81 research outputs found

    Characterisation of the Filler Fraction in CAD/CAM Resin-Based Composites

    Get PDF
    The performance of dental resin-based composites (RBCs) heavily depends on the characteristic properties of the individual filler fraction. As specific information regarding the properties of the filler fraction is often missing, the current study aims to characterize the filler fractions of several contemporary computer-aided design/computer-aided manufacturing (CAD/CAM) RBCs from a material science point of view. The filler fractions of seven commercially available CAD/CAM RBCs featuring different translucency variants were analysed using Scanning Electron Microscopy (SEM) with Energy Dispersive X-ray Spectroscopy (EDS), Micro-X-ray Computed Tomography (µXCT), Thermogravimetric Analysis (TG) and X-ray Diffractometry (XRD). All CAD/CAM RBCs investigated included midifill hybrid type filler fractions, and the size of the individual particles was clearly larger than the individual specifications of the manufacturer. The fillers in Shofu Block HC featured a sphericity of ≈0.8, while it was <0.7 in all other RBCs. All RBCs featured only X-ray amorphous phases. However, in Lava Ultimate, zircon crystals with low crystallinity were detected. In some CAD/CAM RBCs, inhomogeneities (X-ray opaque fillers or pores) with a size <80 µm were identified, but the effects were minor in relation to the total volume (<0.01 vol.%). The characteristic parameters of the filler fraction in RBCs are essential for the interpretation of the individual material’s mechanical and optical properties

    EGFR and PI3K Pathway Activities Might Guide Drug Repurposing in HPV-Negative Head and Neck Cancers

    Get PDF
    While genetic alterations in Epidermal growth factor receptor (EGFR) and PI3K are common in head and neck squamous cell carcinomas (HNSCC), their impact on oncogenic signaling and cancer drug sensitivities remains elusive. To determine their consequences on the transcriptional network, pathway activities of EGFR, PI3K, and 12 additional oncogenic pathways were inferred in 498 HNSCC samples of The Cancer Genome Atlas using PROGENy. More than half of HPV-negative HNSCC showed a pathway activation in EGFR or PI3K. An amplification in EGFR and a mutation in PI3KCA resulted in a significantly higher activity of the respective pathway (p = 0.017 and p = 0.007). Interestingly, both pathway activations could only be explained by genetic alterations in less than 25% of cases indicating additional molecular events involved in the downstream signaling. Suitable in vitro pathway models could be identified in a published drug screen of 45 HPV-negative HNSCC cell lines. An active EGFR pathway was predictive for the response to the PI3K inhibitor buparlisib (p = 6.36E-03) and an inactive EGFR and PI3K pathway was associated with efficacy of the B-cell lymphoma (BCL) inhibitor navitoclax (p = 9.26E-03). In addition, an inactive PI3K pathway correlated with a response to multiple Histone deacetylase inhibitor (HDAC) inhibitors. These findings require validation in preclinical models and clinical studies

    Research potential and limitations of trace analyses of cremated remains

    Get PDF
    Human cremation is a common funeral practice all over the world and willpresumably become an even more popular choice for interment in thefuture. Mainly for purposes of identification, there is presently agrowing need to perform trace analyses such as DNA or stable isotopeanalyses on human remains after cremation in order to clarify pendingquestions in civil or criminal court cases. The aim of this study was toexperimentally test the potential and limitations of DNA and stableisotope analyses when conducted on cremated remains.For this purpose, tibiae from modern cattle were experimentally crematedby incinerating the bones in increments of 100 degrees C until a maximumof 1000 degrees C was reached. In addition, cremated human remains werecollected from a modern crematory. The samples were investigated todetermine level of DNA preservation and stable isotope values (C and Nin collagen, C and O in the structural carbonate, and Sr in apatite).Furthermore, we assessed the integrity of microstructural organization,appearance under UV-light, collagen content, as well as the mineral andcrystalline organization. This was conducted in order to provide ageneral background with which to explain observed changes in the traceanalyses data sets. The goal is to develop an efficacious screeningmethod for determining at which degree of burning bone still retains itsoriginal biological signals. We found that stable isotope analysis ofthe tested light elements in bone is only possible up to a heat exposureof 300 degrees C while the isotopic signal from strontium remainsunaltered even in bones exposed to very high temperatures. DNA-analysesseem theoretically possible up to a heat exposure of 600 degrees C butcan not be advised in every case because of the increased risk ofcontamination. While the macroscopic colour and UV-fluorescence ofcremated bone give hints to temperature exposure of the bone’s outersurface, its histological appearance can be used as a reliable indicatorfor the assessment of the overall degree of burning

    Gains to species diversity in organically farmed fields are not propagated at the farm level

    Get PDF
    Organic farming is promoted to reduce environmental impacts of agriculture, but surprisingly little is known about its effects at the farm level, the primary unit of decision making. Here we report the effects of organic farming on species diversity at the field, farm and regional levels by sampling plants, earthworms, spiders and bees in 1470 fields of 205 randomly selected organic and nonorganic farms in twelve European and African regions. Species richness is, on average, 10.5% higher in organic than nonorganic production fields, with highest gains in intensive arable fields (around +45%). Gains to species richness are partly caused by higher organism abundance and are common in plants and bees but intermittent in earthworms and spiders. Average gains are marginal +4.6% at the farm and +3.1% at the regional level, even in intensive arable regions. Additional, targeted measures are therefore needed to fulfil the commitment of organic farming to benefit farmland biodiversity

