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ABSTRACT 

The common scoter (Melanitta nigra) is a UK priority species that has experienced 

severe declines in breeding numbers over the last 30 years. The Flow Country in north 

Scotland is an internationally important wetland, where the decline of iconic species, 

such as the common scoter, is particularly concerning. This thesis takes a unique 

approach to investigating the causes of waterbird decline by combining detailed 

contemporary ecological data with geospatial modelling and palaeolimnological 

reconstructions. 

Detailed surveys were undertaken to characterise the current physical, chemical and 

biological conditions within 18 Flow Country lochs. These data were used for 

exploratory analyses and as explanatory variables in a general linear model that 

examined the predictors of common scoter loch value (SLV). Statistically significant 

predictors of SLV proved to be dissolved organic carbon, water depth and sediment 

type. The landscape scale features associated with common scoter distribution in the 

Flow Country were explored using a species distribution modelling (Maxent) 

approach. Influential landscape features were found to be proportion of surrounding 

forestry close to a loch, the soil moisture and bedrock geology. Two theories for 

common scoter decline were developed using these contemporary data sources; (i) 

the competitive balance between brown trout and common scoter has altered in 

recent decades, resulting in less food, (ii) the physico-chemistry of lochs has been 

altered by afforestation adversely affecting physical loch structure and/or 

invertebrate food supply.  

Theories for decline were explored using two palaeolimnological approaches. Multi-

proxy top-bottom analysis of cores from 18 lochs demonstrated that these are 

dynamic environments which have undergone substantial change over the last 150-

200 years. Multi-proxy analysis of high temporal resolution cores from four lochs 

indicated that the study sites have gradually become more productive over the last 

150 years, with a distinct shift towards more meso-oligotrophic conditions since the 

1980s. These data strongly support the theory that forestry has affected the lochs of 

the Flow Country, probably due to drainage and fertiliser application resulting in the 

lochs becoming less oligotrophic. The associated shifts in community composition 

could have resulted in the lochs being less profitable or suitable for common scoter 

who typically breed at low nutrient, oligotrophic sites 
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CHAPTER 1: INTRODUCTION 

1.1 Background 

Freshwater is vital to human existence and supports a disproportionately large 

number of species (ca. 10% of species globally) relative to its surface area (<0.02% , 

Moss, 2010). In addition to being an important biodiversity hotspot, anthropogenic 

demand on freshwater is also increasing. However, the associated consequences of 

this increased demand include pollution, over-abstraction, the spread of invasive 

non-native species together with habitat loss, degradation and fragmentation 

(Strayer and Dudgeon, 2010). Such pressures can result in fundamental changes to 

both the structure and functioning of freshwaters and the species that depend on 

them. Species declines in freshwaters far outnumber those occurring in terrestrial 

and marine systems. The WWF Living Planet Report (2014) details a 76% decline in 

freshwater species globally since the 1970s, compared to 38% and 36% declines in 

terrestrial and marine species respectively (McLellan, 2014). The State of Nature 

Report (2013) details similar declines in British freshwaters with a 57% decline in 

freshwater and wetland species, 29% of which have declined strongly (Burns et 

al.,2013). The economic value of the world’s wetlands is estimated at $70 billion 

annually (Schuyt and Brander, 2004), in addition to which wetlands are one of the 

most culturally valuable (and yet vulnerable) resources (Millennium Ecosystem 

Assessment, 2005). Declines in sensitive freshwater species leading to reductions in 

biodiversity can be the first, most easily discernible sign of ecosystem degradation 

(Dudgeon et al., 2006). Research that focuses on understanding freshwater species 

declines and associated habitat degradation, with the potential to identify 

appropriate and sustainable management solutions, is both timely and important.  

Wetland birds are integral to a range of ecosystem services (Green and Elmberg, 

2014). They are particularly sensitive to changes in habitat quality and have therefore 

been shown to be key indicators of wetland health (Lehikoinen et al., 2016). The 

common scoter (Melanitta nigra) is a UK priority wetland bird species that has 

experienced severe declines in breeding numbers over the last 30 years. Common 

scoter breed at oligotrophic, upland lochs. Declines in breeding numbers could be 

indicative of wider issues of wetland degradation in these sensitive low nutrient 

systems -issues such as acidification, eutrophication, erosion and climate change. 
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Whilst evidence to date has been able to identify some loch characteristics 

associated with common scoter presence in Scotland, such as high conductivity and 

pH and the abundance of large bodied invertebrates (Fox and Bell, 1994; Hancock et 

al., 2015), the effects of landscape associations have only been examined at a 

rudimentary level (Harris, 1995). Species distribution modelling (SDM) is an approach 

which could be used to establish whether there are associations between landscape-

scale variables and current common scoter distribution in the Flow Country. It 

involves examining correlations between records of species presence and 

environmental variables, and can be used to determine both species niches and 

factors predicting a species distribution. Techniques such as maximum entropy 

(Maxent) are particularly robust for dealing with datasets of presence-only records 

(Elith et al., 2011), and have been successfully applied to a number of waterbird 

species (Maleki et al., 2016; Ochoa-Quintero et al., 2010; Santiago-Quesada et al., 

2014; Wen et al., 2016). Whilst SDM approaches, such as Maxent, have the potential 

to provide useful insights into the landscape scale features determining common 

scoter distribution, there also remains a paucity of long term environmental data 

contemporaneous to that of scoter decline. This temporal perspective is ultimately 

vital if spatially correlated variables associated with competing hypotheses for 

decline are to be disentangled. 

Palaeolimnology is a technique which can address gaps in long term environmental 

data. By examining information archived in lake sediments, palaeolimnology is able 

to examine recent environmental change over annual, decadal or longer temporal 

scales. Uptake of palaeolimnological approaches by the conservation community has 

been limited (Froyd and Willis, 2008) and examples of its use for examining waterbird 

decline are extremely rare (Allott et al., 1994; Brooks et al., 2012).  

This thesis investigates the suitability of SDM and palaeolimnological approaches to 

fill gaps in landscape-scale and long-term datasets, with a view to addressing an issue 

of current conservation concern, namely the decline of the common scoter.  

The Flow Country in north Scotland is an internationally important wetland (Lindsay 

et al., 1988), and the decline here of iconic species, such as the common scoter, is 

particularly concerning. The common scoter population breeding in the Flow Country 

has been monitored more closely than at any other site in Scotland, and indeed it 
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was in the Flow Country where concerns about declining numbers were first formally 

studies in Scotland (Hancock, 1991). 

The first chapter of this thesis provides an overview of common scoter in Scotland, 

including details of population trends, breeding biology and research and 

conservation action to date. This is followed by a review of the species distribution 

modelling and palaeolimnology approaches employed in this thesis. The chapter 

concludes by identifying the overall focus and specific research aims, together with 

an outline of the thesis structure. 

 

1.2 Common scoter 

The common scoter is a medium-sized, plump-bodied diving duck. The males have 

black plumage and a bill with a distinctive ridge and yellow patterning (Figure 1.1). 

The females, with brown colouration, lack a ridged bill and have pale markings that 

extend along the cheeks into the neck (Cramp and Simmons, 1977). The species 

spends nine months of the year at sea, forming large flocks in near-shore coastal 

waters. In the summer they migrate inland to freshwater lakes, bogs and marshes to 

breed (del Hoyo et al., 1992). Figure 1.2 illustrates the breeding and wintering ranges 

of common scoter in Europe and north Africa.  

Whilst the distribution of common scoter was well documented across Europe, there 

was, until recently, no evidence concerning how the wintering and breeding 

populations overlapped and/or how much delineation existed between populations 

occurring in different geographic regions. In 2009 a study in Iceland began tracking 

the movements of breeding females using geolocators fitted to birds caught on nests. 

