37 research outputs found

    MICU1 Motifs Define Mitochondrial Calcium Uniporter Binding and Activity

    Get PDF
    SummaryResting mitochondrial matrix Ca2+ is maintained through a mitochondrial calcium uptake 1 (MICU1)-established threshold inhibition of mitochondrial calcium uniporter (MCU) activity. It is not known how MICU1 interacts with MCU to establish this Ca2+ threshold for mitochondrial Ca2+ uptake and MCU activity. Here, we show that MICU1 localizes to the mitochondrial matrix side of the inner mitochondrial membrane and MICU1/MCU binding is determined by a MICU1 N-terminal polybasic domain and two interacting coiled-coil domains of MCU. Further investigation reveals that MICU1 forms homo-oligomers, and this oligomerization is independent of the polybasic region. However, the polybasic region confers MICU1 oligomeric binding to MCU and controls mitochondrial Ca2+ current (IMCU). Moreover, MICU1 EF hands regulate MCU channel activity, but do not determine MCU binding. Loss of MICU1 promotes MCU activation leading to oxidative burden and a halt to cell migration. These studies establish a molecular mechanism for MICU1 control of MCU-mediated mitochondrial Ca2+ accumulation, and dysregulation of this mechanism probably enhances vascular dysfunction

    Synergistic Effects of Apigenin and Paclitaxel on Apoptosis of Cancer Cells

    Get PDF
    BACKGROUND: It was well known that the clinical use of chemotherapeutic drugs is restricted by severe adverse reactions and drug resistances. Thus it is necessary to figure out a strategy to increase the specific anti-tumor efficiency of chemotherapeutic drugs. Apigenin, a kind of flavonoids, has been reported to possess anticancer activities with very low cytotoxicity to normal tissue. METHODOLOGY/PRINCIPAL FINDINGS: Our results from cell viability assay, western-blots and TdT-mediated dUTP-biotin nick end labeling (TUNEL) assay demonstrated the synergistic pro-apoptotic effects of a low dose of apigenin and paclitaxel in human cancer cell lines. To analyze the underlying mechanism, we examined reactive oxygen species (ROS) staining after cells were treated with a combination of apigenin and paclitaxel, or each of them alone. Data from flow-cytometry showed that superoxides but not reduction of peroxides accumulated in HeLa cells treated with apigenin or a combination of apigenin and paclitaxel. Apigenin and paclitaxel-induced HeLa cell apoptosis was related to the level of ROS in cells. We further evaluated activity and protein level of superoxide dismutase (SOD). Apigenin significantly inhibited SOD activity but did not alter the SOD protein level suggesting that apigenin promoted ROS accumulation through suppressing enzyme activity of SOD. Addition of Zn(2+), Cu(2+) and Mn(2+) to cell lysates inhibited apigenin's effects on SOD activity. At the same time, data from caspase-2 over-expression and knocked-down experiments demonstrated that caspase-2 participated in apigenin and paclitaxel-induced HeLa cell apoptosis. CONCLUSIONS/SIGNIFICANCE: Taken together, our study demonstrated that apigenin can sensitize cancer cells to paclitaxel induced apoptosis through suppressing SOD activity, which then led to accumulation of ROS and cleavage of caspase-2, suggesting that the combined use of apigenin and paclitaxel was an effective way to decrease the dose of paclitaxel taken

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    Get PDF
    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure fl ux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defi ned as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (inmost higher eukaryotes and some protists such as Dictyostelium ) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the fi eld understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation it is imperative to delete or knock down more than one autophagy-related gene. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways so not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    Get PDF

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    27 Al MAS NMR investigations on Al 23 Te 77 glass: Observation of 5- coordinated Al and its influence on electrical switching

    No full text
    27 Al Magic Angle Spinning Nuclear Magnetic Resonance (MAS NMR) spectroscopic studies show that Al resides in 4-, 5- and 6- fold coordination in bulk Al 23 Te 77 glass. Also, Al 23 Te 77 glass is found to exhibit threshold type switching. Earlier studies report memory type switching in Al-Te glasses wherein Al has been found only in 4 Al and 6 Al environments. X-Ray Photo Electron Spectroscopic (XPS) measurements show the presence of Al 2 O 3 in Al 23 Te 77 glass network. The structural network of Al-Te glass has been cross linked by the presence of higher coordinated Al atoms. The structural reorganization becomes difficult due to the increased network connectivity. Thus, the memory switching (which requires an easy structural reorganization) is retarded, resulting in the observation of threshold switching. © 201

