311 research outputs found

    Validation by Measurements of a IC Modeling Approach for SiP Applications

    Get PDF
    The growing importance of signal integrity (SI) analysis in integrated circuits (ICs), revealed by modern systemin-package methods, is demanding for new models for the IC sub-systems which are both accurate, efficient and extractable by simple measurement procedures. This paper presents the contribution for the establishment of an integrated IC modeling approach whose performance is assessed by direct comparison with the signals measured in laboratory of two distinct memory IC devices. Based on the identification of the main blocks of a typical IC device, the modeling approach consists of a network of system-level sub-models, some of which with already demonstrated accuracy, which simulated the IC interfacing behavior. Emphasis is given to the procedures that were developed to validate by means of laboratory measurements (and not by comparison with circuit-level simulations) the model performance, which is a novel and important aspect that should be considered in the design of IC models that are useful for SI analysi

    Sustainability, certification, and regulation of biochar

    Get PDF
    Biochar has a relatively long half-life in soil and can fundamentally alter soil properties, processes, and ecosystem services. The prospect of global-scale biochar application to soils highlights the importance of a sophisticated and rigorous certification procedure. The objective of this work was to discuss the concept of integrating biochar properties with environmental and socioeconomic factors, in a sustainable biochar certification procedure that optimizes complementarity and compatibility between these factors over relevant time periods. Biochar effects and behavior should also be modelled at temporal scales similar to its expected functional lifetime in soils. Finally, when existing soil data are insufficient, soil sampling and analysis procedures need to be described as part of a biochar certification procedure.O “biochar” tem um tempo de meia-vida no solo relativamente longo e pode alterar substancialmente as propriedades, processos e funções do solo. A perspectiva da aplicação de “biochar” aos solos, em escala global, evidencia a importância de se lhe atribuir um processo de certificação sofisticado e rigoroso. O objetivo deste trabalho foi discutir o conceito da integração das propriedades do “biochar” com os fatores ambientais e socioeconômicos relevantes do local de aplicação selecionado, como parte de um procedimento de certificação sustentável que otimize a complementaridade e a compatibilidade entre esses fatores, em períodos de tempo relevantes. Os efeitos e o comportamento do “biochar” devem, também, ser modelados em escalas temporais similares às de seu tempo de vida funcional nos solos do local selecionado. Finalmente, onde os dados existentes sobre as características do solo forem insuficientes, procedimentos de amostragem e análise do solo devem ser descritos como parte do procedimento de certificação do “biochar”.publishe

    Herschel/HIFI measurements of the ortho/para ratio in water towards Sagittarius B2(M) and W31C

    Get PDF
    We present Herschel/HIFI observations of the fundamental rotational transitions of ortho- and para-H16 2 O and H18 2 O in absorption towards Sagittarius B2(M) and W31C. The ortho/para ratio in water in the foreground clouds on the line of sight towards these bright continuum sources is generally consistent with the statistical high-temperature ratio of 3, within the observational uncertainties. However, somewhat unexpectedly, we derive a low ortho/para ratio of 2.35±0.35, corresponding to a spin temperature of ∼27 K, towards Sagittarius B2(M) at velocities of the expanding molecular ring. Water molecules in this region appear to have formed with, or relaxed to, an ortho/para ratio close to the value corresponding to the local temperature of the gas and dust

    Measurement of the top quark mass using events with a single reconstructed top quark in pp collisions at root s=13 TeV

    Get PDF
    Abstract:A measurement of the top quark mass is performed using a data sample en-riched with single top quark events produced in thetchannel. The study is based on proton-proton collision data, corresponding to an integrated luminosity of 35.9 fb−1, recorded at√s= 13TeV by the CMS experiment at the LHC in 2016. Candidate events are selectedby requiring an isolated high-momentum lepton (muon or electron) and exactly two jets,of which one is identified as originating from a bottom quark. Multivariate discriminantsare designed to separate the signal from the background. Optimized thresholds are placedon the discriminant outputs to obtain an event sample with high signal purity. The topquark mass is found to be172.13+0.76−0.77GeV, where the uncertainty includes both the sta-tistical and systematic components, reaching sub-GeV precision for the first time in thisevent topology. The masses of the top quark and antiquark are also determined separatelyusing the lepton charge in the final state, from which the mass ratio and difference aredetermined to be0.9952+0.0079−0.0104and0.83+1.79−1.35GeV, respectively. The results are consistentwithCPTinvariance