The findings from this study indicated that birds from a single breeding ground are 

dispersing throughout the wintering range (I.K. Peterson pers. comm.). Additionally, 

birds were shown to be highly site faithful, using the same wintering grounds in 

successive years and returning to nest within a few hundred metres of previous nest 

sites each year (I.K. Peterson pers. comm.). The findings from this study have now 

been replicated in common scoter populations breeding in both Scotland and 

Norway (E. Burrell and I.K. Peterson pers. comm.). Although the data currently only 

relate to females in the population it provides strong evidence that breeding ground 
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declines are related to local, breeding ground issues rather than to localised 

wintering ground issues encountered by all birds from a particular breeding ground.  

 

 

 

 

 

 

 

 

 

Figure 1.1 Pair of common scoter, male left and female right (photo credit P. 

Cranswick) 

Figure 1.2 The breeding (red) and wintering (green) distribution of common scoter 

(Melanitta nigra)  

 

1.2.1 Population trends, with a particular focus on Scotland 

There are conflicting data concerning overall European common scoter population 

trends, although the total European population is estimated at 600,000-1,200,000 
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(Delany, 2006). National surveys of breeding populations indicate severe declines in 

Britain amounting to 47% in 12 years, (Balmer et al., 2013), whilst data from 

Scandinavia suggest a stable or slightly increasing breeding population (Birdlife 

International, 2017).  

The first published record of common scoter breeding in the UK is from the Flow 

Country in Northern Scotland in 1855 (Millais, 1913). However, it is difficult to 

determine whether the first records in the literature document the first occurrences 

of common scoter breeding in the UK or whether these early records instead are the 

first time the species was officially recorded. Other species of duck, such as wigeon 

(Anas penelope) and pintail (Anas acuta) are both thought to have colonised Scotland 

at a similar time (1834, wigeon and 1869, pintail (Balmer et al., 2013). This appears 

to support the theory that duck species with a breeding range covering northern 

Europe and north-east Russia were colonising new sites, like the UK, on the south-

western edge of their range during this time. The Scottish and Irish populations of 

common scoter are thought to have increased gradually throughout the early part of 

the twentieth century and peaked in the 1970s and 1980s (Balmer et al., 2013; 

Gibbons et al., 1993; Sharrock, 1976; Thom, 1986). Population declines and site 

abandonment have occurred throughout the Scottish and Irish populations since the 

population peak in the 1970s and 1980s. 

Throughout the late 1800s and early 1900s records of breeding common scoter 

extended southwards from Northern Scotland. Breeding was regularly recorded in 

Tayside, the West Highlands and Tiree (Berry, 1939). The first record of common 

scoter breeding in Ireland was in 1905 at Lower Lough Erne (Holloway, 1996). The 50-

year interval between first being recorded in the Flow Country and their arrival at 

Lough Erne (a distance of 500km) perhaps supports the theory that first colonisation 

was in the middle of the 1800s in Northern Scotland followed by southward 

progression during the latter half of the 19th century. Indeed Irish birds continued to 

colonise loughs in a southerly and westerly direction from Lower Lough Erne in the 

early part of the twentieth century (Parslow, 1973).Records for the early part of the 

twentieth century are accepted as being less reliable. No national, standardised 

surveys were conducted for breeding birds in the UK prior to 1968 and local surveys 

did not typically extend to remote parts of Scotland. However, overall trends of 
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gradually increasing common scoter breeding numbers together with a southward 

extension of range appears plausible despite needing to be considered with some 

caution. 

During the 1970s and early 1980s in Scotland, common scoter breeding was 

concentrated between the Flow Country (55 pairs) and Inverness-shire (35 pairs), 

Argyllshire (5 pairs in 1970), Tayside (3 pairs), Loch Lomond (peaked at 9 pairs in the 

mid-1970s) and Islay (7 pairs by the mid-1970s). Targeted surveys of all known and a 

number of potential common scoter breeding sites in Ireland were carried out in 

1985 and 1986 (Ruttledge, 1987). Of the 160 loughs visited, the population (ca. 120 

pairs) was found to be spread across just five sites; Lough Conn (30 pairs), Lough 

Cullin (24 pairs), Lough Corrib (7 pairs), Lough Ree (40 pairs); the population at Lower 

Lough Erne peaked in the mid-1970s with 163 pairs but by 1986 had fallen to just 11-

21 pairs before final abandonment of the site. Site abandonment was also observed 

in the Scottish breeding population during the 1980s (Balmer et al., 2013; Gibbons et 

al., 1993), particularly at larger lochs such as Loch Lomond (Thom, 1986), which held 

its last breeding pair in 1987. Declines in populations were observed at the remaining 

Scottish sites during the 1980s, albeit relatively slowly. Invernesshire and the Flow 

Country remained important strongholds for the species (Batton et al., 1990). 

National breeding atlas data began to be collected from 1968 and is based on 

standardised survey approaches, with each 10km square in the UK being covered by 

an experienced surveyor. The format of these surveys does not, however, specifically 

target elusive species of duck breeding in remote locations in Scotland and it is 

therefore possible that estimates of total common scoter numbers may have been 

underestimated during this period. Whilst overall abundance figures should perhaps 

be treated with caution, overall trends in breeding common scoter could be 

considered as relatively robust for the latter part of the twentieth century. 

Particularly as there is strong agreement between standardised breeding atlas survey 

data and expert opinion in terms of the direction and timescale of population trends.  

Population declines in the 1980s resulted in increased survey effort in the Flow 

Country, particularly in relation to controversial afforestation activities taking place 

on the blanket bog during this time (Fox and Bell, 1994; Hancock, 1991; Hancock and 

Avery, 1998). The first coordinated national survey for breeding common scoter in 
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Britain and Ireland was undertaken in 1995 (Underhill et al., 1998). All known and a 

random selection of potential breeding sites (approximately 400 sites in total) were 

visited. A total of 195 pairs was estimated for Scotland and Ireland. 100 pairs were 

recorded across three sites in Ireland, whilst the remaining 95 pairs were located in 

23 10km grid squares across Scotland. The highest density remained in the Flow 

Country with 35 pairs. The range extended from the Flow Country southwards, 

through parts of the West Highlands and Tayside to Islay, suggesting the species 

range remained fairly stable since early colonisation between 1850 and 1950. Using 

data from the 1995 survey data and data from the Rare Breeding Birds Panel (RBBP) 

Gregory et al., (2002) estimated a decline between 1973 and 1995 of approximately 

29%. In 2007 a second national survey was carried out in Scotland, during which 600 

sites (including the 400 from the 1995 survey) were visited following the same 

methodology as the 1995 survey. In the 12 years between surveys, the number of 

breeding common scoter in Scotland had declined to 52 pairs, a decline of 45% from 

1995. Range constriction had also occurred with a 17% decline in the number of 10km 

grid squares in which breeding birds were recorded (RSPB/WWT unpublished data). 

The 2007 survey did not cover sites in Ireland. However, in 2012 pre-breeding and 

brood surveys were carried out at the four remaining known breeding sites in Ireland; 

Loughs Corrib, Ree, Conn/Cullin (treated as one site) and Arrow. A maximum of 39 

pairs was estimated for these loughs, representing a decrease of 61% for these four 

sites since the mid-1980s.  

Overall the evidence of breeding scoter population trends must be treated with some 

caution, particularly in relation to colonisation dates and early trends prior to 

standardised breeding bird surveys in the 1960s. Whilst it is difficult to be certain that 

the first records of the species breeding in the Scotland mark initial colonisation, the 

consistency with other similar species appears to suggest ca. 1850 is an appropriate 

estimate for initial colonisation. Whilst data is limited and not particularly robust for 

the 1850-1950 period, an overall trend of increasing numbers and southward range 

expansion appears highly probable based on data from a range of expert and 

amateur sources. This trend holds during the early period of more standardised 

survey effort between the 1960s and 1980 with increases in populations observed 

across Scotland and Ireland. Declines documented in breeding bird surveys since the 
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1980s have been substantiated by focused local and national common scoter 

breeding surveys (Hancock 1991 Underhill et al., 1995, RSPB/WWT unpublished 

data). Recent evidence documenting the severity of recent declines and range 

constrictions are therefore well substantiated.  

