2,258 research outputs found
A fourth generation, anomalous like-sign dimuon charge asymmetry and the LHC
A fourth chiral generation, with in the range GeV and a moderate value of the CP-violating phase can explain the
anomalous like-sign dimuon charge asymmetry observed recently by the D0
collaboration. The required parameters are found to be consistent with
constraints from other and decays. The presence of such quarks, apart
from being detectable in the early stages of the LHC, would also have important
consequences in the electroweak symmetry breaking sector.Comment: 18 pages, 9 figures, Figure 1 is modified, more discussions are added
in section 2. new references adde
Simultaneous Extraction of the Fermi constant and PMNS matrix elements in the presence of a fourth generation
Several recent studies performed on constraints of a fourth generation of
quarks and leptons suffer from the ad-hoc assumption that 3 x 3 unitarity holds
for the first three generations in the neutrino sector. Only under this
assumption one is able to determine the Fermi constant G_F from the muon
lifetime measurement with the claimed precision of G_F = 1.16637 (1) x 10^-5
GeV^-2. We study how well G_F can be extracted within the framework of four
generations from leptonic and radiative mu and tau decays, as well as from K_l3
decays and leptonic decays of charged pions, and we discuss the role of lepton
universality tests in this context. We emphasize that constraints on a fourth
generation from quark and lepton flavour observables and from electroweak
precision observables can only be obtained in a consistent way if these three
sectors are considered simultaneously. In the combined fit to leptonic and
radiative mu and tau decays, K_l3 decays and leptonic decays of charged pions
we find a p-value of 2.6% for the fourth generation matrix element |U_{e 4}|=0
of the neutrino mixing matrix.Comment: 19 pages, 3 figures with 16 subfigures, references and text added
refering to earlier related work, figures and text in discussion section
added, results and conclusions unchange
Nonabelian Faddeev-Niemi Decomposition of the SU(3) Yang-Mills Theory
Faddeev and Niemi (FN) have introduced an abelian gauge theory which
simulates dynamical abelianization in Yang-Mills theory (YM). It contains both
YM instantons and Wu-Yang monopoles and appears to be able to describe the
confining phase. Motivated by the meson degeneracy problem in dynamical
abelianization models, in this note we present a generalization of the FN
theory. We first generalize the Cho connection to dynamical symmetry breaking
pattern SU(N+1) -> U(N), and subsequently try to complete the Faddeev-Niemi
decomposition by keeping the missing degrees of freedom. While it is not
possible to write an on-shell complete FN decomposition, in the case of SU(3)
theory of physical interest we find an off-shell complete decomposition for
SU(3) -> U(2) which amounts to partial gauge fixing, generalizing naturally the
result found by Faddeev and Niemi for the abelian scenario SU(N+1) -> U(1)^N.
We discuss general topological aspects of these breakings, demonstrating for
example that the FN knot solitons never exist when the unbroken gauge symmetry
is nonabelian, and recovering the usual no-go theorems for colored dyons.Comment: Latex 30 page
Study of the Baryon-Antibaryon Low-Mass Enhancements in Charmless Three-body Baryonic B Decays
The angular distributions of the baryon-antibaryon low-mass enhancements seen
in the charmless three-body baryonic B decays B+ -> p pbar K+, B0 -> p pbar Ks,
and B0 -> p Lambdabar pi- are reported. A quark fragmentation interpretation is
supported, while the gluonic resonance picture is disfavored. Searches for the
Theta+ and Theta++ pentaquarks in the relevant decay modes and possible
glueball states G with 2.2 GeV/c2 < M-ppbar < 2.4 GeV/c2 in the ppbar systems
give null results. We set upper limits on the products of branching fractions,
B(B0 -> Theta+ p)\times B(Theta+ -> p Ks) Theta++
pbar) \times B(Theta++ -> p K+) G K+) \times
B(G -> p pbar) < 4.1 \times 10^{-7} at the 90% confidence level. The analysis
is based on a 140 fb^{-1} data sample recorded on the Upsilon(4S) resonance
with the Belle detector at the KEKB asymmetric-energy e+e- collider.Comment: 14 pages, 13 figure files, update of hep-ex/0409010 for journal
submisssio
Recommended from our members
Comparing Experimental Phase Behavior of Ion-Doped Block Copolymers with Theoretical Predictions Based on Selective Ion Solvation
