137 research outputs found
Decoherence and Programmable Quantum Computation
An examination of the concept of using classical degrees of freedom to drive
the evolution of quantum computers is given. Specifically, when externally
generated, coherent states of the electromagnetic field are used to drive
transitions within the qubit system, a decoherence results due to the back
reaction from the qubits onto the quantum field. We derive an expression for
the decoherence rate for two cases, that of the single-qubit Walsh-Hadamard
transform, and for an implementation of the controlled-NOT gate. We examine the
impact of this decoherence mechanism on Grover's search algorithm, and on the
proposals for use of error-correcting codes in quantum computation.Comment: submitted to Phys. Rev. A 35 double-spaced pages, 2 figures, in LaTe
Complete population transfer in a degenerate 3-level atom
We find conditions required to achieve complete population transfer, via
coherent population trapping, from an initial state to a designated final state
at a designated time in a degenerate 3-level atom, where transitions are caused
by an external interaction. Complete population transfer from an initially
occupied state 1 to a designated state 2 occurs under two conditions. First,
there is a constraint on the ratios of the transition matrix elements of the
external interaction. Second, there is a constraint on the action integral over
the interaction, or "area", corresponding to the phase shift induced by the
external interaction. Both conditions may be expressed in terms of simple odd
integers.Comment: 22 pages, 4 figure
Saturn's icy satellites and rings investigated by Cassini - VIMS. III. Radial compositional variability
In the last few years Cassini-VIMS, the Visible and Infared Mapping
Spectrometer, returned to us a comprehensive view of the Saturn's icy
satellites and rings. After having analyzed the satellites' spectral properties
(Filacchione et al. (2007a)) and their distribution across the satellites'
hemispheres (Filacchione et al. (2010)), we proceed in this paper to
investigate the radial variability of icy satellites (principal and minor) and
main rings average spectral properties. This analysis is done by using 2,264
disk-integrated observations of the satellites and a 12x700 pixels-wide rings
radial mosaic acquired with a spatial resolution of about 125 km/pixel. The
comparative analysis of these data allows us to retrieve the amount of both
water ice and red contaminant materials distributed across Saturn's system and
the typical surface regolith grain sizes. These measurements highlight very
striking differences in the population here analyzed, which vary from the
almost uncontaminated and water ice-rich surfaces of Enceladus and Calypso to
the metal/organic-rich and red surfaces of Iapetus' leading hemisphere and
Phoebe. Rings spectra appear more red than the icy satellites in the visible
range but show more intense 1.5-2.0 micron band depths. The correlations among
spectral slopes, band depths, visual albedo and phase permit us to cluster the
saturnian population in different spectral classes which are detected not only
among the principal satellites and rings but among co-orbital minor moons as
well. Finally, we have applied Hapke's theory to retrieve the best spectral
fits to Saturn's inner regular satellites using the same methodology applied
previously for Rhea data discussed in Ciarniello et al. (2011).Comment: 44 pages, 27 figures, 7 tables. Submitted to Icaru
Characterization of the n-TOF EAR-2 neutron beam
The experimental area 2 (EAR-2) at CERNs neutron time-of-flight facility (n-TOF), which is operational since 2014, is designed and built as a short-distance complement to the experimental area 1 (EAR-1). The Parallel Plate Avalanche Counter (PPAC) monitor experiment was performed to characterize the beam prole and the shape of the neutron 'ux at EAR-2. The prompt γ-flash which is used for calibrating the time-of-flight at EAR-1 is not seen by PPAC at EAR-2, shedding light on the physical origin of this γ-flash
Measurement of the 240Pu(n,f) cross-section at the CERN n-TOF facility : First results from experimental area II (EAR-2)
The accurate knowledge of the neutron-induced fission cross-sections of actinides and other isotopes involved in the nuclear fuel cycle is essential for the design of advanced nuclear systems, such as Generation-IV nuclear reactors. Such experimental data can also provide the necessary feedback for the adjustment of nuclear model parameters used in the evaluation process, resulting in the further development of nuclear fission models. In the present work, the 240Pu(n,f) cross-section was measured at CERN's n-TOF facility relative to the well-known 235U(n,f) cross section, over a wide range of neutron energies, from meV to almost MeV, using the time-of-flight technique and a set-up based on Micromegas detectors. This measurement was the first experiment to be performed at n-TOF's new experimental area (EAR-2), which offers a significantly higher neutron flux compared to the already existing experimental area (EAR-1). Preliminary results as well as the experimental procedure, including a description of the facility and the data handling and analysis, are presented
Radiative Neutron Capture Cross-Section Measurement of Ge Isotopes at n_TOF CERN Facility and Its Importance for Stellar Nucleosynthesis
This work was supported by the Austrian Science Fund FWF (J3503), the Adolf Messer Foundation (Germany), the UK Science and Facilities Council (ST/M006085/1), and the European Research Council ERC-2015-StG No. 677497. We also acknowledge the support of the National Science Centre, Poland, under the grant UMO-2016/22/M/ST2/00183, the MSMT of the Czech Republic and the Croatian Science Foundation under the project IP-2018-01-8570.This manuscript summarizes the results of radiative neutron capture cross-section measurements on two stable germanium isotopes, Ge-70 and Ge-73. Experiments were performed at the n_TOF facility at CERN via the time-of-flight technique, over a wide neutron energy range, for all stable germanium isotopes (70,72,73,74, and 76). Results for Ge-70 [Phys. Rev. C 100, 045804 (2019)] and Ge-73 [Phys. Lett. B 790, 458 (2019)] are already published. In the field of nuclear structure, such measurements allow to study excited levels close to the neutron binding energy and to obtain information on nuclear properties. In stellar nucleosynthesis research, neutron induced reactions on germanium are of importance for nucleosynthesis in the weak component of the slow neutron capture processes.Austrian Science Fund (FWF)
J3503Adolf Messer Foundation (Germany)UK Science and Facilities Council
ST/M006085/1European Research Council (ERC)European Commission
677497National Science Centre, Poland
UMO-2016/22/M/ST2/00183Ministry of Education, Youth & Sports - Czech RepublicCroatian Science Foundation
IP-2018-01-857
The Theory of Brown Dwarfs and Extrasolar Giant Planets
Straddling the traditional realms of the planets and the stars, objects below
the edge of the main sequence have such unique properties, and are being
discovered in such quantities, that one can rightly claim that a new field at
the interface of planetary science and and astronomy is being born. In this
review, we explore the essential elements of the theory of brown dwarfs and
giant planets, as well as of the new spectroscopic classes L and T. To this
end, we describe their evolution, spectra, atmospheric compositions, chemistry,
physics, and nuclear phases and explain the basic systematics of
substellar-mass objects across three orders of magnitude in both mass and age
and a factor of 30 in effective temperature. Moreover, we discuss the
distinctive features of those extrasolar giant planets that are irradiated by a
central primary, in particular their reflection spectra, albedos, and transits.
