76 research outputs found

    Repetition Enhancement for Frequency-Modulated but Not Unmodulated Sounds: A Human MEG Study

    Get PDF
    BACKGROUND: Decoding of frequency-modulated (FM) sounds is essential for phoneme identification. This study investigates selectivity to FM direction in the human auditory system. METHODOLOGY/PRINCIPAL FINDINGS: Magnetoencephalography was recorded in 10 adults during a two-tone adaptation paradigm with a 200-ms interstimulus-interval. Stimuli were pairs of either same or different frequency modulation direction. To control that FM repetition effects cannot be accounted for by their on- and offset properties, we additionally assessed responses to pairs of unmodulated tones with either same or different frequency composition. For the FM sweeps, N1m event-related magnetic field components were found at 103 and 130 ms after onset of the first (S1) and second stimulus (S2), respectively. This was followed by a sustained component starting at about 200 ms after S2. The sustained response was significantly stronger for stimulation with the same compared to different FM direction. This effect was not observed for the non-modulated control stimuli. CONCLUSIONS/SIGNIFICANCE: Low-level processing of FM sounds was characterized by repetition enhancement to stimulus pairs with same versus different FM directions. This effect was FM-specific; it did not occur for unmodulated tones. The present findings may reflect specific interactions between frequency separation and temporal distance in the processing of consecutive FM sweeps

    Comparative Transcriptional Profiling of Bacillus cereus Sensu Lato Strains during Growth in CO2-Bicarbonate and Aerobic Atmospheres

    Get PDF
    Bacillus species are spore-forming bacteria that are ubiquitous in the environment and display a range of virulent and avirulent phenotypes. This range is particularly evident in the Bacillus cereus sensu lato group; where closely related strains cause anthrax, food-borne illnesses, and pneumonia, but can also be non-pathogenic. Although much of this phenotypic range can be attributed to the presence or absence of a few key virulence factors, there are other virulence-associated loci that are conserved throughout the B. cereus group, and we hypothesized that these genes may be regulated differently in pathogenic and non-pathogenic strains.Here we report transcriptional profiles of three closely related but phenotypically unique members of the Bacillus cereus group--a pneumonia-causing B. cereus strain (G9241), an attenuated strain of B. anthracis (Sterne 34F(2)), and an avirulent B. cereus strain (10987)--during exponential growth in two distinct atmospheric environments: 14% CO(2)/bicarbonate and ambient air. We show that the disease-causing Bacillus strains undergo more distinctive transcriptional changes between the two environments, and that the expression of plasmid-encoded virulence genes was increased exclusively in the CO(2) environment. We observed a core of conserved metabolic genes that were differentially expressed in all three strains in both conditions. Additionally, the expression profiles of putative virulence genes in G9241 suggest that this strain, unlike Bacillus anthracis, may regulate gene expression with both PlcR and AtxA transcriptional regulators, each acting in a different environment.We have shown that homologous and even identical genes within the genomes of three closely related members of the B. cereus sensu lato group are in some instances regulated very differently, and that these differences can have important implications for virulence. This study provides insights into the evolution of the B. cereus group, and highlights the importance of looking beyond differences in gene content in comparative genomics studies

    Matrix Metalloproteinases in Cytotoxic Lymphocytes Impact on Tumour Infiltration and Immunomodulation

    Get PDF
    To efficiently combat solid tumours, endogenously or adoptively transferred cytotoxic T cells and natural killer (NK) cells, need to leave the vasculature, traverse the interstitium and ultimately infiltrate the tumour mass. During this locomotion and migration in the three dimensional environment many obstacles need to be overcome, one of which is the possible impediment of the extracellular matrix. The first and obvious one is the sub-endothelial basement membrane but the infiltrating cells will also meet other, both loose and tight, matrix structures that need to be overridden. Matrix metalloproteinases (MMPs) are believed to be one of the most important endoprotease families, with more than 25 members, which together have function on all known matrix components. This review summarizes what is known on synthesis, expression patterns and regulation of MMPs in cytotoxic lymphocytes and their possible role in the process of tumour infiltration. We also discuss different functions of MMPs as well as the possible use of other lymphocyte proteases for matrix degradation

    Diminishing benefits of urban living for children and adolescents’ growth and development

    Get PDF
    Optimal growth and development in childhood and adolescence is crucial for lifelong health and well-being1–6. Here we used data from 2,325 population-based studies, with measurements of height and weight from 71 million participants, to report the height and body-mass index (BMI) of children and adolescents aged 5–19 years on the basis of rural and urban place of residence in 200 countries and territories from 1990 to 2020. In 1990, children and adolescents residing in cities were taller than their rural counterparts in all but a few high-income countries. By 2020, the urban height advantage became smaller in most countries, and in many high-income western countries it reversed into a small urban-based disadvantage. The exception was for boys in most countries in sub-Saharan Africa and in some countries in Oceania, south Asia and the region of central Asia, Middle East and north Africa. In these countries, successive cohorts of boys from rural places either did not gain height or possibly became shorter, and hence fell further behind their urban peers. The difference between the age-standardized mean BMI of children in urban and rural areas was <1.1 kg m–2 in the vast majority of countries. Within this small range, BMI increased slightly more in cities than in rural areas, except in south Asia, sub-Saharan Africa and some countries in central and eastern Europe. Our results show that in much of the world, the growth and developmental advantages of living in cities have diminished in the twenty-first century, whereas in much of sub-Saharan Africa they have amplified

    Rising rural body-mass index is the main driver of the global obesity epidemic in adults