 

1.2.2 Breeding Biology 

1.2.2.1 Site selection and nesting habitat 

Common scoter breed close to oligotrophic, upland lakes, which vary in their size and 

landscape setting. The smallest lakes can have a surface area of less than 0.04km2 

and are typically set in low-lying moorland bogs, such as the Flow Country in Northern 

Scotland. Larger lakes can range from 1 to over 100km2 and can be located at a range 

of altitudes from sea level up to at least 700m. Sites can also include hydro lakes 

whose water level fluctuates in response to anthropogenic demand. The setting of 

these lakes includes upland peatbogs and moorlands in addition to sub-arctic 

marshes/wetlands and boreal forests (Ussher 1905, Ferguson, 1968, 1971; Underhill 

et al., 1998). 

The factors influencing breeding site selection are not well understood. Variables 

including invertebrate food availability, substrate type and water chemistry have 

been compared between lakes used by breeding scoters and those which historically 

(but no longer) held scoter. Hancock et al., (2015) examined 26 lochs across the north 

of Scotland and found that the presence of large bodied invertebrates was strongly 

associated with scoter lake use. An unpublished RSPB report based on data gathered 

during the 2007 survey found conductivity in Scottish breeding sites to be 

significantly higher than at unoccupied sites; occupied sites were also found to have 

a significantly higher pH than unoccupied sites. This confirmed earlier work by Fox et 

al., (1989) and Harris, (1995) on Flow Country lochs which identified a statistically 

significant association between sites with high pH and conductivity (and islands) and 

scoter presence. Conductivity and pH can influence and be influenced by aquatic 

macrophyte communities, and can be used to provide an indication of a lake’s trophic 

status, with low conductivity and acidity typically being associated with low nutrient 

conditions. Scottish freshwaters are under pressure from a number of anthropogenic 

activities, such as pollution, agriculture, fish farming, forestry, water impoundment 
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and atmospheric deposition (Maitland et al., 1994). Many of these activities can 

influence the abiotic and biotic characteristics of freshwaters and could have 

implications for species such as common scoter. However, for remote areas of 

Scotland, such as the Flow Country, there is a lack of long term ecological or water 

quality data. It is therefore not possible to determine whether significant changes in 

water chemistry, and consequently loch ecology, have occurred at scoter sites since 

declines began. 

Common scoter breeding in Scotland typically construct their nests in long heather 

(Calluna vulgaris) or bilberry (Vaccinium myrtillis) , close to either small lakes set in 

moorland bogs, or in proximity to larger lakes (Sharrock, 1976). At some sites, 

Lomond, Islay and Lough Erne, wooded islands and peninsulas have also been used 

(Ruttledge, 1987; Ussher, 1905). It is difficult to assess a typical nesting distance from 

the shoreline. Whilst some authors have found the distance from the water’s edge 

to be less than 20m (Sharrock, 1976), others have suggested it can be far greater, up 

to several hundred metres (Berry, 1939). At breeding lakes in north west Iceland, 

scoters nest in dwarf willow (Salix  herbacea) and heather located in the drier areas 

of marshland, typically within 1km of a larger lake (Bengtson, 1970; Gardarsson, 

1979, I.K. Peterson pers. comm.). 

 

1.2.2.2 Diet 

Common scoter predominantly feed in waters of less than 10m in depth on benthic 

invertebrates and macrophytes; the exact taxa consumed varies between marine and 

freshwater habitats throughout the year (Bengtson, 1971; Cramp and Simmons, 

1977; Fox, 2003). When overwintering at sea, common scoters are known to favour 

molluscs and gastropods, of less than 4cm in length, that live on the surface or within 

the upper 3cm of clean, coarse sandy sediment (Fox, 2003). They are also recorded 

as feeding on crustaceans, annelids, echinoderms and small fish such as sticklebacks 

(Cramp and Simmons, 1977; Fox, 2003). The exact means of feeding is not well 

understood. Based on marine diet, Fox, (2003) suggests that the bill is inserted into 

the sediment which is then sifted or siphoned in some way. However, observations 

of female common scoter breeding on freshwater lochs in Scotland suggest that beds 
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of aquatic macrophytes containing invertebrates may also be important feeding 

habitats (L. Griffin, pers. comm.). 

Investigations into the breeding diet of common scoters has been possible at lake 

Myvatn in Iceland by examining stomach contents of dead birds caught in illegally 

applied gill nets. Stomach contents of 93 common scoter were inspected by 

Bengtson, (1972); chironomid larvae together with the crustaceans Eurycercus 

lamellatus and Lepidurus arcticus were found to be important food resources that 

constituted 85% of stomach contents examined. Other invertebrate components of 

scoter diet included the cladocera Daphnia longispina, and the molluscs Pisidium 

caeertanum and Lymnea peregra. In addition to invertebrates, three-spined 

sticklebacks and plant fragments (from Cladophora aegagropila and Potamogeton 

filiformis) were also identified. No statistically significant difference was observed 

between the feeding intensity of sexes upon arrival at Flow Country lochs (Hancock 

et al., in prep). However, in Iceland Bengtson (1971) did identify differences in the 

composition of food consumed between the sexes and broods. Females were found 

to have predominantly consumed fish eggs and molluscs together with some seeds. 

Males too showed a preference for fish eggs, but they were also found to consume 

chironomids, cladocera and seeds in smaller amounts. Young ducklings were found 

to have consumed some adult insects indicating they spent some time surface 

feeding, but older ducklings were found with predominantly chironomids and 

cladocera as their primary food items. It is, however, difficult to generalise from 

findings at Myvatn as it is a very unusual site due to its thermal waters which increase 

productivity and result in unusually large populations of chironomids, cladocera and 

small fish. 

A large marsh in the northern part of Aðaldal is another important breeding site for 

scoters in northern Iceland. It is situated less than 1.5km from the coast. Faecal 

analysis of incubating females from this site has shown that female birds have a diet 

of principally marine composition; primarily amphipods (probably Gammarus 

duebeni), together with fish eggs, sticklebacks and some vegetative material (I K 

Peterson, pers. comm).  

Outside Iceland there is little data concerning the diet of breeding common scoter. 

However, a study in Northern Russia (Kondratyev, 1999) also found Lepidurus 
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arcticus and Eurycercus lamellatus constituted an important part of the diet, along 

with Trichoptera. There are limited data from faecal analysis of birds breeding in 

Britain, but evidence indicates that whilst on lakes they feed on a range of aquatic 

invertebrates and macrophytes including Trichoptera, Hemiptera, Coleoptera and 

Odonata (G.M. Hilton, pers. comm.). 

 

1.2.2.3 Climate  

Climate change 

Climate change is acknowledged as one of the greatest current threats to global 

biological diversity. Wetlands in particular are identified as being amongst the most 

sensitive habitat types (Erwin, 2009; Junk et al., 2013). Despite this, much 

ornithological research focuses on terrestrial bird species. Ducks, for whom 

freshwaters are vital, could be particularly at risk from climate induced changes to 

freshwater wetlands (Guillemain et al., 2013). 

An extensive study of the effects of climate change on European breeding birds 

(including the common scoter) was conducted by Huntley et al.,(2007). The study 

used bioclimatic variables and a “middle of the road” emissions scenario (Prentice et 

al., 2001) to predict future species distributions in the latter part of the 21st century. 

