105 research outputs found

    Hyperfine Magnetic Field Measurement in Heusler Alloys by TDPAC Technique

    Get PDF
    This work was supported by National Science Foundation Grants PHY 76-84033A01, PHY 78-22774, and Indiana Universit

    Investigation of bovine serum albumin denaturation using ultrasonic spectroscopy

    Get PDF
    The ability of ultrasound spectroscopy to characterise protein denaturation at relatively high concentrations and under conditions found in foods, is examined. Measurement of longitudinal sound velocity against concentration and frequency (20-160 MHz) for the bovine serum albumin monomer at pH 7.0 gave a frequency independent value for molecular compressibility of at 25 °C, corresponding to a sound velocity for the BSA molecule of 1920 ms-1. At 160 MHz, the longitudinal sound attenuation in BSA molecules is ~5200 Npm-1, a factor of 10 higher than in water. The excess attenuation of the solution over water was nearly 90 Npm-1 at the highest measured volume fraction of 0.03 (or 3% v/v). Concentration-dependent ultrasound velocity (20 - 160 MHz) and attenuation (2 - 120 MHz) spectra were obtained over time for heated bovine serum albumin (BSA) solutions up to 40 mg/mL at neutral pH and at 25 °C. An acoustic scattering model was used which considered the solute molecules as scatterers of ultrasound, to determine the molecules' sound velocity, compressibility, and attenuation properties. Mild heat treatment caused the molecule to organise into dimers and trimers, without change in sound velocity; implying that there is little or no change in secondary structure. Changes in attenuation spectra correlated with estimated molecular weight as determined through DLS and SEC measurements. During oligomerisation, the BSA molecules continue to behave acoustically as monomers. Under severe heat treatment, BSA rapidly suffered irreversible denaturation and gelation occurred which affected both ultrasound attenuation spectra and the velocity of sound, consistent with significant molecular conformation changes and/or molecule-molecule interactions

    AltitudeOmics: The Integrative Physiology of Human Acclimatization to Hypobaric Hypoxia and Its Retention upon Reascent.

    Get PDF
    An understanding of human responses to hypoxia is important for the health of millions of people worldwide who visit, live, or work in the hypoxic environment encountered at high altitudes. In spite of dozens of studies over the last 100 years, the basic mechanisms controlling acclimatization to hypoxia remain largely unknown. The AltitudeOmics project aimed to bridge this gap. Our goals were 1) to describe a phenotype for successful acclimatization and assess its retention and 2) use these findings as a foundation for companion mechanistic studies. Our approach was to characterize acclimatization by measuring changes in arterial oxygenation and hemoglobin concentration [Hb], acute mountain sickness (AMS), cognitive function, and exercise performance in 21 subjects as they acclimatized to 5260 m over 16 days. We then focused on the retention of acclimatization by having subjects reascend to 5260 m after either 7 (n = 14) or 21 (n = 7) days at 1525 m. At 16 days at 5260 m we observed: 1) increases in arterial oxygenation and [Hb] (compared to acute hypoxia: PaO2 rose 9±4 mmHg to 45±4 while PaCO2 dropped a further 6±3 mmHg to 21±3, and [Hb] rose 1.8±0.7 g/dL to 16±2 g/dL; 2) no AMS; 3) improved cognitive function; and 4) improved exercise performance by 8±8% (all changes p<0.01). Upon reascent, we observed retention of arterial oxygenation but not [Hb], protection from AMS, retention of exercise performance, less retention of cognitive function; and noted that some of these effects lasted for 21 days. Taken together, these findings reveal new information about retention of acclimatization, and can be used as a physiological foundation to explore the molecular mechanisms of acclimatization and its retention

