98 research outputs found

    Father Involvement with Children with Developmental Delays

    Get PDF
    Children with developmental delays (DD) pose unique caregiving challenges, given their developmental problems and risks for behavior problems (Baker, McIntyre, Blacher, Crnic, Edelbrock, & Low, 2003). Most of the studies involving caregivers of children with DD have highlighted the role of mothers, with very few studies focusing specifically on fathers. Studies on father involvement in home and school settings provide a theoretical rationale for increasing father involvement to support positive outcomes in children with DD. Synthesizing research on father involvement can further contribute to and shape legislation that ensures equitable access to education for young children with disabilities (i.e., the Individuals with Disabilities Education Act). This paper summarizes findings from a systematic literature review of father involvement across home and school settings in families of preschool-aged children with or at risk for DD

    Parenting young children with developmental disabilities: Experiences during the COVID-19 pandemic in the U.S.

    Get PDF
    High-stress events (e.g., natural disasters, political unrest, disease) significantly impact the lives of children and families. The Coronavirus Disease 2019 (COVID-19) is one event that has brought numerous hardships to families and children with developmental disabilities (DD), likely exacerbating already heightened levels of stress. For this study, we interviewed mothers living in the U.S. (N = 14) of 2- to 8-year-old children with DD about how COVID-19 has affected their family life. The interviews examined how the pandemic impacted (a) their child’s educational, therapeutic, and medical services, (b) their stress and resiliency, and (c) their parenting role as an advocate, educator, and interventionist. The results of our thematic analysis of the qualitative data highlight four domains with themes that describe families’ experiences as indicated by the mothers interviewed. Voices of families are essential in the delivery of effective and ethical early intervention for young children with disabilities. Based on the data from these interviews with mothers, suggestions for family-focused intervention to support families during high-stress events are discussed. As the long-term effects of the pandemic remain unknown, suggestions for future research to continue to examine the impact of high-stress experiences on young children with DD and their families are also presented

    Father Involvement with Children with Developmental Delays

    Get PDF
    Children with developmental delays (DD) pose unique caregiving challenges, given their developmental problems and risks for behavior problems (Baker, McIntyre, Blacher, Crnic, Edelbrock, & Low, 2003). Most of the studies involving caregivers of children with DD have highlighted the role of mothers, with very few studies focusing specifically on fathers. Studies on father involvement in home and school settings provide a theoretical rationale for increasing father involvement to support positive outcomes in children with DD. Synthesizing research on father involvement can further contribute to and shape legislation that ensures equitable access to education for young children with disabilities (i.e., the Individuals with Disabilities Education Act). This paper summarizes findings from a systematic literature review of father involvement across home and school settings in families of preschool-aged children with or at risk for DD

    Hoxa cluster genes determine the proliferative activity of adult mouse hematopoietic stem and progenitor cells

    Get PDF
    Determination of defined roles for endogenous homeobox (Hox) genes in adult hematopoietic stem and progenitor cell (HSPC) activity has been hampered by a combination of embryonic defects and functional redundancy. Here we show that conditional homozygous deletion of the Hoxa cluster (Hoxa−/−) results in a marked reduction of adult HSPC activity, both in vitro and in vivo. Specifically, proliferation of Hoxa−/− HSPCs is reduced compared with wild-type (WT) cells in vitro and they are less competitive in vivo. Notably, the loss of Hoxa genes had little impact on HSPC differentiation. Comparative RNA sequencing analyses of Hoxa−/− and WT hematopoietic stem cells (CD150+/CD48−/Lineage−/c-kit+/Sca-1+) identified a large number of differentially expressed genes, three of which (Nr4a3, Col1a1, and Hnf4a) showed >10-fold reduced levels. Engineered overexpression of Hoxa9 in Hoxa−/− HSPCs resulted in partial phenotypic rescue in vivo with associated recovery in expression of a large proportion of deregulated genes. Together, these results provide definitive evidence linking Hoxa gene expression to proliferation of adult HSPCs

    Configural and featural information in facial-composite images

    Get PDF
    Eyewitnesses are often invited to construct a facial composite, an image created of the person they saw commit a crime that is used by law enforcement to locate criminal suspects. In the current paper, the effectiveness of composite images was investigated from traditional feature systems (E-FIT and PRO-fit), where participants (face constructors) selected individual features to build the face, and a more recent holistic system (EvoFIT), where they ‘evolved' a composite by repeatedly selecting from arrays of complete faces. Further participants attempted to name these composites when seen as an unaltered image, or when blurred, rotated, linearly stretched or converted to a photographic negative. All of the manipulations tested reduced correct naming of the composites overall except (i) for a low level of blur, for which naming improved for holistic composites but reduced for feature composites, and (ii) for 100% linear stretch, for which a substantial naming advantage was observed. Results also indicated that both featural (facial elements) and configural (feature spacing) information was useful for recognition in both types of composite system, but highly-detailed information was more accurate in the feature-based than the holistic method. The naming advantage of linear stretch was replicated using a forensically more-practical procedure with observers viewing an unaltered ¬composite sideways. The work is valuable to police practitioners and designers of facial-composite systems

