2,108 research outputs found

    Excessive Hospitalizations and Its Associated Economic Burden among People with Diabetes in the United States

    Get PDF
    AbstractObjectivesWe conducted this study to estimate the excessive hospital admission among people with diabetes and the associated economic burden in the USA.MethodsThe study was based on the 2005 Nationwide Inpatient Sample (NIS), a nationally representative probability sample conducted annually by the Agency of Health Research and Quality. Nearly 8 million records were sampled from over 1000 community hospitals in the 2005 NIS.ResultsExcluding childbirth-related admissions, the estimated US hospitalizations numbered approximately 30.8 million; individuals with diabetes accounted for over 6.4 million (20.9%) of these admissions. For every 1000 individuals without diabetes, with type 1 diabetes, and with type 2 diabetes, the numbers of hospitalizations were 89, 418, and 303, respectively. The rates of hospitalization increased greatly by the presence of diabetes for all age groups and sex. During 2005, the national bill of hospital charges and costs for individuals with diabetes exceeded US171billionandUS171 billion and US90 billion, respectively. If the prevalence of diabetes increases to 7.5% from 7.0%, the total number of hospitalizations made by individuals with diabetes will be 7.5 million in 2015.ConclusionsAlthough approximately 7% of the population had diabetes in the USA, nearly 20.9% of hospitalizations were made by individuals with this condition. Due to the excessive hospitalizations incurred by patients with diabetes, a small increase in the number of people with diabetes will amplify the number of hospitalizations. Health-care communities should anticipate this possible increased demand of hospitalizations and the associated economic burden

    Architectural organization and molecular profiling of 3D cancer heterospheroids and their application in drug testing

    Get PDF
    3D cancer cell cultures have enabled new opportunities for replacing compound testing in experimental animals. However, most solid tumors are composed of multiple cell types, including fibroblasts. In this study we developed multicellular tumor heterospheroids composed of cancer and fibroblasts cell lines. We developed heterospheroids by combining HT-29, MCF-7, PANC-1 or SW480 with 1BR.3.G fibroblasts, which we have previously reported support spheroid formation. We also tested fibroblast cell lines, MRC-5, GM00498 and HIF, but 1BR.3.G was found to best form heterospheroids with morphological similarity to in vivo tumor tissue. The architectural organization of heterospheroids was based on histological examination using immunohistochemistry. We found that HT-29 and MCF-7 cells developed spheroids with the cancer cells surrounding the fibroblasts, whereas PANC-1 cells interspersed with the fibroblasts and SW480 cells were surrounded by fibroblasts. The fibroblasts also expressed collagen-1 and FAP-α, and whole transcriptomic analysis (WTA) showed abundant ECM- and EMT-related expression in heterospheroids, thus reflecting a representative tumor-like microenvironment. The WTA showed that PANC-1 heterospheroids possess a strong EMT profile with abundant Vimentin and CDH2 expression. Drug testing was evaluated by measuring cytotoxicity of 5FU and cisplatin using cell viability and apoptosis assays. We found no major impact on the cytotoxicity when fibroblasts were added to the spheroids. We conclude that the cancer cell lines together with fibroblasts shape the architectural organization of heterospheroids to form tumor-like morphology, and we propose that the various 3D tumor structures can be used for drug testing directed against the cancer cells as well as the fibroblasts

    Atmospheric trace metal concentrations, solubility and deposition fluxes in remote marine air over the south-east Atlantic

    Get PDF
    Total and soluble trace metal concentrations were determined in atmospheric aerosol and rainwater samples collected during seven cruises in the south-east Atlantic. Back trajectories indicated the samples all represented remote marine air masses, consistent with climatological expectations. Aerosol trace metal loadings were similar to previous measurements in clean, marine air masses. Median total Fe, Al, Mn, V, Co and Zn concentrations were 206, 346, 5, 3, 0.7 and 11 pmol m-3 respectively. Solubility was operationally defined as the fraction extractable using a pH4.7 ammonium acetate leach. Median soluble Fe, Al, Mn, V, Co, Zn, Cu, Ni, Cd and Pb concentrations were 6, 55, 1, 0.7, 0.06, 24, 2, 1, 0.05 and 0.3 pmol m-3 respectively. Large ranges in fractional solubility were observed for all elements except Co; median solubility values for Fe, Al and Mn were below 20% while the median for Zn was 74%. Volume weighted mean rainwater concentrations were 704, 792, 32, 10, 3, 686, 25, 0.02, 0.3 and 10 nmol L-1 for Fe, Al, Mn, V, Co, Zn, Cu, Ni, Cd and Pb respectively (n = 6). Wet deposition fluxes calculated from these values suggest rain makes a significant contribution to total deposition in the study area for all elements except perhaps Ni

    Ski skating race technique-effect of long distance cross-country ski racing on choice of skating technique in moderate uphill terrain