    Observation of photon-induced W<sup>+</sup>W<sup>−</sup> production in pp collisions at √s=13 TeV using the ATLAS detector

    Get PDF
    This letter reports the observation of photon-induced production of W-boson pairs, γγ→ WW. The analysis uses 139 fb-1 of LHC proton-proton collision data taken at √s=13 TeV recorded by the ATLAS experiment during the years 2015-2018. The measurement is performed selecting one electron and one muon, corresponding to the decay of the diboson system as WW→e±νμ∓ν final state. The background-only hypothesis is rejected with a significance of well above 5 standard deviations consistent with the expectation from Monte Carlo simulation. A cross section for the γγ→ WW process of 3.13±0.31(stat.)±0.28(syst.) fb is measured in a fiducial volume close to the acceptance of the detector, by requiring an electron and a muon of opposite signs with large dilepton transverse momentum and exactly zero additional charged particles. This is found to be in agreement with the Standard Model prediction

    Measurement of the total cross section and ρ -parameter from elastic scattering in pp collisions at √s=13 TeV with the ATLAS detector

    Get PDF
    In a special run of the LHC with β⋆=2.5 km, proton–proton elastic-scattering events were recorded at s√=13 TeV with an integrated luminosity of 340 μb−1 using the ALFA subdetector of ATLAS in 2016. The elastic cross section was measured differentially in the Mandelstam t variable in the range from −t=2.5⋅10−4 GeV2 to −t=0.46 GeV2 using 6.9 million elastic-scattering candidates. This paper presents measurements of the total cross section σtot, parameters of the nuclear slope, and the ρ-parameter defined as the ratio of the real part to the imaginary part of the elastic-scattering amplitude in the limit t→0. These parameters are determined from a fit to the differential elastic cross section using the optical theorem and different parameterizations of the t-dependence. The results for σtot and ρ are σtot(pp→X)=104.7±1.1 mb ,ρ=0.098±0.011. The uncertainty in σtot is dominated by the luminosity measurement, and in ρ by imperfect knowledge of the detector alignment and by modelling of the nuclear amplitude.publishedVersio

    The ATLAS Fast TracKer system

    Get PDF
    The ATLAS Fast TracKer (FTK) was designed to provide full tracking for the ATLAS high-level trigger by using pattern recognition based on Associative Memory (AM) chips and fitting in high-speed field programmable gate arrays. The tracks found by the FTK are based on inputs from all modules of the pixel and silicon microstrip trackers. The as-built FTK system and components are described, as is the online software used to control them while running in the ATLAS data acquisition system. Also described is the simulation of the FTK hardware and the optimization of the AM pattern banks. An optimization for long-lived particles with large impact parameter values is included. A test of the FTK system with the data playback facility that allowed the FTK to be commissioned during the shutdown between Run 2 and Run 3 of the LHC is reported. The resulting tracks from part of the FTK system covering a limited η-ϕ region of the detector are compared with the output from the FTK simulation. It is shown that FTK performance is in good agreement with the simulation

    Measurements of Higgs boson production cross sections and couplings in the diphoton decay channel at root s=13 TeV

    Get PDF
    Measurements of Higgs boson production cross sections and couplings in events where the Higgs boson decays into a pair of photons are reported. Events are selected from a sample of proton-proton collisions at s√ = 13 TeV collected by the CMS detector at the LHC from 2016 to 2018, corresponding to an integrated luminosity of 137 fb−1. Analysis categories enriched in Higgs boson events produced via gluon fusion, vector boson fusion, vector boson associated production, and production associated with top quarks are constructed. The total Higgs boson signal strength, relative to the standard model (SM) prediction, is measured to be 1.12±0.09. Other properties of the Higgs boson are measured, including SM signal strength modifiers, production cross sections, and its couplings to other particles. These include the most precise measurements of gluon fusion and vector boson fusion Higgs boson production in several different kinematic regions, the first measurement of Higgs boson production in association with a top quark pair in five regions of the Higgs boson transverse momentum, and an upper limit on the rate of Higgs boson production in association with a single top quark. All results are found to be in agreement with the SM expectations
    corecore