    Investigation of bovine serum albumin denaturation using ultrasonic spectroscopy

    Get PDF
    This is the author’s version of a work that was accepted for publication in the journal Food Hydrocolloids. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published at: http://dx.doi.org/10.1016/j.foodhyd.2010.11.011The ability of ultrasound spectroscopy to characterise protein denaturation at relatively high concentrations and under conditions found in foods, is examined. Measurement of longitudinal sound velocity against concentration and frequency (20-160 MHz) for the bovine serum albumin monomer at pH 7.0 gave a frequency independent value for molecular compressibility of at 25 °C, corresponding to a sound velocity for the BSA molecule of 1920 ms-1. At 160 MHz, the longitudinal sound attenuation in BSA molecules is ~5200 Npm-1, a factor of 10 higher than in water. The excess attenuation of the solution over water was nearly 90 Npm-1 at the highest measured volume fraction of 0.03 (or 3% v/v). Concentration-dependent ultrasound velocity (20 - 160 MHz) and attenuation (2 - 120 MHz) spectra were obtained over time for heated bovine serum albumin (BSA) solutions up to 40 mg/mL at neutral pH and at 25 °C. An acoustic scattering model was used which considered the solute molecules as scatterers of ultrasound, to determine the molecules' sound velocity, compressibility, and attenuation properties. Mild heat treatment caused the molecule to organise into dimers and trimers, without change in sound velocity; implying that there is little or no change in secondary structure. Changes in attenuation spectra correlated with estimated molecular weight as determined through DLS and SEC measurements. During oligomerisation, the BSA molecules continue to behave acoustically as monomers. Under severe heat treatment, BSA rapidly suffered irreversible denaturation and gelation occurred which affected both ultrasound attenuation spectra and the velocity of sound, consistent with significant molecular conformation changes and/or molecule-molecule interactions

    The status of the world's land and marine mammals: diversity, threat, and knowledge

    Get PDF
    Knowledge of mammalian diversity is still surprisingly disparate, both regionally and taxonomically. Here, we present a comprehensive assessment of the conservation status and distribution of the world's mammals. Data, compiled by 1700+ experts, cover all 5487 species, including marine mammals. Global macroecological patterns are very different for land and marine species but suggest common mechanisms driving diversity and endemism across systems. Compared with land species, threat levels are higher among marine mammals, driven by different processes (accidental mortality and pollution, rather than habitat loss), and are spatially distinct (peaking in northern oceans, rather than in Southeast Asia). Marine mammals are also disproportionately poorly known. These data are made freely available to support further scientific developments and conservation action

    Estimating the global conservation status of more than 15,000 Amazonian tree species

    Get PDF
    Estimates of extinction risk for Amazonian plant and animal species are rare and not often incorporated into land-use policy and conservation planning. We overlay spatial distribution models with historical and projected deforestation to show that at least 36% and up to 57% of all Amazonian tree species are likely to qualify as globally threatened under International Union for Conservation of Nature (IUCN) Red List criteria. If confirmed, these results would increase the number of threatened plant species on Earth by 22%. We show that the trends observed in Amazonia apply to trees throughout the tropics, and we predict thatmost of the world’s >40,000 tropical tree species now qualify as globally threatened. A gap analysis suggests that existing Amazonian protected areas and indigenous territories will protect viable populations of most threatened species if these areas suffer no further degradation, highlighting the key roles that protected areas, indigenous peoples, and improved governance can play in preventing large-scale extinctions in the tropics in this century