The climate characteristics identified as favourable for common scoter included 

areas where i) there is little to no annual moisture deficiency, ii) the annual sum 

temperature is between ca. 200 and 1000-degree days above 5ᵒC and iii) the coldest 

monthly mean temperature is less than -5ᵒC. As part of the model validation process, 

the same model was used to predict current distributions of common scoter across 

Europe. The model failed to predict current scoter breeding in either Scotland or 

Ireland. Common scoter have been breeding in these localities since at least the 

1850s (possibly), and the failure of the model to predict their presence here could 

indicate that other factors, besides climate, have made these areas suitable breeding 

habitats, particularly as the climate data used to generate the models relates to a 

time of peak scoter populations in Britain.  
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1.2.2.4 Predation and competition  

The success of breeding wildfowl is known to be effected by mammalian, avian and 

fish predators, with several studies demonstrating increased breeding success being 

associated with predator removal (Balser et al., 1968; Dessborn et al., 2011; 

Duebbert and Lokemoen, 1980; Kauhala, 2004; Schranck, 1972). Mammals including 

foxes, pine martins, stoats, cats, mink, and otters, together with birds such as corvids, 

gulls and raptors are all known to predate on both nesting females and ducklings 

(Ogilvie, 1975). Partridge and Smith (1988) used artificial nests to investigate 

predation on common scoter breeding at Lough Erne. Well concealed nests were 

found to be targeted less frequently by avian predators than less well concealed 

nests. Traylor et al., (2004) also found that survival of white winged scoters 

(Melanitta fusca deglandi) nesting in North America was positively correlated with 

degree of concealment. Whilst avian species such as gulls (Larus sp.) are known to 

predate on scoter ducklings, being close to breeding colonies of gulls (and also terns, 

Sterna sp.) can have benefits for ground nesting ducks, like scoter. Such colonies can 

act as both an early warning system and protection for nesting ducks. The colonies 

can alert nesting females to the presence of other predators, such as mammals and 

raptors, and react as a group to fend off potential predators to protect their own 

nests and young. Hancock et al.,(2015) investigated the associations between the 

presence of both mammalian and avian predators and probability of common scoter 

presence at Flow Country lochs. Only one relationship was found to be statistically 

significant: that young broods occurred more often where there were fewer avian 

predators. Other associations between predator’s distribution and common scoter 

loch use were found to be non-significant, suggesting the presence of predators is 

not a key driver of common scoter loch use in the Flow Country.  

In addition to mammalian and avian predators, ducklings are also susceptible to 

predation by large fish such as pike. Dessborn et al.,(2011) examined the effect of 

pike predation on breeding ducks by monitoring wildfowl lake use before and after 

adult pike introduction. Whilst the number of adult pairs using the lake did not 

decrease following pike introduction, the abundance of ducklings on the lakes with 

pike did show a statistically significant decrease. Pike do not occur in Flow Country 
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lochs but anecdotal evidence suggests pike are an issue for scoter on larger Scottish 

lochs in the West Highlands. 

Common scoter typically breed in areas of low breeding wildfowl density, suggesting 

they may be poor competitors for resources. As diving ducks, scoters feed primarily 

in benthic habitats where their main competitors (other than diving wildfowl) are 

fish. In the oligotrophic lochs typically used by breeding scoter, trout, roach, pike and 

sticklebacks are the main fish competitors. Reduced lake use by birds resulting from 

increased competition for invertebrate food resources has been documented for 

other diving duck species (common goldeneye, Bucephala clangula) on oligotrophic 

lakes (Eriksson, 1979). The relationship between invertebrate abundance and 

diversity and fish can be complex, particularly when multiple fish species are involved 

and piscivory occurs (Sánchez‐Hernández, 2015). Whilst some invertebrate groups 

can be reduced under fish pressure, other groups or size classes can increase as they 

are released from larger invertebrate or small fish predation pressure (Dobson and 

Frid, 2009). Fish introductions and/or management can also have indirect 

implications for invertebrates through changes to habitat quality or quantity 

(Zambrano et al., 2001). Partridge, (1987) suggested roach competition may have 

been influential in the decline of common scoter at Lower Lough Erne. However, a 

number of coinciding factors (eutrophication, and the arrival of invasive mink 

populations) made it difficult to disentangle the individual impact of these potentially 

influential drivers of decline. The abundance of brown trout in Flow Country lochs 

has been shown to be negatively associated with the abundance of large bodied 

invertebrates, and additionally scoter were found to be positively associated with 

lochs containing large bodied invertebrates. However, no direct relationship could 

be established between measures of common scoter loch use and brown trout 

abundance (M Hancock et al., 2015). 

 

1.3 Research action to date 

Research into the causes of common scoter declines was first undertaken in Northern 

Ireland at Lough Erne where substantial declines had been observed between the 

1960s and 1980s, before the species went locally extinct in 1989. Early research in 

1985 and 1986 indicated that a combination of water pollution (eutrophication) and 
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mink predation were responsible for scoter declines. The introduction of roach to 

Lough Erne in the 1930s was also thought to be exacerbating the declines by putting 

further pressure on diminishing resources. The coincidence of events at Lough Erne 

made it difficult to identify the most pertinent issue for scoter (Partridge, 1989). 

Although it only ever supported a maximum of nine pairs, local extinction had also 

occurred at Loch Lomond in Scotland by 1987 (Mitchell, 1977), and at the time this 

was attributed to increases in mink predation and disturbance from powerboats 

(Smith, 2005). However, no coordinated research was attempted. Subsequent 

research not related to common scoter decline has established that Lomond 

contemporaneously became eutrophified (Bennion et al., 2004) which could also 

have contributed to scoter abandonment of the site. 

The first research focusing on breeding common scoter in Scotland was undertaken 

in the late 1980s and early 1990s. With anecdotal and local evidence indicating 

declines, research initially focused on breeding habitat characterisation with a 

particular emphasis on the Flow Country (Fox et al., 1989; Fox and Bell, 1994; 

Hancock, 1991; Harris, 1995) 

Following the first national survey in 1995, the species was Red Listed and a 

Biodiversity Action Plan (BAP) group created with representatives including Scottish 

Natural Heritage (SNH), Royal Society for the Protection of Birds (RSPB) and The 

Wildfowl & Wetlands Trust (WWT). From this group, the following actions were 

identified for the support of breeding populations;  

• Conduct standardised annual monitoring of breeding numbers, productivity and 

threats; 

• Investigate breeding ecology of common scoter with a view to informing breeding 

loch/catchment management action and prediction of climate change effects; 

• Maintain or implement appropriate site management, to be further informed by 

results of research. 

As a result, an annual monitoring program was implemented by RSPB Forsinard 

reserve from 2002 which involved coordinated counts of around 100 Flow Country 

lochs and pool systems during 3 key periods of the breeding season. The first large 

scale research project into common scoter declines in Scotland took place between 
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2009 and 2011, and was led by RSPB with involvement from WWT, SNH and BTCV 

Scotland. The study sites included 26 lochs across the two remaining stronghold 

areas of the Flow Country (20 sites) and the West Highlands (6 sites). The sites were 

equally split between those which had consistently held breeding scoter since the 

1980s and those which had scoter during the 1980s and early 1990s but which had 

not had records of breeding scoter since 2000. The aims of this research were to 

gather detailed data on scoter use within the lochs, together with larger scale spatial 

patterns in scoter distribution between lochs in particular in relation to aquatic 

invertebrate abundance, fish competitors and the presence of predators. A key 

finding of this research was that female scoters were found to be positively 

associated with lochs containing greater numbers of large bodied invertebrates. 

