1,721 research outputs found
A qualitative exploration of the effect of visual field loss on daily life in home-dwelling stroke survivors
Objective: To explore the effect of visual field loss on the daily life of community-dwelling stroke survivors. Design: A qualitative interview study. Participants: Adult stroke survivors with visual field loss of at least six months’ duration. Methods: Semi-structured interviews were conducted with a non-purposive sample of 12 stroke survivors in their own homes. These were recorded, transcribed verbatim and analyzed with the framework method, using an inductive approach. Results: Two key analytical themes emerged. ‘Perception, experience and knowledge’ describes participant’s conflicted experience of having knowledge of their impaired vision but lacking perception of that visual field loss and operating under the assumption that they were viewing an intact visual scene when engaged in activities. Inability to recognize and deal with visual difficulties, and experiencing the consequences, contributed to their fear and loss of self-confidence. ‘Avoidance and adaptation’ were two typologies of participant response to visual field loss. Initially, all participants consciously avoided activities. Some later adapted to vision loss using self-directed head and eye scanning techniques. Conclusions: Visual field loss has a marked impact on stroke survivors. Stroke survivors lack perception of their visual loss in everyday life, resulting in fear and loss of confidence. Activity avoidance is a common response, but in some, it is replaced by self-initiated adaptive techniques
Causes of decline of common scoter (Melanitta nigra) in north Scotland: evidence from palaeolimnology
The common scoter (Melanitta nigra) is a UK priority species that has experienced severe declines in breeding numbers over the last 30 years. The Flow Country in north Scotland is an internationally important wetland, where the decline of iconic species, such as the common scoter, is particularly concerning. This thesis takes a unique approach to investigating the causes of waterbird decline by combining detailed contemporary ecological data with geospatial modelling and palaeolimnological reconstructions. Detailed surveys were undertaken to characterise the current physical, chemical and biological conditions within 18 Flow Country lochs. These data were used for exploratory analyses and as explanatory variables in a general linear model that examined the predictors of common scoter loch value (SLV). Statistically significant predictors of SLV proved to be dissolved organic carbon, water depth and sediment type. The landscape scale features associated with common scoter distribution in the Flow Country were explored using a species distribution modelling (Maxent) approach. Influential landscape features were found to be proportion of surrounding forestry close to a loch, the soil moisture and bedrock geology. Two theories for common scoter decline were developed using these contemporary data sources; (i) the competitive balance between brown trout and common scoter has altered in recent decades, resulting in less food, (ii) the physico-chemistry of lochs has been altered by afforestation adversely affecting physical loch structure and/or invertebrate food supply. Theories for decline were explored using two palaeolimnological approaches. Multi-proxy top-bottom analysis of cores from 18 lochs demonstrated that these are dynamic environments which have undergone substantial change over the last 150-200 years. Multi-proxy analysis of high temporal resolution cores from four lochs indicated that the study sites have gradually become more productive over the last 150 years, with a distinct shift towards more meso-oligotrophic conditions since the 1980s. These data strongly support the theory that forestry has affected the lochs of the Flow Country, probably due to drainage and fertiliser application resulting in the lochs becoming less oligotrophic. The associated shifts in community composition could have resulted in the lochs being less profitable or suitable for common scoter who typically breed at low nutrient, oligotrophic site
Selection at a single locus leads to widespread expansion of toxoplasma gondii lineages that are virulent in mice
The determinants of virulence are rarely defined for eukaryotic parasites such as T. gondii, a widespread parasite of mammals that also infects humans, sometimes with serious consequences. Recent laboratory studies have established that variation in a single secreted protein, a serine/threonine kinase known as ROPO18, controls whether or not mice survive infection. Here, we establish the extent and nature of variation in ROP18among a collection of parasite strains from geographically diverse regions. Compared to other genes, ROP18 showed extremely high levels of diversification and changes in expression level, which correlated with severity of infection in mice. Comparison with an out-group demonstrated that changes in the upstream region that regulates expression of ROP18 led to an historical increase in the expression and exposed the protein to diversifying selective pressure. Surprisingly, only three atypically distinct protein variants exist despite marked genetic divergence elsewhere in the genome. These three forms of ROP18 are likely adaptations for different niches in nature, and they confer markedly different virulence to mice. The widespread distribution of a single mouse-virulent allele among geographically and genetically disparate parasites may have consequences for transmission and disease in other hosts, including humans
Borrowing from the palaeolimnologists toolkit; the use of lake sediment cores in diagnosing the causes of freshwater species decline
Populations of freshwater species are experiencing dramatic declines globally. Tools that facilitate the diagnosis of decline and identify management solutions and/or restoration targets are thus vital. Typically approaches taken to diagnose decline are carried out over short timescales and rely upon identifying spatial associations between presence or abundance of declining species and variables hypothesised to be driving decline. The potential to contextualise observed declines on longer time scales, with a broader range of potential explanatory variables is frequently dismissed, because of a perceived lack of existing long-term data. In this study we explore the value of incorporating a longer-term perspective to decline diagnosis using the common scoter as a case study. The number of scoter breeding in Scotland has declined substantially since the 1970s. Hypotheses for decline include a reduction in macroinvertebrate food available for females and young at the breeding lakes. In this study we apply palaeolimnological techniques to generate standardised, long-term ecological data, enabling us to characterise recent changes at four common scoter breeding lakes. Our results demonstrate that the (macroinvertebrate) food resource of common scoter has, in fact, gradually increased in abundance at all four sites from ca. 1900, and that a further statistically significant increase in macroinvertebrate abundance occurred at ca. 1970. We draw on our palaeolimnological data, to explore alternative hypotheses for common scoter decline. Increases in overall abundance across multiple algal, macrophyte and macroinvertebrate taxa, combined with specific increases in nutrient tolerant taxa, and concurrent declines in nutrient sensitive taxa indicate that the lakes have experienced enrichment within their current oligotrophic state during the last 100 years, and that this trajectory has become more marked during the period of common scoter decline. There is no evidence of changes to habitat, turbidity or increased competition from fish. In the absence of within lake changes that could be detrimental to the benthic (and generalist) feeding common scoter, we conclude that factors outside of the lake, such as increased predation, associated with afforestation in the surrounding area, are the most plausible drivers of common scoter decline. Prioritisation/testing of management solutions that address these issues are indicated