    The Iceland Microcontinent and a continental Greenland-Iceland-Faroe Ridge

    Get PDF
    The breakup of Laurasia to form the Northeast Atlantic Realm was the culmination of a long period of tectonic unrest extending back to the Late Palaeozoic. Breakup was prolonged and complex and disintegrated an inhomogeneous collage of cratons sutured by cross-cutting orogens. Volcanic rifted margins formed, which are blanketed by lavas and underlain variously by magma-inflated, extended continental crust and mafic high-velocity lower crust of ambiguous and probably partly continental provenance. New rifts formed by diachronous propagation along old zones of weakness. North of the Greenland-Iceland-Faroe Ridge the newly forming rift propagated south along the Caledonian suture. South of the Greenland-Iceland-Faroe Ridge it propagated north through the North Atlantic Craton along an axis displaced ~ 150 km to the west of the northern rift. Both propagators stalled where the confluence of the Nagssugtoqidian and Caledonian orogens formed a transverse barrier. Thereafter, the ~ 400-km-wide latitudinal zone between the stalled rift tips extended in a distributed, unstable manner along multiple axes of extension that frequently migrated or jumped laterally with shearing occurring between them in diffuse transfer zones. This style of deformation continues to the present day. It is the surface expression of underlying magma-assisted stretching of ductile mid- and lower continental crust which comprises the Icelandic-type lower crust that underlies the Greenland-Iceland-Faroe Ridge. This, and probably also one or more full-crustal-thickness microcontinents incorporated in the Ridge, are capped by surface lavas. The Greenland-Iceland-Faroe Ridge thus has a similar structure to some zones of seaward-dipping reflectors. The contemporaneous melt layer corresponds to the 3–10 km thick Icelandic-type upper crust plus magma emplaced in the ~ 10–30-km-thick Icelandic-type lower crust. This model can account for seismic and gravity data that are inconsistent with a gabbroic composition for Icelandic-type lower crust, and petrological data that show no reasonable temperature or source composition could generate the full ~ 40-km thickness of Icelandic-type crust observed. Numerical modeling confirms that extension of the continental crust can continue for many tens of Myr by lower-crustal flow from beneath the adjacent continents. Petrological estimates of the maximum potential temperature of the source of Icelandic lavas are up to 1450 °C, no more than ~ 100 °C hotter than MORB source. The geochemistry is compatible with a source comprising hydrous peridotite/pyroxenite with a component of continental mid- and lower crust. The fusible petrology, high source volatile contents, and frequent formation of new rifts can account for the true ~ 15–20 km melt thickness at the moderate temperatures observed. A continuous swathe of magma-inflated continental material beneath the 1200-km-wide Greenland-Iceland-Faroe Ridge implies that full continental breakup has not yet occurred at this latitude. Ongoing tectonic instability on the Ridge is manifest in long-term tectonic disequilibrium on the adjacent rifted margins and on the Reykjanes Ridge, where southerly migrating propagators that initiate at Iceland are associated with diachronous swathes of unusually thick oceanic crust. Magmatic volumes in the NE Atlantic Realm have likely been overestimated and the concept of a monogenetic North Atlantic Igneous Province needs to be reappraised. A model of complex, piecemeal breakup controlled by pre-existing structures that produces anomalous volcanism at barriers to rift propagation and distributes continental material in the growing oceans fits other oceanic regions including the Davis Strait and the South Atlantic and West Indian oceans

    Genome-Wide Association Study in BRCA1 Mutation Carriers Identifies Novel Loci Associated with Breast and Ovarian Cancer Risk

    Get PDF
    BRCA1-associated breast and ovarian cancer risks can be modified by common genetic variants. To identify further cancer risk-modifying loci, we performed a multi-stage GWAS of 11,705 BRCA1 carriers (of whom 5,920 were diagnosed with breast and 1,839 were diagnosed with ovarian cancer), with a further replication in an additional sample of 2,646 BRCA1 carriers. We identified a novel breast cancer risk modifier locus at 1q32 for BRCA1 carriers (rs2290854, P = 2.7×10-8, HR = 1.14, 95% CI: 1.09-1.20). In addition, we identified two novel ovarian cancer risk modifier loci: 17q21.31 (rs17631303, P = 1.4×10-8, HR = 1.27, 95% CI: 1.17-1.38) and 4q32.3 (rs4691139, P = 3.4×10-8, HR = 1.20, 95% CI: 1.17-1.38). The 4q32.3 locus was not associated with ovarian cancer risk in the general population or BRCA2 carriers, suggesting a BRCA1-specific associat
    corecore