Suggesting food supply was a key influence on female scoter loch use. In addition, 

fewer large fish (brown trout) and more small fish (stickleback) were also found be 

positively associated with lochs containing more large-bodied invertebrates. This 

could indicate either that large bodied invertebrates experience reduced predation 

pressure from large trout which instead feed upon larger prey (such as small trout 

and/or stickleback). Changes in fish population structure could therefore have 

implications for common scoter who feed on the same invertebrate food resources. 

However, the study was unable to identify any statistically significant relationship 

between common scoter and brown trout or stickleback populations. The fish survey 

method employed (rod and line surveys for a standardised time period) made it 

difficult to establish with confidence whether any of the lochs was in fact without 

fish, particularly as other sources (such as estate stocking data and trout fishing 

literature e.g. Sandison, 2015) suggested several lochs where no fish were caught, 

did in fact contain fish. Ultimately, changes in the abundance of either trout or key 

resources (such as invertebrates) since the start of common scoter declines could not 

be established using contemporary data sources which left important questions 

unanswered concerning the influence of fish. Further research focusing on the 

impact of brown trout on common scoter in the Flow Country began in 2014, when 

the RSPB began experimentally increasing fishing pressure on a number of Flow 

Country lochs with the aim of assessing the impact of reduced brown trout numbers 
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on the abundance of freshwater invertebrates and common scoter. The results of 

this study are not currently available at the time of writing. 

Since concerns around declines were first raised, research has focused on spatial 

comparisons between lochs used by scoter and control lochs (either historically used 

or similar ecologically). Whilst this approach has enabled characterisation of lochs 

used by breeding scoter it has not been able to identify links between key resources 

and landscape or climate drivers, nor has it been possible to establish the extent of 

change in the lochs either physically or biologically over the time of decline. This 

thesis aims to use multidisciplinary approach to address this. The main methods 

employed will be reviewed in the following sections. 

 

1.4 Species distribution modelling 

1.4.1 Overview and applications 

Species distribution models (SDMs) can be used to gain ecological insights into 

species niches, understand relationships between a species and its environment, and 

test hypotheses concerning ranges and distributions (Franklin, 2010). Determination 

is based upon correlations between recorded species presences and a variety of 

habitat or climatic variables. The technique commonly results in the production of 

maps representing habitat suitability at landscape, regional, global or temporal 

scales. The approach can be used in a conservation context to assess the impacts of 

habitat degradation (Convertino et al., 2014) or restoration (Wilson et al., 2011), 

predict species responses to issues such as climate change (Loarie et al., 2008; 

Milanovich et al., 2010), and can also be used to evaluate the colonisation of new or 

re-introduced species (Adhikari et al., 2012). Applying SDMs to freshwater research 

has the additional benefit of enabling links between within system features (such as 

aquatic community abundance and/or composition) and potential landscape drivers 

(such as catchment land use or geology) to be highlighted.  

Maximum entropy (Maxent) is a robust generative SDM approach, comparable to 

GLMs and GAMs. However, unlike these discriminative (GLM and GAM) approaches 

the maximum entropy approach does not require knowledge of species absences, 

and can function using a relatively small amount of training data (Franklin, 2010). 

Maxent was specifically designed to use species-only data to model the relative 
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suitability of a site (rather than the probability of species occurrence at a site). It also 

generates environmental response functions which detail the likelihood of species 

presence at different environmental gradients, which can provide useful insights into 

species niches. The Maxent approach has been shown to outperform other presence-

only modelling methods (such as GARP and BIOCLIM (Elith et al., 2011; Phillips and 

Dudík, 2008)), and has been used extensively in both freshwater (Ba et al., 2011; 

Kumar et al., 2009; Pittman and Brown, 2011) and water bird research (Ochoa-

Quintero et al., 2010; Wen et al., 2016) 

 

1.5 Palaeolimnology 

1.5.1 Overview  

A paucity of long term monitoring data is a problem common to many research 

projects examining species decline. However, because wetlands and many aquatic 

systems preserve a record of their development over time it is possible to extend the 

range of modern day freshwater datasets by complementing contemporary data 

with that derived from lake sediment cores, thus providing a temporal perspective. 

Lake sediments are composed of both allochthonous and autochthonous materials. 

In lentic systems sediment accumulates on the lake bottom in a depth-time 

sequence, with older materials being found at deeper sediment depths and more 

recent sediments nearer to the surface (Smol, 2008). Palaeolimnology involves the 

analysis of an undisturbed core of sediment taken from the accumulation zone of a 

waterbody. The core can then be subsampled or sliced to provide different time-

depth intervals. The palaeolimnological approach can provide direct evidence of 

community composition (by reconstructing species distributions and abundance), 

and indirect indications of the physio-chemical conditions (by complementing 

ecological knowledge or using transfer functions). Whilst single indicators can 

provide useful insights, the benefits of multi-indicator studies to enable the 

interpretation of complex and dynamic freshwater environments is now well 

established (Birks and Birks, 2006; Sayer et al., 2000). 
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1.5.2 Core Chronology 

Accurate dating of lake sediments is vital in palaeolimnological studies. Establishing 

the temporal scale and resolution of a core determines which research questions can 

be addressed, and assigning a date to each core slice enables interpretation of the 

archived remains (Oldfield and Appleby, 1984). The most commonly used methods 

for dating lake are sediments radiometric analyses. These methods are based on the 

rapid uptake of atmospheric radioisotopes by lake sediments. By determining rates 

of isotopic decay the age of sediment along the length of a core can be determined 

(Appleby, 2002). For longer (<200 year) timescales C14 is used, as it has a decay half-

life of 5,730 years; for studies examining short timescales (150-200 years) 210Pb is the 

most commonly used isotope, with its half-life of about 22 years. In addition to these 

naturally occurring radioisotopes, anthropogenic markers can also be identified in 

recent sediments, in particular the nuclear weapons testing peak in 1963 and the 

Chernobyl nuclear power station accident in 1985. Both events led to a large release 

of radioisotopes and the associated peak in the record is commonly used to validate 

and strengthen 210Pb dating models (Appleby, 2008). Radiometric analysis of 

sediments is a costly and time intensive process. Alternative methods have been 

developed for recent sediments using other anthropogenic markers from 

atmospheric pollution such as Spheroidal Carbonaceous Particles (SCPs) (Rose, 1998) 

and heavy metals (Callender and Metre, 1997). Whilst these approaches are less 

costly they also provide a less precise date for sediment records. 

 

1.5.3 Non-biological indicators 

Initial analysis of lake sediment cores typically involves examination of core 

lithostratigraphy, physical characterisation and geochemical methods for 

determination of compounds such as heavy metals, SCPs and isotope concentrations 

(Appleby, 2002; Boyle, 2001; Last and Smol, 2006; Meyers and Teranes, 2002).  

Lithostratigraphic techniques include the determination of dry weight, wet density 

and organic matter content for samples along the length of a core, all of which can 

give an indication of the cores stratigraphy and whether sediment mixing may have 

occurred. Lithostratigraphic profiles can also be used to cross-correlate multiple 

cores taken from the same system (Berglund, 1986). 
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Geochemical palaeolimnological techniques have been used to examine 

concentrations of heavy metals in freshwaters, particularly in relation to those from 

anthropogenic sources such as smelting and mining of metal ores and burning of 

fossil fuels (Smol, 2008). Metals entering aquatic systems via both atmospheric 

and/or groundwater/catchment sources are readily deposited in lake sediments, and 

consequently the concentrations of metals in the sediments are typically higher than 

those present in the water column (Boyle, 2002). Whilst some metals have been 

shown to be mobile post-deposition (and therefore difficult to interpret 

palaeolimnologically) others (such as Pb) are less mobile and can be used to examine 

trends in metal pollution at both local and regional scales from diffuse and point 

sources (Blais et al., 1999; Olli and Destouni, 2008; Steinnes et al., 1997). Trends in 

metal concentrations in lake sediments have primarily been used to determine the 

effects of metal pollution on aquatic organisms, identify sources, and determine the 

effectiveness of pollution regulations. However, observable trends in heavy metals 

concentrations related to anthropogenic sources can also be used to estimate the 

dates of recent sediments. Recent profiles of, for example, Pb, show steadily 

increasing concentrations from the onset of industrialisation (ca. 1850), with more 

rapid increases associated with the middle of the 20th century until approximately 

1970-80 following which a decline is observed coincident with and resulting from the 

introduction of air quality regulations (Smol, 2008).  

