190 research outputs found

    Characterization of binding, functional activity, and contractile responses of the selective 5-HT1F receptor agonist lasmiditan

    Get PDF
    Background and Purpose: Triptans are 5-HT1B/1D receptor agonists (that also display 5-HT1F receptor affinity) with antimigraine action, contraindicated in patients with coronary artery disease due to their vasoconstrictor properties. Conversely, lasmiditan was developed as an antimigraine 5-HT1F receptor agonist. To assess the selectivity and cardiovascular effects of lasmiditan, we investigated the binding, functional activity, and in vitro/in vivo vascular effects of lasmiditan and compared it to sumatriptan. Experimental Approach: Binding and second messenger activity assays of lasmiditan and other serotoninergic agonists were performed for human 5-HT1A, 5-HT1B, 5-HT1D, 5-ht1E, 5-HT1F, 5-HT2A, 5-HT2B, and 5-HT7 receptors, and the results were correlated with their potency to constrict isolated human coronary arteries (HCAs). Furthermore, concentration–response curves to lasmiditan and sumatriptan were performed in proximal and distal HCA, internal mammary, and middle meningeal arteries. Finally, anaesthetized female beagle dogs received i.v. infusions of lasmiditan or sumatriptan in escalating cumulative doses, and carotid and coronary artery diameters were measured. Key Results: Lasmiditan showed high selectivity for 5-HT1F receptors. Moreover, the functional potency of the analysed compounds to inhibit cAMP increase through 5-HT1B receptor activation positively correlated with their potency to contract HCA. In isolated human arteries, sumatriptan, but not lasmiditan, induced contractions. Likewise, in vivo, sumatriptan decreased coronary and carotid artery diameters at clinically relevant doses, while lasmiditan was devoid of vasoconstrictor activity at all doses tested. Conclusions and Implications: Lasmiditan is a selective 5-HT1F receptor agonist devoid of vasoconstrictor activity. This may represent a cardiovascular safety advantage when compared to the triptans

    Pulsar-wind nebulae and magnetar outflows: observations at radio, X-ray, and gamma-ray wavelengths

    Get PDF
    We review observations of several classes of neutron-star-powered outflows: pulsar-wind nebulae (PWNe) inside shell supernova remnants (SNRs), PWNe interacting directly with interstellar medium (ISM), and magnetar-powered outflows. We describe radio, X-ray, and gamma-ray observations of PWNe, focusing first on integrated spectral-energy distributions (SEDs) and global spectral properties. High-resolution X-ray imaging of PWNe shows a bewildering array of morphologies, with jets, trails, and other structures. Several of the 23 so far identified magnetars show evidence for continuous or sporadic emission of material, sometimes associated with giant flares, and a few possible "magnetar-wind nebulae" have been recently identified.Comment: 61 pages, 44 figures (reduced in quality for size reasons). Published in Space Science Reviews, "Jets and Winds in Pulsar Wind Nebulae, Gamma-ray Bursts and Blazars: Physics of Extreme Energy Release

    Search for strong gravity in multijet final states produced in pp collisions at √s=13 TeV using the ATLAS detector at the LHC

    Get PDF
    A search is conducted for new physics in multijet final states using 3.6 inverse femtobarns of data from proton-proton collisions at √s = 13TeV taken at the CERN Large Hadron Collider with the ATLAS detector. Events are selected containing at least three jets with scalar sum of jet transverse momenta (HT) greater than 1TeV. No excess is seen at large HT and limits are presented on new physics: models which produce final states containing at least three jets and having cross sections larger than 1.6 fb with HT > 5.8 TeV are excluded. Limits are also given in terms of new physics models of strong gravity that hypothesize additional space-time dimensions

    The performance of the jet trigger for the ATLAS detector during 2011 data taking

