43 research outputs found

    Proapoptotic activity of Ukrain is based on Chelidonium majus L. alkaloids and mediated via a mitochondrial death pathway

    Get PDF
    BACKGROUND: The anticancer drug Ukrain (NSC-631570) which has been specified by the manufacturer as semisynthetic derivative of the Chelidonium majus L. alkaloid chelidonine and the alkylans thiotepa was reported to exert selective cytotoxic effects on human tumour cell lines in vitro. Few clinical trials suggest beneficial effects in the treatment of human cancer. Aim of the present study was to elucidate the importance of apoptosis induction for the antineoplastic activity of Ukrain, to define the molecular mechanism of its cytotoxic effects and to identify its active constituents by mass spectrometry. METHODS: Apoptosis induction was analysed in a Jurkat T-lymphoma cell model by fluorescence microscopy (chromatin condensation and nuclear fragmentation), flow cytometry (cellular shrinkage, depolarisation of the mitochondrial membrane potential, caspase-activation) and Western blot analysis (caspase-activation). Composition of Ukrain was analysed by mass spectrometry and LC-MS coupling. RESULTS: Ukrain turned out to be a potent inducer of apoptosis. Mechanistic analyses revealed that Ukrain induced depolarisation of the mitochondrial membrane potential and activation of caspases. Lack of caspase-8, expression of cFLIP-L and resistance to death receptor ligand-induced apoptosis failed to inhibit Ukrain-induced apoptosis while lack of FADD caused a delay but not abrogation of Ukrain-induced apoptosis pointing to a death receptor independent signalling pathway. In contrast, the broad spectrum caspase-inhibitor zVAD-fmk blocked Ukrain-induced cell death. Moreover, over-expression of Bcl-2 or Bcl-x(L )and expression of dominant negative caspase-9 partially reduced Ukrain-induced apoptosis pointing to Bcl-2 controlled mitochondrial signalling events. However, mass spectrometric analysis of Ukrain failed to detect the suggested trimeric chelidonine thiophosphortriamide or putative dimeric or monomeric chelidonine thiophosphortriamide intermediates from chemical synthesis. Instead, the Chelidonium majus L. alkaloids chelidonine, sanguinarine, chelerythrine, protopine and allocryptopine were identified as major components of Ukrain. Apart from sanguinarine and chelerythrine, chelidonine turned out to be a potent inducer of apoptosis triggering cell death at concentrations of 0.001 mM, while protopine and allocryptopine were less effective. Similar to Ukrain, apoptosis signalling of chelidonine involved Bcl-2 controlled mitochondrial alterations and caspase-activation. CONCLUSION: The potent proapoptotic effects of Ukrain are not due to the suggested "Ukrain-molecule" but to the cytotoxic efficacy of Chelidonium majus L. alkaloids including chelidonine

    RNA Silencing of Mcl-1 Enhances ABT-737-Mediated Apoptosis in Melanoma: Role for a Caspase-8-Dependent Pathway

    Get PDF
    BACKGROUND: Malignant melanoma is resistant to almost all conventional forms of chemotherapy. Recent evidence suggests that anti-apoptotic proteins of the Bcl-2 family are overexpressed in melanoma and may contribute to melanoma's striking resistance to apoptosis. ABT-737, a small-molecule inhibitor of Bcl-2, Bcl-xl and Bcl-w, has demonstrated efficacy in several forms of leukemia, lymphoma as well as solid tumors. However, overexpression of Mcl-1, a frequent observance in melanoma, is known to confer ABT-737 resistance. METHODOLOGY/PRINCIPAL FINDINGS: Here we report that knockdown of Mcl-1 greatly reduces cell viability in combination with ABT-737 in six different melanoma cell lines. We demonstrate that the cytotoxic effect of this combination treatment is due to apoptotic cell death involving not only caspase-9 activation but also activation of caspase-8, caspase-10 and Bid, which are normally associated with the extrinsic pathway of apoptosis. Caspase-8 (and caspase-10) activation is abrogated by inhibition of caspase-9 but not by inhibitors of the death receptor pathways. Furthermore, while caspase-8/-10 activity is required for the full induction of cell death with treatment, the death receptor pathways are not. Finally, we demonstrate that basal levels of caspase-8 and Bid correlate with treatment sensitivity. CONCLUSIONS/SIGNIFICANCE: Our findings suggest that the combination of ABT-737 and Mcl-1 knockdown represents a promising, new treatment strategy for malignant melanoma. We also report a death receptor-independent role for extrinsic pathway proteins in treatment response and suggest that caspase-8 and Bid may represent potential markers of treatment sensitivity

    Histone deacetylase inhibitors strongly sensitise neuroblastoma cells to TRAIL-induced apoptosis by a caspases-dependent increase of the pro- to anti-apoptotic proteins ratio

    Get PDF
    BACKGROUND: Neuroblastoma (NB) is the second most common solid childhood tumour, an aggressive disease for which new therapeutic strategies are strongly needed. Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) selectively induces apoptosis in most tumour cells, but not in normal tissues and therefore represents a valuable candidate in apoptosis-inducing therapies. Caspase-8 is silenced in a subset of highly malignant NB cells, which results in full TRAIL resistance. In addition, despite constitutive caspase-8 expression, or its possible restoration by different strategies, NB cells remain weakly sensitive to TRAIL indicating a need to develop strategies to sensitise NB cells to TRAIL. Histone deacetylase inhibitors (HDACIs) are a new class of anti-cancer agent inducing apoptosis or cell cycle arrest in tumour cells with very low toxicity toward normal cells. Although HDACIs were recently shown to increase death induced by TRAIL in weakly TRAIL-sensitive tumour cells, the precise involved sensitisation mechanisms have not been fully identified. METHODS: NB cell lines were treated with various doses of HDACIs and TRAIL, then cytotoxicity was analysed by MTS/PMS proliferation assays, apoptosis was measured by the Propidium staining method, caspases activity by colorimetric protease assays, and (in)activation of apoptotic proteins by immunoblotting. RESULTS: Sub-toxic doses of HDACIs strongly sensitised caspase-8 positive NB cell lines to TRAIL induced apoptosis in a caspases dependent manner. Combined treatments increased the activation of caspases and Bid, and the inactivation of the anti-apoptotic proteins XIAP, Bcl-x, RIP, and survivin, thereby increasing the pro- to anti-apoptotic protein ratio. It also enhanced the activation of the mitochondrial pathway. Interestingly, the kinetics of caspases activation and inactivation of anti-apoptotic proteins is accelerated by combined treatment with TRAIL and HDACIs compared to TRAIL alone. In contrast, cell surface expression of TRAIL-receptors or TRAIL is not affected by sub-toxic doses of HDACIs. CONCLUSION: HDACIs were shown to activate the mitochondrial pathway and to sensitise NB cells to TRAIL by enhancing the amplitude of the apoptotic cascade and by restoring an apoptosis-prone ratio of pro- to anti-apoptotic proteins. Combining HDACIs and TRAIL could therefore represent a weakly toxic and promising strategy to target TRAIL-resistant tumours such as neuroblastomas

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    Get PDF
    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure fl ux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defi ned as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (inmost higher eukaryotes and some protists such as Dictyostelium ) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the fi eld understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation it is imperative to delete or knock down more than one autophagy-related gene. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways so not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    Get PDF

    Sphingolipids as cell fate regulators in lung development and disease

    Get PDF
    corecore