    Get PDF
    The aim of this study was to investigate the effect of prolonged ski racing using skating style on technique choice in a transition section among female and male high-level skiers. Fifty three national-to-elite level skiers (20 females: 26.7 \ub1 4.8 years, 167.0 \ub1 6.5 m, 61.0 \ub1 5.1 kg, and 75.5 \ub1 68.8 FIS points; 33 males: 25.2 \ub1 3.5 years, 179.0 \ub1 5.2 cm, 73.1 \ub1 5.7 kg, and 73.7 \ub1 63.2 FIS points) were video recorded along a flat-to-uphill transition section of a course during the 30-km (females) and 50-km (males) races at the 2018 Norwegian National Championships. Across laps, section speeds decreased (P < 0.001) in all skiers, with the best-ranked skiers faster than the lowest-ranked (P < 0.001), and males faster than females in the first and middle laps. Section speed within each lap was associated with race performance (r = 0.76-0.86, P < 0.001 in females and r = 0.87-0.89, P < 0.001 in males). The prevalence of Gear 2 (G2) increased, while Gear 3 (G3) use decreased (both P < 0.001) across the subsequent laps, with females preferring G2 more than males in lap one (P = 0.027). In long-distance skate-style skiing, transition performance is representative of race performance and skiers decrease the use of the often-faster G3 technique while increasing the use of the slower G2 technique due to prolonged exercise. Especially female skiers should consider adding some flat-to-uphill G3 practice into established training, specifically early in the session before fatigue may occur

    Printability, microstructure, and flow dynamics of phase-separated edible 3D inks

    Get PDF
    Personalizing the nutrition and sensorial attributes of 3D printed foods primarily requires various multiscale properties to be individually tailored. Herein, multiscale inks are produced by segregative phase separation, a candidate for further 3D inks texture control, of gellan gum (GG), and whey protein isolate (WPI). The inks microstructure, rheological properties, flow dynamics, their impact on printability, and properties-variables interactions are analyzed using experimental design and clustering. The gels are a GG matrix structured with WPI beads or fibers ranging from 100??m in diameter. A straightforward, six-step printability test determines that high-quality prints require increasing viscosity, which is obtained by reducing the size and length of the WPI beads. Also, flow dynamics and rheology models predict the shear stress and extrusion force, according to the print settings and food-inks fluid properties. The phase-separated inks enable printing at high speed (>25/50?mm/s) upon low extrusion forces (<50?N) and low shear stresses (<500?Pa), according to the calculations and model validation. These printability evaluation methodologies and fabrication of phase-separated inks are particularly interesting for 3D food printing, bioprinting, or biomaterials applications.Nanotechnology-based functional solutions project, funded by ERDF and CCDR-N, under the call Norte2020 (Ref. NORTE-01-0145-FEDER-000019) and Enhance Microalgae (High added-value industrial opportunities for microalgae in the Atlantic Area), funded by ERDF, under the Call Interreg Atlantic Area 2014–2020 (Ref. EAPA_338/2016)info:eu-repo/semantics/publishedVersio

    Dendritic glycopolymers based on dendritic polyamine scaffolds: view on their synthetic approaches, characteristics and potential for biomedical applications

    Get PDF
    In this review we highlight the potential for biomedical applications of dendritic glycopolymers based on polyamine scaffolds. The complex interplay of the molecular characteristics of the dendritic architectures and their specific interactions with various (bio)molecules are elucidated with various examples. A special role of the individual sugar units attached to the dendritic scaffolds and their density is identified, which govern ionic and H-bond interactions, and biological targeting, but to a large extent are also responsible for the significantly reduced toxicity of the dendritic glycopolymers compared to their polyamine scaffolds. Thus, the application of dendritic glycopolymers in drug delivery systems for gene transfection but also as therapeutics in neurodegenerative diseases has great promisePublikacja w ramach programu Royal Society of Chemistry "Gold for Gold" 2014 finansowanego przez Uniwersytet Łódzk

    Shape characterization of polymersome morphologies via light scattering techniques

    Get PDF
    Polymersomes, vesicles self-assembled from amphiphilic block copolymers, are well known for their robustness and for their broad applicability. Generating polymersomes of different shape is a topic of recent attention, specifically in the field of biomedical applications. To obtain information about their exact shape, tomography based on cryo-electron microscopy is usually the most preferred technique. Unfortunately, this technique is rather time consuming and expensive. Here we demonstrate an alternative analytical approach for the characterization of differently shaped polymersomes such as spheres, prolates and discs via the combination of multi-angle light scattering (MALS) and quasi-elastic light scattering (QELS). The use of these coupled techniques allowed for accurate determination of both the radius of gyration (Rg) and the hydrodynamic radius (Rh). This afforded us to determine the shape ratio ρ (Rg/Rh) with which we were able to distinguish between polymersome spheres, discs and rods.</p

    Sustained proliferation in cancer: mechanisms and novel therapeutic targets

    Get PDF
    Proliferation is an important part of cancer development and progression. This is manifest by altered expression and/or activity of cell cycle related proteins. Constitutive activation of many signal transduction pathways also stimulates cell growth. Early steps in tumor development are associated with a fibrogenic response and the development of a hypoxic environment which favors the survival and proliferation of cancer stem cells. Part of the survival strategy of cancer stem cells may manifested by alterations in cell metabolism. Once tumors appear, growth and metastasis may be supported by overproduction of appropriate hormones (in hormonally dependent cancers), by promoting angiogenesis, by undergoing epithelial to mesenchymal transition, by triggering autophagy, and by taking cues from surrounding stromal cells. A number of natural compounds (e.g., curcumin, resveratrol, indole-3-carbinol, brassinin, sulforaphane, epigallocatechin-3-gallate, genistein, ellagitannins, lycopene and quercetin) have been found to inhibit one or more pathways that contribute to proliferation (e.g., hypoxia inducible factor 1, nuclear factor kappa B, phosphoinositide 3 kinase/Akt, insulin-like growth factor receptor 1, Wnt, cell cycle associated proteins, as well as androgen and estrogen receptor signaling). These data, in combination with bioinformatics analyses, will be very important for identifying signaling pathways and molecular targets that may provide early diagnostic markers and/or critical targets for the development of new drugs or drug combinations that block tumor formation and progression
    corecore