128 research outputs found

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Advances in structure elucidation of small molecules using mass spectrometry

    Get PDF
    The structural elucidation of small molecules using mass spectrometry plays an important role in modern life sciences and bioanalytical approaches. This review covers different soft and hard ionization techniques and figures of merit for modern mass spectrometers, such as mass resolving power, mass accuracy, isotopic abundance accuracy, accurate mass multiple-stage MS(n) capability, as well as hybrid mass spectrometric and orthogonal chromatographic approaches. The latter part discusses mass spectral data handling strategies, which includes background and noise subtraction, adduct formation and detection, charge state determination, accurate mass measurements, elemental composition determinations, and complex data-dependent setups with ion maps and ion trees. The importance of mass spectral library search algorithms for tandem mass spectra and multiple-stage MS(n) mass spectra as well as mass spectral tree libraries that combine multiple-stage mass spectra are outlined. The successive chapter discusses mass spectral fragmentation pathways, biotransformation reactions and drug metabolism studies, the mass spectral simulation and generation of in silico mass spectra, expert systems for mass spectral interpretation, and the use of computational chemistry to explain gas-phase phenomena. A single chapter discusses data handling for hyphenated approaches including mass spectral deconvolution for clean mass spectra, cheminformatics approaches and structure retention relationships, and retention index predictions for gas and liquid chromatography. The last section reviews the current state of electronic data sharing of mass spectra and discusses the importance of software development for the advancement of structure elucidation of small molecules

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Measurement of the t¯tZ and t¯tW cross sections in proton-proton collisions at √s=13 TeV with the ATLAS detector

    Get PDF
    A measurement of the associated production of a top-quark pair (t¯t) with a vector boson (W, Z) in proton-proton collisions at a center-of-mass energy of 13 TeV is presented, using 36.1  fb−1 of integrated luminosity collected by the ATLAS detector at the Large Hadron Collider. Events are selected in channels with two same- or opposite-sign leptons (electrons or muons), three leptons or four leptons, and each channel is further divided into multiple regions to maximize the sensitivity of the measurement. The t¯tZ and t¯tW production cross sections are simultaneously measured using a combined fit to all regions. The best-fit values of the production cross sections are σt¯tZ=0.95±0.08stat±0.10syst pb and σt¯tW=0.87±0.13stat±0.14syst pb in agreement with the Standard Model predictions. The measurement of the t¯tZ cross section is used to set constraints on effective field theory operators which modify the t¯tZ vertex

    Measurement of VH, H → b b ¯ production as a function of the vector-boson transverse momentum in 13 TeV pp collisions with the ATLAS detector

    Get PDF
    Cross-sections of associated production of a Higgs boson decaying into bottom-quark pairs and an electroweak gauge boson, W or Z, decaying into leptons are measured as a function of the gauge boson transverse momentum. The measurements are performed in kinematic fiducial volumes defined in the `simplified template cross-section' framework. The results are obtained using 79.8 fb-1 of proton-proton collisions recorded by the ATLAS detector at the Large Hadron Collider at a centre-of-mass energy of 13 TeV. All measurements are found to be in agreement with the Standard Model predictions, and limits are set on the parameters of an effective Lagrangian sensitive to modifications of the Higgs boson couplings to the electroweak gauge bosons

    Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease

    Get PDF
    Background: Experimental and clinical data suggest that reducing inflammation without affecting lipid levels may reduce the risk of cardiovascular disease. Yet, the inflammatory hypothesis of atherothrombosis has remained unproved. Methods: We conducted a randomized, double-blind trial of canakinumab, a therapeutic monoclonal antibody targeting interleukin-1β, involving 10,061 patients with previous myocardial infarction and a high-sensitivity C-reactive protein level of 2 mg or more per liter. The trial compared three doses of canakinumab (50 mg, 150 mg, and 300 mg, administered subcutaneously every 3 months) with placebo. The primary efficacy end point was nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death. RESULTS: At 48 months, the median reduction from baseline in the high-sensitivity C-reactive protein level was 26 percentage points greater in the group that received the 50-mg dose of canakinumab, 37 percentage points greater in the 150-mg group, and 41 percentage points greater in the 300-mg group than in the placebo group. Canakinumab did not reduce lipid levels from baseline. At a median follow-up of 3.7 years, the incidence rate for the primary end point was 4.50 events per 100 person-years in the placebo group, 4.11 events per 100 person-years in the 50-mg group, 3.86 events per 100 person-years in the 150-mg group, and 3.90 events per 100 person-years in the 300-mg group. The hazard ratios as compared with placebo were as follows: in the 50-mg group, 0.93 (95% confidence interval [CI], 0.80 to 1.07; P = 0.30); in the 150-mg group, 0.85 (95% CI, 0.74 to 0.98; P = 0.021); and in the 300-mg group, 0.86 (95% CI, 0.75 to 0.99; P = 0.031). The 150-mg dose, but not the other doses, met the prespecified multiplicity-adjusted threshold for statistical significance for the primary end point and the secondary end point that additionally included hospitalization for unstable angina that led to urgent revascularization (hazard ratio vs. placebo, 0.83; 95% CI, 0.73 to 0.95; P = 0.005). Canakinumab was associated with a higher incidence of fatal infection than was placebo. There was no significant difference in all-cause mortality (hazard ratio for all canakinumab doses vs. placebo, 0.94; 95% CI, 0.83 to 1.06; P = 0.31). Conclusions: Antiinflammatory therapy targeting the interleukin-1β innate immunity pathway with canakinumab at a dose of 150 mg every 3 months led to a significantly lower rate of recurrent cardiovascular events than placebo, independent of lipid-level lowering. (Funded by Novartis; CANTOS ClinicalTrials.gov number, NCT01327846.

    Performance of the upgraded PreProcessor of the ATLAS Level-1 Calorimeter Trigger

    Get PDF
    The PreProcessor of the ATLAS Level-1 Calorimeter Trigger prepares the analogue trigger signals sent from the ATLAS calorimeters by digitising, synchronising, and calibrating them to reconstruct transverse energy deposits, which are then used in further processing to identify event features. During the first long shutdown of the LHC from 2013 to 2014, the central components of the PreProcessor, the Multichip Modules, were replaced by upgraded versions that feature modern ADC and FPGA technology to ensure optimal performance in the high pile-up environment of LHC Run 2. This paper describes the features of the newMultichip Modules along with the improvements to the signal processing achieved.ANPCyTYerPhI, ArmeniaAustralian Research CouncilBMWFW, AustriaAustrian Science Fund (FWF)Azerbaijan National Academy of Sciences (ANAS)SSTC, BelarusNational Council for Scientific and Technological Development (CNPq)Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)Natural Sciences and Engineering Research Council of CanadaCanada Foundation for InnovationNational Natural Science Foundation of China (NSFC)Departamento Administrativo de Ciencia, Tecnología e Innovación ColcienciasMinistry of Education, Youth & Sports - Czech Republic Czech Republic GovernmentCzech Republic GovernmentDNRF, DenmarkDanish Natural Science Research CouncilCentre National de la Recherche Scientifique (CNRS)CEA-DRF/IRFU, FranceFederal Ministry of Education & Research (BMBF)Max Planck SocietyGreek Ministry of Development-GSRTRGC and Hong Kong SAR, ChinaIsrael Science FoundationBenoziyo Center, IsraelIstituto Nazionale di Fisica Nucleare (INFN)Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT)Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT) Japan Society for the Promotion of ScienceCNRST, MoroccoRCN, NorwayPortuguese Foundation for Science and TechnologyMNE/IFA, RomaniaMES of RussiaMESTD, SerbiaMSSR, SlovakiaSlovenian Research Agency - SloveniaMIZS, SloveniaSpanish GovernmentSRC, SwedenWallenberg Foundation, SwedenSNSF Geneva, SwitzerlandMinistry of Science and Technology, TaiwanMinistry of Energy & Natural Resources - TurkeyScience & Technology Facilities Council (STFC)United States Department of Energy (DOE)National Science Foundation (NSF)BCKDF, CanadaCANARIE, CanadaCRC, CanadaEuropean Research Council (ERC)European Union (EU)French National Research Agency (ANR)German Research Foundation (DFG)Alexander von Humboldt FoundationGreek NSRF, GreeceBSF-NSF, IsraelGerman-Israeli Foundation for Scientific Research and DevelopmentLa Caixa Banking Foundation, SpainCERCA Programme Generalitat de Catalunya, SpainPROMETEO, SpainGenT Programmes Generalitat Valenciana, SpainGoran Gustafssons Stiftelse, SwedenRoyal Society of LondonLeverhulme TrustNRC, CanadaCERNANID, ChileChinese Academy of SciencesMinistry of Science and Technology, ChinaSRNSFG, GeorgiaHGF, GermanyNetherlands Organization for Scientific Research (NWO) Netherlands GovernmentMinistry of Science and Higher Education, PolandNCN, PolandNRCKI, Russia FederationJINRDST/NRF, South AfricaSERI, Geneva, SwitzerlandCantons of Bern and Geneva, SwitzerlandCompute Canada, CanadaHorizon 2020Marie Sklodowska-Curie ActionsEuropean Cooperation in Science and Technology (COST)EU-ESF, Greec