    Get PDF
    Body-mass index (BMI) has increased steadily in most countries in parallel with a rise in the proportion of the population who live in cities(.)(1,2) This has led to a widely reported view that urbanization is one of the most important drivers of the global rise in obesity(3-6). Here we use 2,009 population-based studies, with measurements of height and weight in more than 112 million adults, to report national, regional and global trends in mean BMI segregated by place of residence (a rural or urban area) from 1985 to 2017. We show that, contrary to the dominant paradigm, more than 55% of the global rise in mean BMI from 1985 to 2017-and more than 80% in some low- and middle-income regions-was due to increases in BMI in rural areas. This large contribution stems from the fact that, with the exception of women in sub-Saharan Africa, BMI is increasing at the same rate or faster in rural areas than in cities in low- and middle-income regions. These trends have in turn resulted in a closing-and in some countries reversal-of the gap in BMI between urban and rural areas in low- and middle-income countries, especially for women. In high-income and industrialized countries, we noted a persistently higher rural BMI, especially for women. There is an urgent need for an integrated approach to rural nutrition that enhances financial and physical access to healthy foods, to avoid replacing the rural undernutrition disadvantage in poor countries with a more general malnutrition disadvantage that entails excessive consumption of low-quality calories.Peer reviewe

    Disorders of sex development: effect of molecular diagnostics

    Get PDF
    Disorders of sex development (DSDs) are a diverse group of conditions that can be challenging to diagnose accurately using standard phenotypic and biochemical approaches. Obtaining a specific diagnosis can be important for identifying potentially life-threatening associated disorders, as well as providing information to guide parents in deciding on the most appropriate management for their child. Within the past 5 years, advances in molecular methodologies have helped to identify several novel causes of DSDs; molecular tests to aid diagnosis and genetic counselling have now been adopted into clinical practice. Occasionally, genetic profiling of embryos prior to implantation as an adjunct to assisted reproduction, prenatal diagnosis of at-risk pregnancies and confirmatory testing of positive results found during newborn biochemical screening are performed. Of the available genetic tests, the candidate gene approach is the most popular. New high-throughput DNA analysis could enable a genetic diagnosis to be made when the aetiology is unknown or many differential diagnoses are possible. Nonetheless, concerns exist about the use of genetic tests. For instance, a diagnosis is not always possible even using new molecular approaches (which can be worrying for the parents) and incidental information obtained during the test might cause anxiety. Careful selection of the genetic test indicated for each condition remains important for good clinical practice. The purpose of this Review is to describe advances in molecular biological techniques for diagnosing DSDs

    Rising rural body-mass index is the main driver of the global obesity epidemic in adults

    Get PDF
    Body-mass index (BMI) has increased steadily in most countries in parallel with a rise in the proportion of the population who live in cities. This has led to a widely reported view that urbanization is one of the most important drivers of the global rise in obesity. Here we use 2,009 population-based studies, with measurements of height and weight in more than 112 million adults, to report national, regional and global trends in mean BMI segregated by place of residence (a rural or urban area) from 1985 to 2017. We show that, contrary to the dominant paradigm, more than 55% of the global rise in mean BMI from 1985 to 2017—and more than 80% in some low- and middle-income regions—was due to increases in BMI in rural areas. This large contribution stems from the fact that, with the exception of women in sub-Saharan Africa, BMI is increasing at the same rate or faster in rural areas than in cities in low- and middle-income regions. These trends have in turn resulted in a closing—and in some countries reversal—of the gap in BMI between urban and rural areas in low- and middle-income countries, especially for women. In high-income and industrialized countries, we noted a persistently higher rural BMI, especially for women. There is an urgent need for an integrated approach to rural nutrition that enhances financial and physical access to healthy foods, to avoid replacing the rural undernutrition disadvantage in poor countries with a more general malnutrition disadvantage that entails excessive consumption of low-quality calories

    A human MYBPC3 mutation appearing about 10 centuries ago results in a hypertrophic cardiomyopathy with delayed onset, moderate evolution but with a risk of sudden death.

    Get PDF
    BACKGROUND: Hypertrophic Cardiomyopathy (HCM) is a genetically heterogeneous disease. One specific mutation in the MYBPC3 gene is highly prevalent in center east of France giving an opportunity to define the clinical profile of this specific mutation. METHODS: HCM probands were screened for mutation in the MYH7, MYBPC3, TNNT2 and TNNI3 genes. Carriers of the MYBPC3 IVS20-2A>G mutation were genotyped with 8 microsatellites flanking this gene. The age of this MYBPC3 mutation was inferred with the software ESTIAGE. The age at first symptom, diagnosis, first complication, first severe complication and the rate of sudden death were compared between carriers of the IVS20-2 mutation (group A) and carriers of all other mutations (group B) using time to event curves and log rank test. RESULTS: Out of 107 HCM probands, 45 had a single heterozygous mutation in one of the 4 tested sarcomeric genes including 9 patients with the MYBPC3 IVS20-2A>G mutation. The IVS20-2 mutation in these 9 patients and their 25 mutation carrier relatives was embedded in a common haplotype defined after genotyping 4 polymorphic markers on each side of the MYBPC3 gene. This result supports the hypothesis of a common ancestor. Furthermore, we evaluated that the mutation occurred about 47 generations ago, approximately at the 10th century.We then compared the clinical profile of the IVS20-2 mutation carriers (group A) and the carriers of all other mutations (group B). Age at onset of symptoms was similar in the 34 group A cases and the 73 group B cases but group A cases were diagnosed on average 15 years later (log rank test p = 0.022). Age of first complication and first severe complication was delayed in group A vs group B cases but the prevalence of sudden death and age at death was similar in both groups. CONCLUSION: A founder mutation arising at about the 10th century in the MYBPC3 gene accounts for 8.4% of all HCM in center east France and results in a cardiomyopathy starting late and evolving slowly but with an apparent risk of sudden death similar to other sarcomeric mutations
    corecore