35 research outputs found

    Complete chloroplast genome sequencing of Vitis vinifera subsp. sylvestris – wild ancestors of cultivated grapevines

    Get PDF
    Wild grapevine – Vitis vinifera subsp. sylvestris – ancestors of cultivated grapevines are the main players in understanding the molecular bases of the grapevine domestication process. The goal of the presented research was to assess the genetic diversity of wild grapevine samples from several regions encompassing Europe (Spain, France, Germany, Hungary, Greece), the Mediterranean basin (Algeria, Tunisia, Morocco), and South Caucasus (Georgia), using a complete chloroplast DNA sequencing. The results suggest the existence of three different chloroplast DNA haplotypes, reflecting the geographical distribution of the analyzed samples. This study represents the first report focused on analysis of a wide range of wild grapevine samples (Vitis vinifera subsp. sylvestris), applying next-generation technologies, and tracing the grapevine ancestry

    Capsaicin-Induced Changes in LTP in the Lateral Amygdala Are Mediated by TRPV1

    Get PDF
    The transient receptor potential vanilloid type 1 (TRPV1) channel is a well recognized polymodal signal detector that is activated by painful stimuli such as capsaicin. Here, we show that TRPV1 is expressed in the lateral nucleus of the amygdala (LA). Despite the fact that the central amygdala displays the highest neuronal density, the highest density of TRPV1 labeled neurons was found within the nuclei of the basolateral complex of the amygdala. Capsaicin specifically changed the magnitude of long-term potentiation (LTP) in the LA in brain slices of mice depending on the anesthetic (ether, isoflurane) used before euthanasia. After ether anesthesia, capsaicin had a suppressive effect on LA-LTP both in patch clamp and in extracellular recordings. The capsaicin-induced reduction of LTP was completely blocked by the nitric oxide synthase (NOS) inhibitor L-NAME and was absent in neuronal NOS as well as in TRPV1 deficient mice. The specific antagonist of cannabinoid receptor type 1 (CB1), AM 251, was also able to reduce the inhibitory effect of capsaicin on LA-LTP, suggesting that stimulation of TRPV1 provokes the generation of anandamide in the brain which seems to inhibit NO synthesis. After isoflurane anesthesia before euthanasia capsaicin caused a TRPV1-mediated increase in the magnitude of LA-LTP. Therefore, our results also indicate that the appropriate choice of the anesthetics used is an important consideration when brain plasticity and the action of endovanilloids will be evaluated. In summary, our results demonstrate that TRPV1 may be involved in the amygdala control of learning mechanisms

    Yeast Mitochondrial Interactosome Model: Metabolon Membrane Proteins Complex Involved in the Channeling of ADP/ATP

    Get PDF
    The existence of a mitochondrial interactosome (MI) has been currently well established in mammalian cells but the exact composition of this super-complex is not precisely known, and its organization seems to be different from that in yeast. One major difference is the absence of mitochondrial creatine kinase (MtCK) in yeast, unlike that described in the organization model of MI, especially in cardiac, skeletal muscle and brain cells. The aim of this review is to provide a detailed description of different partner proteins involved in the synergistic ADP/ATP transport across the mitochondrial membranes in the yeast Saccharomyces cerevisiae and to propose a new mitochondrial interactosome model. The ADP/ATP (Aacp) and inorganic phosphate (PiC) carriers as well as the VDAC (or mitochondrial porin) catalyze the import and export of ADP, ATP and Pi across the mitochondrial membranes. Aacp and PiC, which appear to be associated with the ATP synthase, consist of two nanomotors (F0, F1) under specific conditions and form ATP synthasome. Identification and characterization of such a complex were described for the first time by Pedersen and co-workers in 2003

    Geographical and temporal distribution of SARS-CoV-2 clades in the WHO European Region, January to June 2020

    Get PDF
    We show the distribution of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) genetic clades over time and between countries and outline potential genomic surveillance objectives. We applied three genomic nomenclature systems to all sequence data from the World Health Organization European Region available until 10 July 2020. We highlight the importance of real-time sequencing and data dissemination in a pandemic situation, compare the nomenclatures and lay a foundation for future European genomic surveillance of SARS-CoV-2

    Geographical and temporal distribution of SARS-CoV-2 clades in the WHO European Region, January to June 2020

    Get PDF
    We show the distribution of SARS-CoV-2 genetic clades over time and between countries and outline potential genomic surveillance objectives. We applied three available genomic nomenclature systems for SARS-CoV-2 to all sequence data from the WHO European Region available during the COVID-19 pandemic until 10 July 2020. We highlight the importance of real-time sequencing and data dissemination in a pandemic situation. We provide a comparison of the nomenclatures and lay a foundation for future European genomic surveillance of SARS-CoV-2.Peer reviewe

