conclusions 1550 

 1551 

New approaches and techniques, e.g. stable isotope labelling, inhibitor 1552 

application, gas-flow-soil-core and chamber methods, “omics” technologies, 1553 

have improved existing understanding and have discovered new 1554 

mechanisms of N transformation leading to NO production. It is likely that 1555 

archaea are important players involved in processes related to ammonia 1556 
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oxidation especially in NH4
+-poor and/or acid environments. It has clearly 1557 

been demonstrated that: 1558 

i) (a) nitrite is the main precursor for NO under both oxic and anoxic 1559 

condition, but sources for NO2
- can be linked either to oxidative or reductive 1560 

microbial N transformation pathways; 1561 

ii) (b) ammonium is the dominant (70%) source of NO under aerobic 1562 

condition, which confirms previous reports that nitrification is the prevailing 1563 

process responsible for soil NO production; 1564 

iii) (c) nitrate is a dominant (87%) source of NO under anoxic 1565 

condition, which elucidates the significant role of denitrification in NO 1566 

production; 1567 

iv) (d) nitric oxide is a free (and non-enzyme-bound) precursor for 1568 

N2O under anaerobic conditions, thereby confirming the “diffusion 1569 

limitation” hypothesis. 1570 

 1571 

Our literature review suggests that NO/N2O emission ratios are possibly 1572 

not good predictors of the NO production pathway (nitrification or 1573 

denitrification). There is some evidence that periplasmic and cytoplasmic 1574 

DNRA may produce NO, but the significance at ecosystem level needs to be 1575 

studied. Codenitrification process has been shown to mediate NO 1576 

production by denitrification. Significance of NO for the anaerobic 1577 

processes anammox and N-AOM has been elucidated as well as the 1578 

potential importance of NO loss/leakage; the latter urgent needs for further 1579 

investigations. 1580 
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We have described a theoretically feasible unspecific enzymo-oxidative 1581 

mechanism of NO production in soils, which suggests that not only 1582 

nitrifying and denitrifying microbes produce NO, but that also extracellular 1583 

enzymes from a wide range of microorganisms could influence NO 1584 

production. 1585 

NO is a signalling molecule due to its ability to diffuse freely across 1586 

biological membranes, hence it can directly or indirectly (via RNS) 1587 

modulate the activities of cellular and extracellular proteins in various 1588 

groups of organisms, implementing significant physiological functions. 1589 

NOS seems to be a ubiquitous trans-species enzyme (although its 1590 

presence in plants has not been confirmed yet), which is responsible for NO 1591 

synthesis in various organisms. However, role of NO production via NOS  1592 

in ecosystem functioning is unknown. 1593 

In bacteria NO production is associated with a defence function in early 1594 

stages of infection. At the same time NO produced by the host organism is 1595 

part of its protective system against pathogens. Furthermore bNOS-derived 1596 

NO from non-pathogenic and opportunistic bacteria can diffuse to host cells 1597 

and can be used by a host for a wide range of physiological purposes, i.e. 1598 

cause beneficial effect on inter-organismic level. 1599 

A new role of soil microbial NO in determining the competition between 1600 

microbial and plant use of soil nitrogen resources has been recently 1601 

suggested, but still requires validation at the field and identification on the 1602 

mechanisms involved. In addition, the role of plants in mediating the 1603 

exchange of microbial NO into the atmosphere requires further 1604 

investigations. 1605 
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A wide range of prokaryotes and eukaryotes are able to produce NO by 1606 

multiple pathways for its own purposes, since each cell needs a sufficient 1607 

amount of NO for its normal physiological functioning. However it is 1608 

unknown to what extent cells rely on NO produced by exogenous processes. 1609 

Detailed studies of the cellular NO demand in physiological processes will 1610 

provide a closer understanding of NO exchange at the cellular and the 1611 

organismic level. 1612 

Many NO consumption pathways have been described, both abiotic (e.g., 1613 

nitrosation and possible reaction with SOM in soil; reactions in soil-1614 

atmosphere surface) and biotic processes (e.g., denitrification, 1615 

codenitrification, anammox, N-AOM, detoxification, for physiological 1616 

purposes). 1617 

Detailed investigations are needed to clarify molecular mechanisms of 1618 

NO production and consumption, its controlling factors, and the significance 1619 

of NO as a regulator of microbial, animal and plant processes in order to 1620 

gain a better understanding of soil NO emissions to the atmosphere. 1621 
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Figure captions and Tables 3515 