    Effects of ocean sprawl on ecological connectivity: impacts and solutions

    Get PDF
    The growing number of artificial structures in estuarine, coastal and marine environments is causing “ocean sprawl”. Artificial structures do not only modify marine and coastal ecosystems at the sites of their placement, but may also produce larger-scale impacts through their alteration of ecological connectivity - the movement of organisms, materials and energy between habitat units within seascapes. Despite the growing awareness of the capacity of ocean sprawl to influence ecological connectivity, we lack a comprehensive understanding of how artificial structures modify ecological connectivity in near- and off-shore environments, and when and where their effects on connectivity are greatest. We review the mechanisms by which ocean sprawl may modify ecological connectivity, including trophic connectivity associated with the flow of nutrients and resources. We also review demonstrated, inferred and likely ecological impacts of such changes to connectivity, at scales from genes to ecosystems, and potential strategies of management for mitigating these effects. Ocean sprawl may alter connectivity by: (1) creating barriers to the movement of some organisms and resources - by adding physical barriers or by modifying and fragmenting habitats; (2) introducing new structural material that acts as a conduit for the movement of other organisms or resources across the landscape; and (3) altering trophic connectivity. Changes to connectivity may, in turn, influence the genetic structure and size of populations, the distribution of species, and community structure and ecological functioning. Two main approaches to the assessment of ecological connectivity have been taken: (1) measurement of structural connectivity - the configuration of the landscape and habitat patches and their dynamics; and (2) measurement of functional connectivity - the response of organisms or particles to the landscape. Our review reveals the paucity of studies directly addressing the effects of artificial structures on ecological connectivity in the marine environment, particularly at large spatial and temporal scales. With the ongoing development of estuarine and marine environments, there is a pressing need for additional studies that quantify the effects of ocean sprawl on ecological connectivity. Understanding the mechanisms by which structures modify connectivity is essential if marine spatial planning and eco-engineering are to be effectively utilised to minimise impacts

    Association studies of up to 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol use

    Get PDF
    Tobacco and alcohol use are leading causes of mortality that influence risk for many complex diseases and disorders 1 . They are heritable 2,3 and etiologically related 4,5 behaviors that have been resistant to gene discovery efforts 6–11 . In sample sizes up to 1.2 million individuals, we discovered 566 genetic variants in 406 loci associated with multiple stages of tobacco use (initiation, cessation, and heaviness) as well as alcohol use, with 150 loci evidencing pleiotropic association. Smoking phenotypes were positively genetically correlated with many health conditions, whereas alcohol use was negatively correlated with these conditions, such that increased genetic risk for alcohol use is associated with lower disease risk. We report evidence for the involvement of many systems in tobacco and alcohol use, including genes involved in nicotinic, dopaminergic, and glutamatergic neurotransmission. The results provide a solid starting point to evaluate the effects of these loci in model organisms and more precise substance use measures

    Is the meiofauna a good indicator for climate change and anthropogenic impacts?

    Get PDF
    Our planet is changing, and one of the most pressing challenges facing the scientific community revolves around understanding how ecological communities respond to global changes. From coastal to deep-sea ecosystems, ecologists are exploring new areas of research to find model organisms that help predict the future of life on our planet. Among the different categories of organisms, meiofauna offer several advantages for the study of marine benthic ecosystems. This paper reviews the advances in the study of meiofauna with regard to climate change and anthropogenic impacts. Four taxonomic groups are valuable for predicting global changes: foraminifers (especially calcareous forms), nematodes, copepods and ostracods. Environmental variables are fundamental in the interpretation of meiofaunal patterns and multistressor experiments are more informative than single stressor ones, revealing complex ecological and biological interactions. Global change has a general negative effect on meiofauna, with important consequences on benthic food webs. However, some meiofaunal species can be favoured by the extreme conditions induced by global change, as they can exhibit remarkable physiological adaptations. This review highlights the need to incorporate studies on taxonomy, genetics and function of meiofaunal taxa into global change impact research
    • 

    corecore