    Observation of electroweak production of two jets and a Z-boson pair

    Get PDF
    Electroweak symmetry breaking explains the origin of the masses of elementary particles through their interactions with the Higgs field. Besides the measurements of the Higgs boson properties, the study of the scattering of massive vector bosons with spin 1 allows the nature of electroweak symmetry breaking to be probed. Among all processes related to vector-boson scattering, the electroweak production of two jets and a Z-boson pair is a rare and important one. Here we report the observation of this process from proton–proton collision data corresponding to an integrated luminosity of 139 fb−1 recorded at a centre-of-mass energy of 13 TeV with the ATLAS detector at the Large Hadron Collider. We consider two different final states originating from the decays of the Z-boson pair: one containing four charged leptons and another containing two charged leptons and two neutrinos. The hypothesis of no electroweak production is rejected with a statistical significance of 5.7σ, and the measured cross-section for electroweak production is consistent with the Standard Model prediction. In addition, we report cross-sections for inclusive production of a Z-boson pair and two jets for the two final states

    Dijet Resonance Search with Weak Supervision Using root S=13 TeV pp Collisions in the ATLAS Detector

    Get PDF
    This Letter describes a search for narrowly resonant new physics using a machine-learning anomaly detection procedure that does not rely on signal simulations for developing the analysis selection. Weakly supervised learning is used to train classifiers directly on data to enhance potential signals. The targeted topology is dijet events and the features used for machine learning are the masses of the two jets. The resulting analysis is essentially a three-dimensional search A → BC, for mA ∼ OðTeVÞ, mB; mC ∼ Oð100 GeVÞ and B, C are reconstructed as large-radius jets, without paying a penalty associated with a large trials factor in the scan of the masses of the two jets. The full run 2 ffiffi s p ¼ 13 TeV pp collision dataset of 139 fb−1 recorded by the ATLAS detector at the Large Hadron Collider is used for the search. There is no significant evidence of a localized excess in the dijet invariant mass spectrum between 1.8 and 8.2 TeV. Cross-section limits for narrow-width A, B, and C particles vary with mA, mB, and mC. For example, when mA ¼ 3 TeV and mB ≳ 200 GeV, a production cross section between 1 and 5 fb is excluded at 95% confidence level, depending on mC. For certain masses, these limits are up to 10 times more sensitive than those obtained by the inclusive dijet search. These results are complementary to the dedicated searches for the case that B and C are standard model boson
    corecore