 3516 

Fig. 1. Example of models simulating the temperature effect on nitrification 3517 

rates (adopted from Stark, 1996). Curves were reconstructed using 3518 

coefficients for temperature response functions, taken from Stark (1996) 3519 

[Table 1, p. 440] for open grassy interspaces with the temperature optimum 3520 

of 35.9 ˚C. 3521 

 3522 

 3523 

3524 
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Fig. 2. Schematic diagram of NO transformations mediated by microbial, 3525 

enzymatic and chemical processes in soils. 3526 

DNRA (dissimilatory nitrate reduction to ammonium); anammox (anaerobic ammonium 3527 

oxidation); N-AOM (nitrite-dependent anaerobic oxidation of methane); RNS (reactive N 3528 

species); enzymes: AMO (ammonia monooxygenase); HAO (hydroxylamine 3529 

oxidoreductase); NAR (membrane-bound nitrate reductase); NAP (periplasmic nitrate 3530 

reductase); NirK (copper-containing nitrite reductase); NirS (cytochrome cd1 nitrite 3531 

reductase); NirB (cytoplasmic nitrite reductase); Nrf (cytochrome c nitrite reductase); NrfA 3532 

(periplasmic cytochrome c nitrite reductase); NXR (nitrite oxidoreductase); cNor (nitric 3533 

oxide reductase that accepts electrons from c-type cytochromes); qNor (nitric oxide 3534 

reductase that accepts electrons from quinols); NorVW (flavorubredoxin), Hmp, 3535 

(flavohemoglobins); N2OR (nitrous oxide reductase); HZS complex (hydrazine synthase 3536 

enzyme complex); HDH (hydrazine dehydrogenase); “NOD” (undefined hypothetical nitric 3537 

oxide dismutase); NOS (nitric oxide synthase); SOD (super oxide dismutase); XOD 3538 

(xanthine oxide dismutase); E-NO complex (enzyme (E) bound NO complexes, e.g. E-NO, 3539 

E-NO- and E-NO+, which mediates biotical N-nitrosation). 3540 

 3541 

 3542 

3543 
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Table 1. Emission rates and sources of nitric oxide under a range of oxygen 3544 

concentrations (from Russow et al., 2009). 3545 

O2 content 

(vol. %) 

Emission 

(μg N kg-1 h-1) 

NO formation froma 

NH4
+ 

(%) 

NO3
- 

(%) 

NH4
+ + NO3

- 

(%) 

20.0 0.92±0.35 70 10 80 

2.0 1.16±0.24 26 53 79 

0.3 1.90±0.88 1.7 81 83 

0 3.71±1.40 0 87 87 
astandard error of the mean (1σ), n=6 3546 

 3547 

3548 
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Table 2. Pathways of NO production in plants (Gupta et al., 2011 and 3549 

reference therein). 3550 

Reductive pathways Oxidative pathways 
Nitrate reductase (NR) Nitric oxide synthase (NOS) -like 

activity 

Plasma membrane-bound nitrite: NO reductase  

(NiNOR) 

Arginine-dependent, polyamine-

mediated NO 

 Production 

Mitochondrial nitrite reduction Hydroxylamine-mediated NO 

production 

Xanthine oxidoreductase in plant peroxisomes  

 3551 

3552 
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Table 3. Positive and negative effects of NO and its derivatives in 3553 

mammals. 3554 

Effect/function Agent Location Reference 

Positive effect 

Vasodilation (vascular 

smooth muscle 

relaxation) 
Formation of NO-sGC or 

(NO)2-sGC complexes, 

with releasing of His-105 

triggers various cellular 

signalling pathways (e.g. 