    Farmland biodiversity and agricultural management on 237 farms in 13 European and two African regions

    Get PDF
    Farmland is a major land cover type in Europe and Africa and provides habitat for numerous species. The severe decline in farmland biodiversity of the last decades has been attributed to changes in farming practices, and organic and low-input farming are assumed to mitigate detrimental effects of agricultural intensification on biodiversity. Since the farm enterprise is the primary unit of agricultural decision making, management-related effects at the field scale need to be assessed at the farm level. Therefore, in this study, data were collected on habitat characteristics, vascular plant, earthworm, spider, and bee communities and on the corresponding agricultural management in 237 farms in 13 European and two African regions. In 15 environmental and agricultural homogeneous regions, 6–20 farms with the same farm type (e.g., arable crops, grassland, or specific permanent crops) were selected. If available, an equal number of organic and non-organic farms were randomly selected. Alternatively, farms were sampled along a gradient of management intensity. For all selected farms, the entire farmed area was mapped, which resulted in total in the mapping of 11 338 units attributed to 194 standardized habitat types, provided together with additional descriptors. On each farm, one site per available habitat type was randomly selected for species diversity investigations. Species were sampled on 2115 sites and identified to the species level by expert taxonomists. Species lists and abundance estimates are provided for each site and sampling date (one date for plants and earthworms, three dates for spiders and bees). In addition, farmers provided information about their management practices in face-to-face interviews following a standardized questionnaire. Farm management indicators for each farm are available (e.g., nitrogen input, pesticide applications, or energy input). Analyses revealed a positive effect of unproductive areas and a negative effect of intensive management on biodiversity. Communities of the four taxonomic groups strongly differed in their response to habitat characteristics, agricultural management, and regional circumstances. The data has potential for further insights into interactions of farmland biodiversity and agricultural management at site, farm, and regional scale

    The Human Phenotype Ontology in 2024: phenotypes around the world.

    Get PDF
    The Human Phenotype Ontology (HPO) is a widely used resource that comprehensively organizes and defines the phenotypic features of human disease, enabling computational inference and supporting genomic and phenotypic analyses through semantic similarity and machine learning algorithms. The HPO has widespread applications in clinical diagnostics and translational research, including genomic diagnostics, gene-disease discovery, and cohort analytics. In recent years, groups around the world have developed translations of the HPO from English to other languages, and the HPO browser has been internationalized, allowing users to view HPO term labels and in many cases synonyms and definitions in ten languages in addition to English. Since our last report, a total of 2239 new HPO terms and 49235 new HPO annotations were developed, many in collaboration with external groups in the fields of psychiatry, arthrogryposis, immunology and cardiology. The Medical Action Ontology (MAxO) is a new effort to model treatments and other measures taken for clinical management. Finally, the HPO consortium is contributing to efforts to integrate the HPO and the GA4GH Phenopacket Schema into electronic health records (EHRs) with the goal of more standardized and computable integration of rare disease data in EHRs

    Scientific opportunies for bERLinPro 2020+, report with ideas and conclusions from bERLinProCamp 2019

    Get PDF
    The Energy Recovery Linac (ERL) paradigm offers the promise to generate intense electron beams of superior quality with extremely small six-dimensional phase space for many applications in the physical sciences, materials science, chemistry, health, information technology and security. Helmholtz-Zentrum Berlin started in 2010 an intensive R\&D programme to address the challenges related to the ERL as driver for future light sources by setting up the bERLinPro (Berlin ERL Project) ERL with 50 MeV beam energy and high average current. The project is close to reach its major milestone in 2020, acceleration and recovery of a high brightness electron beam. The goal of bERLinProCamp 2019 was to discuss scientific opportunities for bERLinPro 2020+. bERLinProCamp 2019 was held on Tue, 17.09.2019 at Helmholtz-Zentrum Berlin, Berlin, Germany. This paper summarizes the main themes and output of the workshop

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Serum profiling identifies CCL8, CXCL13, and IL-1RA as markers of active disease in patients with systemic lupus erythematosus

    Get PDF
    IntroductionSystemic lupus erythematosus (SLE) is a clinically heterogeneous disease that presents a challenge for clinicians. To identify potential biomarkers for diagnosis and disease activity in SLE, we investigated a selected yet broad panel of cytokines and autoantibodies in patients with SLE, healthy controls (HC), and patients with other autoimmune diseases (AIDs).MethodsSerum samples from 422 SLE patients, 546 HC, and 1223 other AIDs were analysed within the frame of the European PRECISESADS project (NTC02890121). Cytokine levels were determined using Luminex panels, and autoantibodies using different immunoassays.ResultsOf the 83 cytokines analysed, 29 differed significantly between patients with SLE and HC. Specifically, CCL8, CXCL13, and IL-1RA levels were elevated in patients with active, but not inactive, SLE versus HC, as well as in patients with SLE versus other AIDs. The levels of these cytokines also correlated with SLE Disease Activity Index 2000 (SLEDAI-2K) scores, among five other cytokines. Overall, the occurrence of autoantibodies was similar across SLEDAI-2K organ domains, and the correlations between autoantibodies and activity in different organ domains were weak.DiscussionOur findings suggest that, upon validation, CCL8, CXCL13, and IL-1RA could serve as promising serum biomarkers of activity in SLE
    corecore