Combined palaeolimnological and ecological approach provides added value for understanding the character and drivers of recent environmental change in Flow Country lakes
The Flow Country peatlands receive national and international recognition and protection as a highly valued habitat, and also provide a number of important ecosystem services. While there has been much research on the terrestrial peatland habitat of the Flow Country, the area’s many hundreds of natural water bodies have been largely unstudied. The first part of this study therefore focuses on establishing the contemporary conditions at 18 Flow Country lakes, examining between-lake heterogeneity in terms of physical structure, water chemistry and biological communities. Temporal change in these lakes is then considered by combining contemporary ecological and palaeolimnological approaches. We examine how the diatom and chironomid communities of Flow Country lakes have changed since a time prior to the mid-nineteenth century. Results show that the lake communities today are different to those present pre-1850, containing more taxa tolerant of increased acidity and nutrient availability. General linear modelling (GLM) analysis demonstrated a statistically significant association between the extent of change in diatom communities and both dissolved organic carbon (DOC) and nitrate. Community shifts, though considerable, are shown to be complex and idiosyncratic and no shift between trophic states is indicated. The extent and type of coarse-scale community change we observed points to widespread bottom-up drivers such as land management, afforestation and/or atmospheric deposition rather than more localised management practices such as fish stocking. The benefits of combining approaches is discussed and palaeolimnological methods by which land management, afforestation and atmospheric deposition could be further disentangled are identified
Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
The inclusive and dijet production cross-sections have been measured for jets
containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass
energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The
measurements use data corresponding to an integrated luminosity of 34 pb^-1.
The b-jets are identified using either a lifetime-based method, where secondary
decay vertices of b-hadrons in jets are reconstructed using information from
the tracking detectors, or a muon-based method where the presence of a muon is
used to identify semileptonic decays of b-hadrons inside jets. The inclusive
b-jet cross-section is measured as a function of transverse momentum in the
range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet
cross-section is measured as a function of the dijet invariant mass in the
range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets
and the angular variable chi in two dijet mass regions. The results are
compared with next-to-leading-order QCD predictions. Good agreement is observed
between the measured cross-sections and the predictions obtained using POWHEG +
Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet
cross-section. However, it does not reproduce the measured inclusive
cross-section well, particularly for central b-jets with large transverse
momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final
version published in European Physical Journal
Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at s√=8 TeV with the ATLAS detector
The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1fb−1 of proton–proton collision data at √s = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via t˜→tχ˜01 or t˜→ bχ˜±1 →bW(∗)χ˜01 , where χ˜01 (χ˜±1 ) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of t˜ → tχ˜01 . For a branching fraction of 100%, top squark masses in the range 270–645 GeV are excluded for χ˜01 masses below 30 GeV. For a branching fraction of 50% to either t˜ → tχ˜01 or t˜ → bχ˜±1 , and assuming the χ˜±1 mass to be twice the χ˜01 mass, top squark masses in the range 250–550 GeV are excluded for χ˜01 masses below 60 GeV
Observation of associated near-side and away-side long-range correlations in √sNN=5.02 TeV proton-lead collisions with the ATLAS detector
Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02 TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1 μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos2Δϕ modulation for all ΣETPb ranges and particle pT
Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector
Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
Recommended from our members
Forced decadal changes in the East Asian summer monsoon: the roles of greenhouse gases and anthropogenic aerosols
Since the mid-1990s precipitation trends over eastern China display a dipole pattern, characterized by positive anomalies in the south and negative anomalies in the north, named as the Southern-Flood-Northern-Drought (SFND) pattern. This work investigates the drivers of decadal changes of the East Asian summer monsoon (EASM), and the dynamical mechanisms involved, by using a coupled climate model (specifically an atmospheric general circulation model coupled to an ocean mixed layer model) forced by changes in (1) anthropogenic greenhouse gases (GHG), (2) anthropogenic aerosol (AA) and (3) the combined effects of both GHG and AA (All Forcing) between two periods across the mid-1990s. The model experiment forced by changes in All Forcing shows a dipole pattern of response in precipitation over China that is similar to the observed SFND pattern across the mid-1990s, which suggests that anthropogenic forcing changes played an important role in the observed decadal changes. Furthermore, the experiments with separate forcings indicate that GHG and AA forcing dominate different parts of the SFND pattern. In particular, changes in GHG increase precipitation over southern China, whilst changes in AA dominate in the drought conditions over northern China. Increases in GHG cause increased moisture transport convergence over eastern China, which leads to increased precipitation. The AA forcing changes weaken the EASM, which lead to divergent wind anomalies over northern China and reduced precipitation
- …