    Synthesis, characterization and photoluminescence properties of CaSiO3: Eu3+ red phosphor

    No full text
    CaSiO3:Eu3+ (1-5 mol%) red emitting phosphors have been synthesized by a low-temperature solution combustion method. The phosphors have been well characterized by powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and optical spectroscopy. PXRD patterns reveal monoclinic CaSiO3 phase can be obtained at 900 degrees C. The SEM micrographs show the crystallites with irregular shape, mostly angular. Upon 254 nm excitation, the phosphor show characteristic fluorescence D-5(0) -> F-7(J) (J = 0, 1, 2, 3, 4) of the Eu3+ ions. The electronic transition located at 614 nm corresponding to D-5(0) -> F-7(2) of Eu3+ ions, which is stronger than the magnetic dipole transition located at 593 nm corresponding to D-5(0) -> F-7(1) of Eu3+ ions. Different pathways involved in emission process have been studied. Concentration quenching has been observed for Eu3+ concentration >4 mol%. UV-visible absorption shows an intense band at 240 nm in undoped and 270 nm in Eu3+ doped CaSiO3 which is attributed to oxygen to silicon (O-Si) ligand-to-metal charge-transfer (LMCT) band in the SiO32- group. The optical energy band gap is widened with increase of Eu3+ ion dopant. (C) 2010 Elsevier B.V. All rights reserved

    Synthesis, characterization and photoluminescence properties of CaSiO(3) : Dy(3+) nanophosphors

    No full text
    CaSiO(3) : Dy(3+) (1-5 mol. %) nanophosphors were synthesized by a simple low-temperature solution combustion method. Powder X-ray diffraction patterns revealed that the phosphors are crystalline and can be indexed to a monoclinic phase. Scanning electron micrographs exhibited faceted plates and angular crystals of different sizes with a porous nature. Photoluminescence properties of the Dy(3+)-doped CaSiO(3) phosphors were observed and analyzed. Emission peaks at 483, 573 and 610 nm corresponding to Dy(3+) were assigned as (4)F(9/2)->(6)H(15/2), (4)F(9/2) -> (6)H(13/2) and (4)F(9/2) -> (6)H(11/2) transitions, respectively, and dominated by the Dy(3+) (4)F(9/2) -> (6)H(13/2) hyperfine transition. Experimental results revealed that the luminescence intensity was affected by both heat treatment and the concentration of Dy(3+) (1-5 mol. %) in the CaSiO(3) host. Optimal luminescence conditions were achieved when the concentration of Dy(3+) was 2 mol. %. UV-visible absorption features an intense band at 240 nm, which corresponds to an O-Si ligand-to-metal charge transfer band in the SiO(3)(2-) group. The optical energy band gap for the undoped sample was found to be 5.45 eV, whereas in Dy(3+)-doped phosphors it varies in the range 5.49-5.65 eV. The optical energy gap widens with increase of Dy(3+) ion dopant

    Synthesis, characterization and photoluminescence properties of CaSiO(3): Eu(3+) red phosphor

    No full text
    CaSiO(3):Eu(3+) (1-5 mol%) red emitting phosphors have been synthesized by a low-temperature solution combustion method. The phosphors have been well characterized by powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and optical spectroscopy. PXRD patterns reveal monoclinic CaSiO(3) phase can be obtained at 900 degrees C. The SEM micrographs show the crystallites with irregular shape, mostly angular. Upon 254 nm excitation, the phosphor show characteristic fluorescence (5)D(0) -> (7)F(J) (J = 0, 1, 2, 3, 4) of the Eu(3+) ions. The electronic transition located at 614 nm corresponding to (5)D(0) -> (7)F(2) of Eu(3+) ions, which is stronger than the magnetic dipole transition located at 593 nm corresponding to (5)D(0) -> (7)F(1) of Eu(3+) ions. Different pathways involved in emission process have been studied. Concentration quenching has been observed for Eu(3+) concentration >4 mol%. UV-visible absorption shows an intense band at 240 nm in undoped and 270 nm in Eu(3+) doped CaSiO(3) which is attributed to oxygen to silicon (O-Si) ligand-to-metal charge-transfer (LMCT) band in the SiO(3)(2-) group. The optical energy band gap is widened with increase of Eu(3+) ion dopant. (C) 2010 Elsevier B.V. All rights reserved
    corecore