32 research outputs found

    Rhizospheric NO interacts with the acquisition of reduced N sources by the roots of European beech (Fagus sylvatica L.)

    Get PDF
    AbstractThe gas phase of the soil plays an important role in plant growth and development. We investigated the effect of rhizospheric NO as a signalling compound for N uptake of beech roots. Following exposure to NO, ammonium and glutamine uptake into roots were determined using 15N-labelling, and gene expression of selected transporters was analysed by quantitative real-time PCR. Uptake of both N sources increased significantly with elevated NO concentration. However, with one exception, this increase was not reflected in up-regulation of expression of the respective transporters

    The Augmented Lagrange Multiplier Method for Exact Recovery of Corrupted Low-Rank Matrices

    Full text link
    This paper proposes scalable and fast algorithms for solving the Robust PCA problem, namely recovering a low-rank matrix with an unknown fraction of its entries being arbitrarily corrupted. This problem arises in many applications, such as image processing, web data ranking, and bioinformatic data analysis. It was recently shown that under surprisingly broad conditions, the Robust PCA problem can be exactly solved via convex optimization that minimizes a combination of the nuclear norm and the 1\ell^1-norm . In this paper, we apply the method of augmented Lagrange multipliers (ALM) to solve this convex program. As the objective function is non-smooth, we show how to extend the classical analysis of ALM to such new objective functions and prove the optimality of the proposed algorithms and characterize their convergence rate. Empirically, the proposed new algorithms can be more than five times faster than the previous state-of-the-art algorithms for Robust PCA, such as the accelerated proximal gradient (APG) algorithm. Moreover, the new algorithms achieve higher precision, yet being less storage/memory demanding. We also show that the ALM technique can be used to solve the (related but somewhat simpler) matrix completion problem and obtain rather promising results too. We further prove the necessary and sufficient condition for the inexact ALM to converge globally. Matlab code of all algorithms discussed are available at http://perception.csl.illinois.edu/matrix-rank/home.htmlComment: Please cite "Zhouchen Lin, Risheng Liu, and Zhixun Su, Linearized Alternating Direction Method with Adaptive Penalty for Low Rank Representation, NIPS 2011." (available at arXiv:1109.0367) instead for a more general method called Linearized Alternating Direction Method This manuscript first appeared as University of Illinois at Urbana-Champaign technical report #UILU-ENG-09-2215 in October 2009 Zhouchen Lin, Risheng Liu, and Zhixun Su, Linearized Alternating Direction Method with Adaptive Penalty for Low Rank Representation, NIPS 2011. (available at http://arxiv.org/abs/1109.0367

    A review of soil NO transformation: associated processes and possible physiological significance on organisms

    Get PDF
    NO emissions from soils and ecosystems are of outstanding importance for atmospheric chemistry. Here we review the current knowledge on processes involved in the formation and consumption of NO in soils, the importance of NO for the physiological functioning of different organisms, and for inter- and intra-species signaling and competition, e.g. in the rooting zone between microbes and plants. We also show that prokaryotes and eukaryotes are able to produce NO by multiple pathways and that unspecific enzymo-oxidative mechanisms of NO production are likely to occur in soils. Nitric oxide production in soils is not only linked to NO production by nitrifying and denitrifying microorganisms, but also linked to extracellular enzymes from a wide range of microorganisms. Further investigations are needed to clarify molecular mechanisms of NO production and consumption, its controlling factors, and the significance of NO as a regulator for microbial, animal and plant processes. Such process understanding is required to elucidate the importance of soils as sources (and sinks) for atmospheric NO

    A review of soil NO transformation: Associated processes and possible physiological significance on organisms

    Full text link

    Initial differentiation of vertical soil organic matter distribution and composition under juvenile beech (Fagus sylvatica L.) trees.

    No full text
    In a lysimeter experiment with juvenile beech trees (Fagus sylvatica L.) we studied the development of depth gradients of soil organic matter (SOM) composition and distribution after soil disturbance. The sampling scheme applied to the given soil layers (0-2 cm, 2-5 cm, 5-10 cm and 10-20 cm) was crucial to study the subtle reformation of SOM properties with depth in the artificially filled lysimeters. Due to the combination of physical SOM fractionation with the application of 15N-labelled beech litter and 13C-CPMAS NMR spectroscopy we were able to obtain a detailed view on vertical differentiation of SOM properties. Four years after soil disturbance a significant decrease of the mass of particulate OM (POM) with depth could be found. A clear depth distribution was also shown for carbon (C) and nitrogen (N) within the SOM fractions related to bulk soil. The mineral fractions <63 µm clearly dominated C storage (between 47 to 60% of bulk soil C) and N storage (between 68 to 86% of bulk soil N). A drastic increase in aliphatic C structures concomitant to decreasing O/N-alkyl C was detected with depth, increasing from free POM to occluded POM. Only a slight depth gradient was observed for 13C but a clear vertical incorporation of 15N from the applied labelled beech litter was demonstrated probably resulting from faunal and fungal incorporation. We clearly demonstrated a significant reformation of a SOM depth profile within a very short time of soil evolution. One important finding of this study is that especially in soils with reforming SOM depth gradients after land-use changes selective sampling of whole soil horizons can bias predictions of C and N dynamics as it overlooks a potential development of gradients of SOM properties on smaller scales

    Enhanced ozone exposure of European beech (Fagus sylvatica) stimulates nitrogen mobilization from leaf litter and nitrogen accumulation in the soil.

    No full text
    In a lysimeter study with young beech trees, the effects of elevated ozone concentration on the decomposition and fate of nitrogen in 15N-labeled leaf litter were analyzed after one growing season. Nitrogen in the litter was dominated by a relatively inert, residual fraction, but easily decomposable nitrogen was present in substantial amounts. Nitrogen loss was significantly higher at twice-ambient ozone which was largely attributed to an enhanced mobilization of residual nitrogen. Enhanced mobilization of nitrogen from litter at twice-ambient ozone exposure resulted in additional 15N incorporation into the soil down to 30 cm depth. Only 0.41-0.62% of the nitrogen in the litter was incorporated into plant material at both ozone concentrations. Twice-ambient ozone exposure changed the distribution of the nitrogen taken up from litter inside the beech trees in favor of the shoot, where it may have been used in biosynthetic processes required for defense reactions

    In situ diffraction measurements of lattice response due to shock loading, including direct observation of the alpha-epsilon phase transition in iron

    No full text
    In situ diffraction is a technique to probe directly the lattice response of materials during the shock loading process. It is used to record diffraction patterns from multiple lattice planes simultaneously. The application of this technique is described for laser-based shock experiments. The approach to analyze in situ wide-angle diffraction data is discussed. This is presented in the context of single crystal [001] iron shock experiments where uniaxial compression of the bee lattice by up to 6% was observed. Above the alpha-epsilon transition pressure, the lattice showed a collapse along the [001] direction by 15-18%. Additional diffraction lines appear that confirm the transformation of the iron crystal from the initial bee phase to the hcp phase. (C) 2006 Elsevier Ltd. All rights reserved
    corecore