    Associations between genetic variations and global motion perception

    No full text
    The cholinergic system is known to strongly modulate perceptual and cognitive processes, and the alpha7 subunit of the cholinergic nicotinic receptor (CHRNA7) is broadly expressed within the visual system. Here, we assessed whether genetic variations of CHRNA7 affect coherent motion perception. Motion perception has been shown to decline with age, and it has previously been suggested that the effects of genetic variations are magnified by age. Therefore, we tested both older (n = 62) and younger adults (n = 63). We found that motion coherence thresholds were significantly higher for older compared to younger adults, which is in accordance with previous studies. Interestingly, there was a strong relationship between variants of the SNP rs2337980 of the CHRNA7 and motion direction discrimination. In particular, participants carrying the TC genotype had considerably lower motion coherence thresholds than CC carriers. The effect of genotype did not interact with age. Our results show that genetic variations are associated with perceptual performance, but are unlikely to explain age-related changes

    Associations between genetic variations and global motion perception

    Get PDF
    The cholinergic system is known to strongly modulate perceptual and cognitive processes, and the alpha7 subunit of the cholinergic nicotinic receptor (CHRNA7) is broadly expressed within the visual system. Here, we assessed whether genetic variations of CHRNA7 affect coherent motion perception. Motion perception has been shown to decline with age, and it has previously been suggested that the effects of genetic variations are magnified by age. Therefore, we tested both older (n = 62) and younger adults (n = 63). We found that motion coherence thresholds were significantly higher for older compared to younger adults, which is in accordance with previous studies. Interestingly, there was a strong relationship between variants of the SNP rs2337980 of the CHRNA7 and motion direction discrimination. In particular, participants carrying the TC genotype had considerably lower motion coherence thresholds than CC carriers. The effect of genotype did not interact with age. Our results show that genetic variations are associated with perceptual performance, but are unlikely to explain age-related changes

    Intra-epidemic genome variation in highly pathogenic African swine fever virus (ASFV) from the country of Georgia

    No full text
    Abstract Background African swine fever virus (ASFV) causes an acute hemorrhagic infection in suids with a mortality rate of up to 100%. No vaccine is available and the potential for catastrophic disease in Europe remains elevated due to the ongoing ASF epidemic in Russia and Baltic countries. To date, intra-epidemic whole-genome variation for ASFV has not been reported. To provide a more comprehensive baseline for genetic variation early in the ASF outbreak, we sequenced two Georgian ASFV samples, G-2008/1 and G-2008/2, derived from domestic porcine blood collected in 2008. Methods Genomic DNA was extracted directly from low-volume ASFV PCR-positive porcine blood samples and subjected to next generation sequencing on the Illumina Miseq platform. De novo and mapped sequence assemblies were performed using CLCBio software. Genomic illustrations, sequence alignments and assembly figures were generated using Geneious v10.2.4. Sequence repeat architecture was analyzed using DNASTAR GeneQuest 14.1.0. Results The G-2008/1 and G-2008/2 genomes were distinguished from each other by coding changes in seven genes, including MGF 110-1 L, X69R, MGF 505-10R, EP364R, H233R, E199L, and MGF 360-21R in addition to eight homopolymer tract variations. The 2008/2 genome possessed a novel allele state at a previously undescribed intergenic repeat locus between genes C315R and C147L. The C315R/C147L locus represents the earliest observed variable repeat sequence polymorphism reported among isolates from this epidemic. No sequence variation was observed in conventional ASFV subtyping markers. The two genomes exhibited complete collinearity and identical gene content with the Georgia 2007/1 reference genome. Approximately 56 unique homopolymer A/T-tract variations were identified that were unique to the Georgia 2007/1 genome. In both 2008 genomes, within-sample sequence read heterogeneity was evident at six homopolymeric G/C-tracts confined to the known hypervariable ~ 7 kb region in the left terminal region of the genome. Conclusions This is the first intra-epidemic comparative genomic analysis reported for ASFV and provides insight into the intra-epidemic microevolution of ASFV. The genomes reported here, in addition to the G-2007/1 genome, provide an early baseline for future genome-level comparisons and epidemiological tracing efforts

    Complete plastid genomes of South Caucasian, European and Mediterranean Basin wild grapevines (<em>Vitis vinifera</em> subsp. <em>sylvestris</em>)

    No full text
    International audienceThe South Caucasus region is widely believed to be the area in which grape domestication began, therefore the study of genetic diversity of wild grape samples in this region is viewed as a key to understanding grape domestication in general. The main goal of the presented research was assessment of genetic diversity of wild grape samples from different places of Europe and Mediterranean basin by using complete chloroplast DNA Illumina sequencing. The analyzed sequences were compared with the plastid genomes of Georgian wild grape samples from our previous research. The presented work is a first attempt of studying of wide range of the genus Vitis L., in particular wild grape samples from Europe and Mediterranean basin with the next-generation technologies and adopting this application for the tracing of grape ancestry. The obtained results will help to understand the genetic relationships between wild and cultivated grapes from different geographical locations and explain the molecular bases of grape origin and evolution. Phylogenetic trees representing evolutionary relationship between analyzed grape samples are presented
    corecore