 

1.5.4 Biological indicators 

A wide range of biological indicators can be used in palaeolimnological studies. 

Remains examined include those derived from within both the lake itself and its 

catchment. For a biological indicator to be useful in a palaeolimnological context it 

needs to leave remains in the sediment that are identifiable and robust enough to 

withstand degradation. A well-developed understanding of species/taxa tolerances 

is also necessary to establish the ecological implications of the observed communities 

(Cohen, 2003).  

Algae are an important biological indicator used in palaeolimnological studies, 

particularly diatoms. Whilst, as a group, diatoms are able to tolerate a wide range of 

freshwater and marine environments, individual species have discernible tolerance 



20 
 

ranges, particularly in relation to chemical variables such as pH and total phosphorus 

(TP). Diatoms are excellent palaeolimnological indicators because they are able to 

colonise habitats and reproduce rapidly, they are sensitive to shifts in habitat and 

water chemistry and their silica valves are resistant to degradation meaning they 

preserve well even in ancient sediments (Battarbee et al., 2001).  

Invertebrates in freshwaters represent many different levels within freshwater food 

webs, and inhabit every possible niche. Common remains examined by 

palaeolimnologists include Cladocera, Ostracods, Chironomids and other Diptera 

well as the chitinous remains of other groups of macroinvertebrate such as 

Trichopera, Ephemeroptera and Coleoptera (Smol et al., 2001). The remains left by 

these groups can be difficult to identify to species or even genus level and therefore 

their use as palaeolimnological indicators has developed more slowly than the other 

indicator groups. 

Remains from vertebrates, such as fish are not commonly found in large numbers in 

sediment cores, primarily due to the relatively small volume of sediment associated 

with each slice. However recent developments in coring techniques have included 

the development of wide bore corers (such as Big Ben, Patmore et al., (2014) which 

enables a greater volume of sediment to be collected in each slice, and fish remains 

such as scales, teeth and bones have been identified (Sayer et al., 2016). 

 

1.5.5 Applications 

The application of palaeolimnological approaches has progressed and become more 

refined as technologies and methods have been developed. An overview is provided 

here, with a focus on shallow lakes and waterbird declines. 

One of the first and most extensive applications of palaeolimnology focused on the 

acid rain debate. Problems arising from acid rain were identified as early as the 1950s 

(Smol, 2008). However, tying down the source of acidification and understanding its 

extent was problematic without long term environmental monitoring data. Lake 

sediment records were able to fill this gap in knowledge, palaeolimnological methods 

were used to establish the timing of acidification, to disentangle the potential causes 

and to establish how current acidity was placed within long term levels of natural 

variability. The data from palaeolimnological studies were also able to establish the 
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effects of acidification on lake ecology and assess the effects of emissions reductions 

(Battarbee and Howells, 1990; Battarbee et al., 2005) 

Similarly, the effects of eutrophication, including toxic algal blooms, increased 

aquatic macrophytes/periphyton biomass, detrimental alterations to water quality 

and fish kills (resulting from decreased oxygen levels), were of growing concern in 

the latter part of the 20th century (Smol, 2008). Palaeolimnology used a combination 

of chemical, physical and biological techniques and transfer functions to track 

changes caused by eutrophication events, infer past levels of key nutrients and 

importantly identify the causes of eutrophication (Bennion et al., 1996b). 

Palaeolimnology also plays an important role in the implementation of the European 

WFD, which requires reference conditions to be determined for water bodies, from 

a range of different trophic states, against which current ecological status can be 

measured. Palaeolimnology is named specifically as a technique suitable for 

establishing the reference conditions of lakes, and has been used in a number of 

studies (Bennion et al., 2010; Bjerring et al., 2008; Dalton et al., 2009).  

When the principal aim of a project is to establish the degree of change at a site, fine 

scale temporal resolution is not always necessary or cost effective. Instead a top-

bottom palaeolimnological approach can be employed (Bennion et al., 2004). This 

involves comparing a slice of sediment from the top of a core (representing present 

day conditions) with a sample from close to the bottom of the core (to represent 

historic or pre-industrial conditions). In addition to WFD applications, the top-bottom 

approach can be useful in studies examining broad scale changes across several sites, 

and has been successfully applied to examine change in response to metal pollution 

(Brooks et al., 2005), long term oxygen conditions (Kurek et al., 2012), and 

eutrophication (Dixit et al., 2011). 

Transfer functions have been pivotal to debates such as acid rain and eutrophication. 

However, in a conservation context the reduction of complex lake processes and 

relationships can be less informative than a multi-indicator approach (Sayer et al., 

2010). By combining ecological knowledge and evidence from multiple 

palaeolimnological indicators at different trophic levels, the management of shallow 

lakes can be based on more comprehensive evidence that takes account of both 



22 
 

direct and indirect relationships between communities and physical, chemical and 

temporal processes. 

A number of studies have sought to link contemporary research with 

palaeolimnological datasets (Ayres et al., 2007; Sayer et al., 2012; Sayer et al., 2010). 

However, this cross-disciplinary field is only developing slowly (Davies and Bunting, 

2010; Froyd and Willis, 2008). The advantages of such a holistic, multi-proxy 

approach used in conjunction with firm autecological understanding have been 

demonstrated in several studies, and have highlighted the multiple factors that were 

regulating freshwater systems, emphasising the dynamic and complex nature of 

these habitats (Sayer et al., 2012).  

 

1.5.5.1 Shallow lakes and conservation management 

Much early palaeolimnological work centred around relatively large, deep lakes 

where the time-depth sequence of sediment deposition was likely to be undisturbed 

by physical or biological mixing. Whilst it is acknowledged that issues such as 

sediment mixing are more likely to arise in shallow lakes (Bloesch, 1995), results of 

poorly dated or disturbed cores have not typically been published, and it is therefore 

difficult to assess the extent to which shallow lake work is hampered by such 

processes. There are, however, an increasing number of examples of 

palaeolimnological studies being successfully carried out in shallow lake and pond 

systems, particularly in relation to restoration and conservation management (Ayres 

et al., 2007; Bennion et al., 1996a; Rawcliffe et al., 2010; Sayer et al., 2010).  

Despite some studies providing a good basis for further cross disciplinary work there 

remains little link up between the palaeolimnological and conservation communities. 

Of the 100 questions of conservation importance identified by Sutherland et 

al.,(2006), Davies and Bunting (2010) identified 54 that could benefit from 

palaeoecological datasets because they required consideration of long term data, 

natural variability and/or establishment of baseline conditions. The use of 

palaeolimnology in conservation management is a slowly growing field despite its 

applicability being recognised more than 20 years ago (Smol, 1992). Gillson and 

Marchant, (2014) suggest that the underuse of palaeoecological data in 

contemporary management is a result of datasets that are “not accessible or 
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amenable”. Davies and Bunting (2010) identify a lack of familiarity with the 

respective fields as another reason preventing collaborative working between 

palaeoecologists, researchers and practitioners.  