cGMP formation with 

further cGK, PDE and 

iongated channels 

regulation) 

Endothelium 

eNOS-derived 

NO could 

immediately 

diffuse across 

the cell 

membrane to 

smooth muscle 

cells 

Li and 

Forstermann, 

2000; 

Derbyshire 

and Marletta, 

2009; 

Martin et al., 

2012 

Neurotransmission 

Vasoprotection via 

inhibiting platelet 

aggregation 

Stimulating smooth 

muscle proliferation 

Protection against 

atherogenesis on its 

early stages, preventing 

leukocyte adhesion to 

the vascular endothelium 

Protective function via 

cytotoxic effect on 

intracellular bacteria, 

cancer cells and tumor 

tissues 

NO-mediated 
Activated 

macrophages 

Nathan and 

Hibbs, 1991; 

Wei et al., 

1995; 

MacMicking 

et al., 1997; 

Forstermann 

and Sessa, 

2012; 

Rahmanto et 

al., 2012; 

Cardioprotection (e.g. 

against ischemic and 

reperfusion injury) 

NO-mediated Cardiocytes 

Bolli et al., 

2007; 

West et al., 

2008; 

Granfeldt et 

al., 2009; 

Talukder et 

al., 2010 

Antitumor activity 

NO-mediated via 

reduced glutathione 

(GSH) 

multidrug 

resistance 

protein (MRP) 1 

channel in 

various cells 

Richardson et 

al., 1995; 

Li et al., 

2011b; 
Neuroprotection 

Regulating release of 

several neuromodulators 

in the developing retina 

(e.g. glutamate, gamma-

aminobutyric acid 

(GABA), glutamine, 

ascorbate) 

NO as an atypical retinal 

messenger 
Retina 

Ientile et al., 

1996; 

Maggesissi et 

al., 2009; 

Portugal et al., 

2012 

Negative effect 

Cytotoxicity (e.g. 

reaction with proteins 

and nucleic acids), 

leading to apoptosis and 

cell death 

Overproduction of NO 
Various types of 

cells 

Boje and 

Arora, 1992; 

Dimmeler and 

Zeiher, 1997; 

Kroncke et al., 

1997; 

Gotoh and 
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 3555 

Mori, 2006; 

Erusalimsky 

and Moncada, 

2007; 

Forstermann 

and Sessa, 

2012; 

Attenuation of energy 

production by inhibiting 

mitochondrial 

respiration and 

glycolysis 

Overproduction of NO 
Mitochondria 

and cytoplasm 

Erusalimsky 

and Moncada, 

2007; 

Brown, 2010; 

Neurodegenerative 

disorders and cerebral 

infarction 

 

Overproduction of NO 

by activated 

macrophages or 

microglia cells 

Neurons 

Chao et al., 

1992; 

Kroncke et al., 

1997; 

Ignarro, 2009; 

Septic shock due to 

vasodilation and 

hypotension 

Overproduction of NO Vascular system 

Wong and 

Billiar, 1995; 

Lange et al., 

2009; 

Pathogenesis of Type I 

diabetes due to NO 

induced islet cell death 

Overproduction of NO 
Endocrine 

system 

Oyadomari et 

al., 2002 

Apoptosis due to 

eliminating  Ca2+ from 

endoplasmic reticulum 

Overproduction of NO 
Pancreatic β-

cells 

Oyadomari et 

al., 2001, 2002 

Damaging DNA, 

proteins and lipids 

NO-mediated oxidative 

reaction products (e.g. 

ONOO-) 

Various types of 

cells 

Lee et al., 

2003; 

Mikkelsen and 

Wardman, 

2003; 

Ridnour et al., 

2004 

Brain pathology Neurons 
Brown and 

Neher, 2010 

Myocardial injury Cardiocytes 

Wang and 

Zweier, 1996; 

Zweier and 

Talukder, 

2006 
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