The effects of salt-doping on the morphological behavior of block copolymers are well established but remain poorly understood, partially because of the challenge of resolving electrostatics in a heterogeneous medium with low average permittivity. By employing a recently developed field theory, we analyze the phase behavior of polystyrene-b-poly(ethylene oxide) (SEO) copolymers doped with lithium bis(trifluoromethanesulfonyl)imide salts (LiTFSI). Using a single fitting parameter, the ionic solvation radius, we obtain qualitative agreement between our theory and experimental data over a range of polymer molecular weights and copolymer compositions. Such agreement supports and highlights the need of solvation free energy to accurately describe the self-assembly of ion-doped block copolymers and demonstrates that experimentally observed dependence on molecular weight, not present in neutral block copolymers, can be rationalized by solvation effects. Overall, morphological variations are stronger than those predicted by the leading, linear order theory but can be captured by the full model
Improved Measurements of Partial Rate Asymmetry in B -> h h Decays
We report improved measurements of the partial rate asymmetry (Acp) in B -> h
h decays with 140fb^-1 of data collected with the Belle detector at the KEKB
e+e- collider. Here h stands for a charged or neutral pion or kaon and in total
five decay modes are included: K-+ pi+-, K0s pi-+, K-+ pi0, pi-+ pi0 and K0s
pi0. The flavor of the last decay mode is determined from the accompanying B
meson. Using a data sample 4.7 times larger than that of our previous
measurement, we find Acp(K-+ pi+-) -0.088+-0.035+-0.013, 2.4 sigma from zero.
Results for other decay modes are also presented.Comment: 9 pages, 1 figur
Clean thermal decomposition of tertiary-alkyl metal thiolates to metal sulfides: Environmentally-benign, non-polar inks for solution-processed chalcopyrite solar cells
We report the preparation of Cu2S, In2S3, CuInS2 and Cu(In,Ga)S2 semiconducting films via the spin coating and annealing of soluble tertiary-alkyl thiolate complexes. The thiolate compounds are readily prepared via the reaction of metal bases and tertiary-alkyl thiols. The thiolate complexes are soluble in common organic solvents and can be solution processed by spin coating to yield thin films. Upon thermal annealing in the range of 200-400 ??C, the tertiary-alkyl thiolates decompose cleanly to yield volatile dialkyl sulfides and metal sulfide films which are free of organic residue. Analysis of the reaction byproducts strongly suggests that the decomposition proceeds via an SN1 mechanism. The composition of the films can be controlled by adjusting the amount of each metal thiolate used in the precursor solution yielding bandgaps in the range of 1.2 to 3.3 eV. The films form functioning p-n junctions when deposited in contact with CdS films prepared by the same method. Functioning solar cells are observed when such p-n junctions are prepared on transparent conducting substrates and finished by depositing electrodes with appropriate work functions. This method enables the fabrication of metal chalcogenide films on a large scale via a simple and chemically clear process.ope
Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector
Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
The inclusive and dijet production cross-sections have been measured for jets
containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass
energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The
measurements use data corresponding to an integrated luminosity of 34 pb^-1.
The b-jets are identified using either a lifetime-based method, where secondary
decay vertices of b-hadrons in jets are reconstructed using information from
the tracking detectors, or a muon-based method where the presence of a muon is
used to identify semileptonic decays of b-hadrons inside jets. The inclusive
b-jet cross-section is measured as a function of transverse momentum in the
range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet
cross-section is measured as a function of the dijet invariant mass in the
range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets
and the angular variable chi in two dijet mass regions. The results are
compared with next-to-leading-order QCD predictions. Good agreement is observed
between the measured cross-sections and the predictions obtained using POWHEG +
Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet
cross-section. However, it does not reproduce the measured inclusive
cross-section well, particularly for central b-jets with large transverse
momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final
version published in European Physical Journal
Performance of the CMS Cathode Strip Chambers with Cosmic Rays
The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device
in the CMS endcaps. Their performance has been evaluated using data taken
during a cosmic ray run in fall 2008. Measured noise levels are low, with the
number of noisy channels well below 1%. Coordinate resolution was measured for
all types of chambers, and fall in the range 47 microns to 243 microns. The
efficiencies for local charged track triggers, for hit and for segments
reconstruction were measured, and are above 99%. The timing resolution per
layer is approximately 5 ns
- …