 

1.5.5.2 Waterbird declines 

There are relatively few examples of studies that use palaeolimnological techniques 

to examine species declines to inform conservation management. Studies commonly 

focus upon community level shifts in taxa that leave remains in the sediment, such 

as cladocera, macrophytes and invertebrates (Davidson et al., 2011; Langdon et al., 

2010; Sayer et al., 2010). Two key examples of the application of palaeolimnological 

data being used to understand waterbird decline include Allott et al., (1994) and 

Brooks et al., (2012). Allott et al., (1994) used palaeolimnological techniques to 

examine water quality changes in lochs occupied by black throated divers (Gavia 

arctica). They were able to identify sites which had experienced acidification, 

nutrient enrichment and the effects of local afforestation. This study provided the 

first evidence of environmental change in Flow Country lochs, however it did not 

relate this change specifically to changes in black throated diver abundance or 

distribution. However, a more recent study of the fluctuating Slavonian Grebe 

(Podiceps auritus) population at Loch Ruthven specifically linked ecological change 

within the loch and changes in grebe breeding success (Brooks et al., 2012). Lake 

productivity and chironomid abundance were found to have increased over the last 

100 years. Grebe productivity had been monitored annually since the 1970s and it 

was found to fluctuate in a pattern that followed chironomid abundance. The 

fluctuations in chironomid abundance were shown to be correlated with diatom-

inferred total phosphorus concentrations rather than climate variation. 

 

1.6 Overall focus and specific research aims 

Species decline is a growing priority for conservationists and therefore identifying 

anthropogenic pressures and ameliorating their impacts is a key concern for wetland 

conservation, particularly as the recognition of wetland value increases. The common 

scoter is a Red Listed breeding species, and is a priority for UK conservation. The 

decline of common scoter may also be indicative of wider wetland degradation.  
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The lack of both detailed contemporary limnological data and landscape 

characterisation mean that it is not currently possible to accurately determine levels 

of heterogeneity between Flow Country lochs, or determine how this could be 

influencing current common scoter loch use. The difficulties in disentangling drivers 

of decline are further compounded by the fact that no historic limnological data exist 

relating to the period either prior to, or contemporaneous with common scoter 

decline. To address these key gaps in knowledge, data are needed from a range of 

spatial and temporal scales. Detailed physical, chemical and biological survey data 

will improve the understanding of common scoter decline, particularly if subtle 

influences on the degree of common scoter loch use are operating. Combining 

detailed limnological survey data with an understanding of how landscape scale 

features can influence common scoter distribution, will also highlight important links 

between landscape scale features and within loch processes. In addition to these two 

spatial scales, data from a range of temporal perspectives have the potential to 

address current knowledge gaps and inform conservation efforts. With regional 

climate models failing to reflect current common scoter distributions (Huntley et al., 

2007), an investigation into the possible effects of annual climate variation could 

provide more useful insights into the future persistence of common scoter in 

Scotland. Assessing the extent and type of environmental change experienced at 

common scoter lochs over the last 150-200 years has the potential to add to our 

understanding of current levels of heterogeneity between lochs. No detailed, historic 

survey data exist for common scoter breeding lochs, so the temporal resolution 

offered by a palaeolimnological perspective can provide valuable insights that may 

help identify the most pertinent drivers of decline 

The overall aim of this research is to assess the causes of common scoter declines at 

an internationally important wetland using data from multiple spatial and temporal 

scales. Common scoter loch-use is examined firstly in the context of local, within-loch 

characteristics and the heterogeneity of Flow Country lochs established. The 

associations between common scoter distribution and within-loch features are then 

examined in relation to landscape scale drivers. The effects of annual climate 

variability on changes in common scoter numbers in the Flow Country are assessed 

in relation to both local (breeding ground) and regional (wintering ground) climate.  
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The second part of this theses adds a temporal perspective to common scoter decline 

by using a palaeolimnological approach to assess the extent and types of 

environmental change that have occurred in Flow Country lochs. The value of adding 

this temporal perspective to species decline research is assessed, and its potential 

for disentangling spatially correlated hypotheses for decline examined. The intention 

is that the outcomes of this research will be useful in informing, directing and 

prioritising both future research addressing species declines, and also conservation 

efforts for common scoter and the Flow Country wetlands. 

 

Specific aims: 

1. Determine levels of heterogeneity in Flow Country lochs; 

2. Develop and refine hypotheses for common scoter decline in the Flow 

Country using within-loch data; 

3. Explore the influences of landscape-scale drivers on common scoter 

distribution in the Flow Country and key within-loch features; 

4. Examine the effect of annual climate variation on both common scoter; 

5. Determine the suitability of shallow Flow Country lochs for 

palaeolimnological research; 

6. Use a palaeolimnological top-bottom approach to determine the extent and 

type of environmental change in Flow Country lochs, particularly in relation 

to levels of current loch use by common scoter; 

7. Undertake wide bore, multi-proxy palaeolimnological analyses at four Flow 

Country lochs to examine recent environmental change at a fine temporal 

resolution, and explore the implications of recent environmental change for 

common scoter. 

 

1.7 Structure and outline of thesis, including specific objectives 

The structure of this thesis, including an overview of each chapter is provided below; 

the specific aim (from section 1.6 above) addressed by each chapter is detailed, 

together with a more detailed list of objectives. 
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Chapter 2 provides details on the study area generally, site selection and the 18 study 

lochs more specifically. Information concerning the laboratory and field methods 

used in this study is also provided. 

Objectives: 

• To collate existing data concerning the study area and study lochs;  

• To describe laboratory and field methodologies in addition to details 

of site selection 

 

Chapter 3:  

To address Aims 1 and 2, Chapter 3 brings together new and existing data to examine 

the between-loch variability of 18 Flow Country lochs in terms of physical, chemical 

and biological parameters. This chapter then examines the relationship between loch 

features and common scoter loch-use to develop and refine hypotheses for decline. 

Objectives: 

• To generate a scoter loch value for each of the 18 sites, to be used in 

general linear modelling and data interpretation; 

• To use Geographic Information Systems (GIS) to produce bathymetry 

and percentage macrophyte cover maps of the 18 study sites; 

• To use sediment type characterisations to generate a sediment score 

for each loch; 

• To compare water chemistry across sites and examine correlations 

between water chemistry variables; 

• To explore macrophyte, diatom and chironomid species composition 

across sites; 

• To use principal component analysis (PCA) (water chemistry and 

chironomids) and detrended component analysis (DCA) (macrophytes 

and diatoms) to explore the heterogeneity between Flow Country 

lochs; 

• To use canonical correspondence analysis (CCA) with forward 

selection to examine the relationships between communities and 

environmental variables; 
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• To use general linear modelling approach to identify the statistically 

significant variables associated with common scoter loch use. 

 

Chapter 4 addresses aim 3 and 4; a SDM approach is undertaken to explore the 

association between common scoter presence and landscape scale features. A 

general linear modelling approach is used to explore the relationship between 

influential landscape features and within loch characteristics important to scoter. 

Chapter 4 also assesses the extent to which annual climate variation influences 

change in common scoter numbers in the Flow Country.  

Objectives: 

• To use a general linear modelling approach to identify statistically 

significant relationships between annual climate variables 

(temperature, rainfall) and changes in common scoter abundance in 

the Flow Country; 

• To use maximum entropy species distribution modelling approach to 

identify landscape scale features associated with lochs used by 

common scoter in the Flow Country; 

• To use general linear modelling to determine whether there are 

statistically significant associations between landscape scale features 

and within loch characteristics.  

Chapter 5 focuses on aims 5 and 6; core stratigraphy and ecological change at 18 

lochs is examined using a palaeolimnological approach and the relationship to 

current scoter loch use is assessed.  