    Get PDF
    The performance of the jet trigger for the ATLAS detector at the LHC during the 2011 data taking period is described. During 2011 the LHC provided proton–proton collisions with a centre-of-mass energy of 7 TeV and heavy ion collisions with a 2.76 TeV per nucleon–nucleon collision energy. The ATLAS trigger is a three level system designed to reduce the rate of events from the 40 MHz nominal maximum bunch crossing rate to the approximate 400 Hz which can be written to offline storage. The ATLAS jet trigger is the primary means for the online selection of events containing jets. Events are accepted by the trigger if they contain one or more jets above some transverse energy threshold. During 2011 data taking the jet trigger was fully efficient for jets with transverse energy above 25 GeV for triggers seeded randomly at Level 1. For triggers which require a jet to be identified at each of the three trigger levels, full efficiency is reached for offline jets with transverse energy above 60 GeV. Jets reconstructed in the final trigger level and corresponding to offline jets with transverse energy greater than 60 GeV, are reconstructed with a resolution in transverse energy with respect to offline jets, of better than 4 % in the central region and better than 2.5 % in the forward direction

    Measurement of the View the tt production cross-section using eμ events with b-tagged jets in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    This paper describes a measurement of the inclusive top quark pair production cross-section (σtt¯) with a data sample of 3.2 fb−1 of proton–proton collisions at a centre-of-mass energy of √s = 13 TeV, collected in 2015 by the ATLAS detector at the LHC. This measurement uses events with an opposite-charge electron–muon pair in the final state. Jets containing b-quarks are tagged using an algorithm based on track impact parameters and reconstructed secondary vertices. The numbers of events with exactly one and exactly two b-tagged jets are counted and used to determine simultaneously σtt¯ and the efficiency to reconstruct and b-tag a jet from a top quark decay, thereby minimising the associated systematic uncertainties. The cross-section is measured to be: σtt¯ = 818 ± 8 (stat) ± 27 (syst) ± 19 (lumi) ± 12 (beam) pb, where the four uncertainties arise from data statistics, experimental and theoretical systematic effects, the integrated luminosity and the LHC beam energy, giving a total relative uncertainty of 4.4%. The result is consistent with theoretical QCD calculations at next-to-next-to-leading order. A fiducial measurement corresponding to the experimental acceptance of the leptons is also presented

    Measurements of fiducial cross-sections for t\bart production with one or two additional b-jets in pp collisions at √s =8 TeVusing the ATLAS detector

    Get PDF
    Fiducial cross-sections for ttˉt\bar{t} production with one or two additional bb-jets are reported, using an integrated luminosity of 20.3 fb1^{-1} of proton--proton collisions at a centre-of-mass energy of 8 TeV at the Large Hadron Collider, collected with the ATLAS detector. The cross-section times branching ratio for ttˉt\bar{t} events with at least one additional bb-jet is measured to be 950 ±\pm 70 (stat.) 190+240^{+240}_{-190} (syst.) fb in the lepton-plus-jets channel and 50 ±\pm 10 (stat.) 10+15^{+15}_{-10} (syst.) fb in the eμe \mu channel. The cross-section times branching ratio for events with at least two additional bb-jets is measured to be 19.3 ±\pm 3.5 (stat.) ±\pm 5.7 (syst.) fb in the dilepton channel (eμe \mu,\,μμ\mu\mu, and \,eeee) using a method based on tight selection criteria, and 13.5 ±\pm 3.3 (stat.) ±\pm 3.6 (syst.) fb using a looser selection that allows the background normalisation to be extracted from data. The latter method also measures a value of 1.30 ±\pm 0.33 (stat.) ±\pm 0.28 (syst.)\% for the ratio of ttˉt\bar{t} production with two additional bb-jets to ttˉt\bar{t} production with any two additional jets. All measurements are in good agreement with recent theory predictions.Comment: 41 pages plus author list + cover page (58 total), 9 Figures, 16 tables, submitted to EPJC, all figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/TOPQ-2014-10

