35 research outputs found

    Ranking Hits From Saturation Transfer Difference Nuclear Magnetic Resonance–Based Fragment Screening

    Get PDF
    Fragment-based screening is an established route to identify low-molecular-weight molecules to generate high-affinity inhibitors in drug discovery. The affinities of these early hits from fragment screenings require a highly sensitive biophysical screening technique. Saturation transfer difference (STD) nuclear magnetic resonance (NMR) is one of the most popular methods owing to its high sensitivity for low-affinity ligands. It would be highly beneficial if rank-ordering of hits according to their affinity from an initial or counter-screen could be performed—a selection criterion found in the literature. We applied Complete Relaxation and Conformational Exchange Matrix (CORCEMA) theory adapted for saturation transfer (ST) measurements (CORCEMA-ST) calculations to predict STD NMR results from a large set of fragment/receptor pairs to investigate the boundaries under which the assumption holds true that a high STD effect can be applied to select for higher-affinity fragments. Overall, we come to the conclusion that this assumption is invalid

    Computational and experimental prediction of human C-type lectin receptor druggability

    Get PDF
    Mammalian C-type lectin receptors (CTLRS) are involved in many aspects of immune cell regulation such as pathogen recognition, clearance of apoptotic bodies, and lymphocyte homing. Despite a great interest in modulating CTLR recognition of carbohydrates, the number of specific molecular probes is limited. To this end, we predicted the druggability of a panel of 22 CTLRs using DoGSiteScorer. The computed druggability scores of most structures were low, characterizing this family as either challenging or even undruggable. To further explore these findings, we employed a fluorine-based nuclear magnetic resonance screening of fragment mixtures against DC-SIGN, a receptor of pharmacological interest. To our surprise, we found many fragment hits associated with the carbohydrate recognition site (hit rate = 13.5%). A surface plasmon resonance-based follow-up assay confirmed 18 of these fragments (47%) and equilibrium dissociation constants were determined. Encouraged by these findings we expanded our experimental druggability prediction to Langerin and MCL and found medium to high hit rates as well, being 15.7 and 10.0%, respectively. Our results highlight limitations of current in silico approaches to druggability assessment, in particular, with regard to carbohydrate-binding proteins. In sum, our data indicate that small molecule ligands for a larger panel of CTLRs can be developed

    Pharmacokinetic aspects of retinal drug delivery

    Get PDF
    Drug delivery to the posterior eye segment is an important challenge in ophthalmology, because many diseases affect the retina and choroid leading to impaired vision or blindness. Currently, intravitreal injections are the method of choice to administer drugs to the retina, but this approach is applicable only in selected cases (e.g. anti-VEGF antibodies and soluble receptors). There are two basic approaches that can be adopted to improve retinal drug delivery: prolonged and/or retina targeted delivery of intravitreal drugs and use of other routes of drug administration, such as periocular, suprachoroidal, sub-retinal, systemic, or topical. Properties of the administration route, drug and delivery system determine the efficacy and safety of these approaches. Pharmacokinetic and pharmacodynamic factors determine the required dosing rates and doses that are needed for drug action. In addition, tolerability factors limit the use of many materials in ocular drug delivery. This review article provides a critical discussion of retinal drug delivery, particularly from the pharmacokinetic point of view. This article does not include an extensive review of drug delivery technologies, because they have already been reviewed several times recently. Instead, we aim to provide a systematic and quantitative view on the pharmacokinetic factors in drug delivery to the posterior eye segment. This review is based on the literature and unpublished data from the authors' laboratory.Peer reviewe

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    No full text
    Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts

    Lucky kindlin: A cloverleaf at the integrin tail

    No full text

    New insights into the phosphorylation of the threonine motif of the β1 integrin cytoplasmic domain

    No full text
    Integrins require an activation step before ligand binding and signaling that is mediated by talin and kindlin binding to the β integrin cytosolic domain (β-tail). Conflicting reports exist about the contribution of phosphorylation of a conserved threonine motif in the β1-tail (β1-pT788/pT789) to integrin activation. We show that widely used and commercially available antibodies against β1-pT788/pT789 integrin do not detect specific β1-pT788/pT789 integrin signals in immunoblots of several human and mouse cell lysates but bind bi-phosphorylated threonine residues in numerous proteins, which were identified by mass spectrometry experiments. Furthermore, we found that fibroblasts and epithelial cells expressing the phospho-mimicking β1-TT788/789DD integrin failed to activate β1 integrins and displayed reduced integrin ligand binding, adhesion initiation and cell spreading. These cellular defects are specifically caused by the inability of kindlin to bind β1-tail polypeptides carrying a phosphorylated threonine motif or phospho-mimicking TT788/789DD substitutions. Our findings indicate that the double-threonine motif in β1-class integrins is not a major phosphorylation site but if phosphorylated would curb integrin function.ISSN:2575-107

    Talin and kindlin use integrin tail allostery and direct binding to activate integrins

    No full text
    Integrin affinity regulation, also termed integrin activation, is essential for metazoan life. Although talin and kindlin binding to the β-integrin cytoplasmic tail is indispensable for integrin activation, it is unknown how they achieve this function. By combining NMR, biochemistry and cell biology techniques, we found that talin and kindlin binding to the β-tail can induce a conformational change that increases talin affinity and decreases kindlin affinity toward it. We also discovered that this asymmetric affinity regulation is accompanied by a direct interaction between talin and kindlin, which promotes simultaneous binding of talin and kindlin to β-tails. Disrupting allosteric communication between the β-tail-binding sites of talin and kindlin or their direct interaction in cells severely compromised integrin functions. These data show how talin and kindlin cooperate to generate a small but critical population of ternary talin-β-integrin-kindlin complexes with high talin-integrin affinity and high dynamics.ISSN:1545-9993ISSN:1545-998

    <sup>19</sup>F NMR-Guided Design of Glycomimetic Langerin Ligands

    No full text
    C-type lectin receptors (CLRs) play a pivotal role in pathogen defense and immune homeostasis. Langerin, a CLR predominantly expressed on Langerhans cells, represents a potential target receptor for the development of anti-infectives or immunomodulatory therapies. As mammalian carbohydrate binding sites typically display high solvent exposure and hydrophilicity, the recognition of natural monosaccharide ligands is characterized by low affinities. Consequently, glycomimetic ligand design poses challenges that extend to the development of suitable assays. Here, we report the first application of <sup>19</sup>F R<sub>2</sub>-filtered NMR to address these challenges for a CLR, i.e., Langerin. The homogeneous, monovalent assay was essential to evaluating the <i>in silico</i> design of 2-deoxy-2-carboxamido-α-mannoside analogs and enabled the implementation of a fragment screening against the carbohydrate binding site. With the identification of both potent monosaccharide analogs and fragment hits, this study represents an important advancement toward the design of glycomimetic Langerin ligands and highlights the importance of assay development for other CLRs
    corecore