Aspects of the latest theory of Jupiter and Saturn are also presented.
Throughout, we highlight the effects of condensates, clouds, molecular
abundances, and molecular/atomic opacities in brown dwarf and giant planet
atmospheres and summarize the resulting spectral diagnostics. Where possible,
the theory is put in its current observational context.Comment: 67 pages (including 36 figures), RMP RevTeX LaTeX, accepted for
publication in the Reviews of Modern Physics. 30 figures are color. Most of
the figures are in GIF format to reduce the overall size. The full version
with figures can also be found at:
http://jupiter.as.arizona.edu/~burrows/papers/rm
Global data on earthworm abundance, biomass, diversity and corresponding environmental properties
Publisher Copyright: © 2021, The Author(s).Earthworms are an important soil taxon as ecosystem engineers, providing a variety of crucial ecosystem functions and services. Little is known about their diversity and distribution at large spatial scales, despite the availability of considerable amounts of local-scale data. Earthworm diversity data, obtained from the primary literature or provided directly by authors, were collated with information on site locations, including coordinates, habitat cover, and soil properties. Datasets were required, at a minimum, to include abundance or biomass of earthworms at a site. Where possible, site-level species lists were included, as well as the abundance and biomass of individual species and ecological groups. This global dataset contains 10,840 sites, with 184 species, from 60 countries and all continents except Antarctica. The data were obtained from 182 published articles, published between 1973 and 2017, and 17 unpublished datasets. Amalgamating data into a single global database will assist researchers in investigating and answering a wide variety of pressing questions, for example, jointly assessing aboveground and belowground biodiversity distributions and drivers of biodiversity change.Peer reviewe
An Observational Overview of Solar Flares
We present an overview of solar flares and associated phenomena, drawing upon
a wide range of observational data primarily from the RHESSI era. Following an
introductory discussion and overview of the status of observational
capabilities, the article is split into topical sections which deal with
different areas of flare phenomena (footpoints and ribbons, coronal sources,
relationship to coronal mass ejections) and their interconnections. We also
discuss flare soft X-ray spectroscopy and the energetics of the process. The
emphasis is to describe the observations from multiple points of view, while
bearing in mind the models that link them to each other and to theory. The
present theoretical and observational understanding of solar flares is far from
complete, so we conclude with a brief discussion of models, and a list of
missing but important observations.Comment: This is an article for a monograph on the physics of solar flares,
inspired by RHESSI observations. The individual articles are to appear in
Space Science Reviews (2011
AD51B in Familial Breast Cancer
Common variation on 14q24.1, close to RAD51B, has been associated with breast cancer: rs999737 and rs2588809 with the risk of female breast cancer and rs1314913 with the risk of male breast cancer. The aim of this study was to investigate the role of RAD51B variants in breast cancer predisposition, particularly in the context of familial breast cancer in Finland. We sequenced the coding region of RAD51B in 168 Finnish breast cancer patients from the Helsinki region for identification of possible recurrent founder mutations. In addition, we studied the known rs999737, rs2588809, and rs1314913 SNPs and RAD51B haplotypes in 44,791 breast cancer cases and 43,583 controls from 40 studies participating in the Breast Cancer Association Consortium (BCAC) that were genotyped on a custom chip (iCOGS). We identified one putatively pathogenic missense mutation c.541C>T among the Finnish cancer patients and subsequently genotyped the mutation in additional breast cancer cases (n = 5259) and population controls (n = 3586) from Finland and Belarus. No significant association with breast cancer risk was seen in the meta-analysis of the Finnish datasets or in the large BCAC dataset. The association with previously identified risk variants rs999737, rs2588809, and rs1314913 was replicated among all breast cancer cases and also among familial cases in the BCAC dataset. The most significant association was observed for the haplotype carrying the risk-alleles of all the three SNPs both among all cases (odds ratio (OR): 1.15, 95% confidence interval (CI): 1.11–1.19, P = 8.88 x 10−16) and among familial cases (OR: 1.24, 95% CI: 1.16–1.32, P = 6.19 x 10−11), compared to the haplotype with the respective protective alleles. Our results suggest that loss-of-function mutations in RAD51B are rare, but common variation at the RAD51B region is significantly associated with familial breast cancer risk
- …