    Measurement of the cross section for isolated-photon plus jet production in pp collisions at √s=13 TeV using the ATLAS detector

    Get PDF
    The dynamics of isolated-photon production in association with a jet in proton–proton collisions at a centre-of-mass energy of 13 TeV are studied with the ATLAS detector at the LHC using a dataset with an integrated luminosity of 3.2 fb−1. Photons are required to have transverse energies above 125 GeV. Jets are identified using the anti- algorithm with radius parameter and required to have transverse momenta above 100 GeV. Measurements of isolated-photon plus jet cross sections are presented as functions of the leading-photon transverse energy, the leading-jet transverse momentum, the azimuthal angular separation between the photon and the jet, the photon–jet invariant mass and the scattering angle in the photon–jet centre-of-mass system. Tree-level plus parton-shower predictions from Sherpa and Pythia as well as next-to-leading-order QCD predictions from Jetphox and Sherpa are compared to the measurements

    Dijet production in √s = 7 TeV pp collisions with large rapidity gaps at the ATLAS experiment

    Get PDF
    A 6.8 nb−¹ sample of pp collision data collected under low-luminosity conditions at √s = 7 TeV by the ATLAS detector at the Large Hadron Collider is used to study diffractive dijet production. Events containing at least two jets with pT > 20 GeV are selected and analysed in terms of variables which discriminate between diffractive and non-diffractive processes. Cross sections are measured differentially in ΔηF, the size of the observable forward region of pseudorapidity which is devoid of hadronic activity, and in an estimator, ξ˜, of the fractional momentum loss of the proton assuming single diffractive dissociation (pp → p X). Model comparisons indicate a dominant non-diffractive contribution up to moderately large ηF and small ξ˜, with a diffractive contribution which is significant at the highest ΔηF and the lowest ξ˜. The rapidity-gap survival probability is estimated from comparisons of the data in this latter region with predictions based on diffractive parton distribution functions

    Measurement of jet charge in dijet events from √s = 8  TeV pp collisions with the ATLAS detector

    Get PDF
    The momentum-weighted sum of the charges of tracks associated to a jet is sensitive to the charge of the initiating quark or gluon. This paper presents a measurement of the distribution of momentum-weighted sums, called jet charge, in dijet events using 20.3 fb−¹ of data recorded with the ATLAS detector at √s = 8 TeV in pp collisions at the LHC. The jet charge distribution is unfolded to remove distortions from detector effects and the resulting particle-level distribution is compared with several models. The pT dependence of the jet charge distribution average and standard deviation are compared to predictions obtained with several leading-order and next-to-leading-order parton distribution functions. The data are also compared to different Monte Carlo simulations of QCD dijet production using various settings of the free parameters within these models. The chosen value of the strong coupling constant used to calculate gluon radiation is found to have a significant impact on the predicted jet charge. There is evidence for a pT dependence of the jet charge distribution for a given jet flavor. In agreement with perturbative QCD predictions, the data show that the average jet charge of quark-initiated jets decreases in magnitude as the energy of the jet increases

    Search for the production of single vector-like and excited quarks in the Wt final state in pp collisions at √s=8 TeV with the ATLAS detector

    Get PDF
    A search for vector-like quarks and excited quarks in events containing a top quark and a W boson in the final state is reported here. The search is based on 20.3 fb−1 of proton-proton collision data taken at the LHC at a centre-of-mass energy of 8 TeV recorded by the ATLAS detector. Events with one or two leptons, and one, two or three jets are selected with the additional requirement that at least one jet contains a b-quark. Single-lepton events are also required to contain at least one large-radius jet from the hadronic decay of a high-pTW boson or a top quark. No significant excess over the expected background is observed and upper limits on the cross-section times branching ratio for different vector-like quark and excited-quark model masses are derived. For the excited-quark production and decay to Wt with unit couplings, quarks with masses below 1500 GeV are excluded and coupling-dependent limits are set
    corecore