Objectives: 

• To assess the stratigraphic integrity of the cores using LOI, XRF and 

210Pb profiles 

• To explore the dominant chironomid and diatom taxa in the tops and 

bottoms of the cores; 

• To use DCA to examine associations between sites and dominant 

species in the tops and bottoms of the cores; 
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• To use procrustes analysis to ascertain the degree of change in 

chironomid and diatom communities between the top and bottoms 

of the cores; 

• To use the procrustean randomisation test (PROTEST) to compare top-

bottom ordinations for chironomids and diatom communities. 

 

Chapter 6 addresses aim 6 it uses a multiproxy, fine resolution approach to examine 

recent changes in 4 Flow Country lochs in relation to the hypotheses developed for 

common scoter decline. 

Objectives: 

•  To assess stratigraphic integrity using LOI, XRF and 210Pb profiles from 

the cores; 

• To determine the extent and type of environmental change at each of 

the four Flow Country lochs by examining changes in diatom, 

invertebrate, cladocera and macrophyte communities; 

• To use PCA to compare the types of environmental change occurring 

between lochs; 

• To use Constrained Incremental Sums of Squares cluster analysis 

(CONISS) analysis to identify statistically significant breaks in the 

stratigraphic data; 

• Use palaeolimnological evidence to explore the theories of common 

scoter decline.  

Chapter 7 provides a synthesis and overview of each section of this research. It brings 

together the findings and the implications for future management, with a particular 

focus on common scoter and addressing species decline.  
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CHAPTER 2: STUDY AREA, SITE SELECTION AND METHODS 

 

2.1 Overview  

This chapter provides a description of the study area, the Flow Country in Northern 

Scotland and an overview of the types of open water bodies it contains. Chapter 3 

details the abiotic and biotic characteristics of each of the study sites; the current 

chapter therefore focuses on descriptions of the wider Flow Country area and details 

how the study sites were selected. Details of the field and laboratory methods used 

in this thesis are provided; generic numerical methods such, as data manipulation 

and transformations are included here, whilst details of specific analytical techniques 

are provided in the methods section of the relevant results chapters. 

 

2.2 Study Area 

Peatlands are important habitats that not only support a distinct and increasingly 

rare flora and fauna, but also provide a range of unique and valuable ecosystem 

services (Joosten and Clarke, 2002). Freshwater lakes within peatlands are 

understudied and overlooked, despite these acidic, low nutrient systems being home 

to a number of rare and priority freshwater species (Baars et al., 2014; Drinan et al., 

2013b). Oligotrophic lochs and many of the species inhabiting them are protected 

and prioritised at both a national (UK BAP priority habitat) and international level 

(Annex 1 of the EU Habitats Directive 92/43/EEC) making them a priority for 

conservation management. Despite this there remains a paucity of data 

characterising these systems making informed management difficult.  

 

2.2.1 The Flow Country 

The Flow Country (Figure 2.1) extends across the counties of Caithness and 

Sutherland in north Scotland; it is a remote landscape in which low temperatures and 

high rainfall have led to the development of large areas (ca. 440,000 hectares) of 

blanket bog (Lindsay et al., 1988). The deep (up to 5m) peat, with its high water table 

is covered by vegetation dominated by species of sphagnum mosses including 

Sphagnum fuscum, S. rubellum, S.austinii, heather (Calluna vulgaris) and cotton 

grasses (Eriophorum vaginatum) (Coulson et al., 1995). Palaeoecological studies 



31 
 

indicate that the landscape was characterised by open woodlands of birch (Betula 

sp.), juniper (Juniperus sp.), hazel (Corylus sp.) and willow (Salix sp.) during the early 

to mid-Holocene but with the exception of a brief period of local pine forest growth 

(4,500-4,000BP) the landscape has been largely treeless since approximately 5,500BP 

(Charman, 1994). At 400,000 hectares (constituting an estimated 1.5% of global 

blanket bog extent) the Flow Country is considered one of the largest continuous 

expanses of this habitat to exist worldwide (Wilson et al., 2014). It is estimated to 

store approximately 400 million tonnes of carbon; more than twice that of all the 

UK's forests combined (Scottish Natural Heritage, 2014). The landscape supports a 

composition of flora and fauna unique in Britain, being more akin to the subarctic 

habitats of northern Europe. The Flow Country is interspersed with peatland pools 

and lochs which themselves support a range of rare and specialised wetland species 

(Coulson et al., 1995; Downie et al., 1998; Drinan et al., 2013a; Lindsay et al., 1988; 

Stroud et al., 1988). The Flow Country is a designated Ramsar site of international 

importance and is under consideration for UNESCO World Heritage Site status. 

Protection also includes a network of Sites of Special Scientific Interest (SSSI), Special 

Areas of Conservation (SAC) and Special Protection Areas (SPA). 

 

2.2.2 Flow Country lochs 

Interspersed throughout the blanket bog of the Flow Country are many stream 

networks, rivers and lochs. The streams and rivers flow from altitudes of 738m to sea 

level. Approximately 37% of the lotic systems flow through SSSIs (at the 1:125,000 

scale, SNH, 2001). Water passing through the Flow Country is classified as good 

quality (SNH, 2001), 80% flows through peatland and moorland/peatland habitats, 

10% through rough and improved grassland and 7% through coniferous plantation 

(SNH, 2001). The lochs of this region vary greatly in size (between 1 and 3371 ha) 

with a mean area of 40ha. In addition, there are a large number of small bog pools 

and hollows too small to be marked on 1: 50,000 scale maps. The lochs range in 

altitude between sea level and 543m and 29% of the total standing water in the area 

occurs within SSSIs (at the scale 1:125,000, (SNH, 2001)).  

SNH (2001) used data from the standing waters database and a classification 

developed by Palmer, (1992) to sub-categorise the loch types found in the Flow 
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Country based on their vegetation communities (Table 2.1); with the aim of 

quantifying the number of different loch types. Loch types 2 and 3 dominate the 

freshwater landscape of the Flow Country, few examples of the other loch types are 

present (Table 2.1).  

Vegetation-based loch classification systems can be transformed into loch trophic 

categories based on known links between aquatic plant communities and nutrient 

status. The majority of Flow Country lochs are classified as oligotrophic (82%), 

followed by dystrophic systems (15%). Less than 2% of Flow Country lochs are 

classified as mesotrophic or eutrophic (Table 2.2).  
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Loch 
Type 

 

Description from Palmer, (1992) 

Number of sites 
in the Flow 
Country 

1 Species-poor group, characterised by submerged Sphagnum 
and Juncus bulbosus, often accompanied by Potamogeton 
polygonifolius. Pools and small lochs on blanket bog in northern 
Scotland and a few pools on acid substrates in southern Britain 
are typical of this Type 

 

63 

2 Sites are typified by Juncus bulbosus and Potamogeton 
polygonifolius, along with Littorella uniflora, Lobelia 
dortmanna and Potamogeton natans. This Type includes peaty 
lochs in northern Scotland 

 

148 

3 Type 3 is distinguished from Type 2 by the higher incidence of 
Myriophyllum alterniflorum, Isoetes lacustris and Fontinalis 
antipyretica. These sites tend to be larger and rockier than Type 
2 sites and occur on base- poor rocks in Scotland. 

 

184 

4 Type 4 contains elements (e.g. Littorella unifora, Potamogeton 
natans and Myriophyllum alterniflorum) of Type 3, but in 
addition a number of plants such as Potamogeton filiformis, 
Potamogeton praelongus, Myriophyllum spicatum and Chara 
species are common.  

 

9 

5b The variant 5B consists of species-poor sites dominated by 
Potamogeton natans and Nymphaea alba 

1 

7 Although similar in many ways to Type 4 water bodies, Type 7 
sites usually lack a number of species such as Myriophyllum 
alterniforum and Juncus bulbosus. Lochs with a strong marine 
influence, on shell sand, limestone and Old Red Sandstone in 
northern Scotland, are typical of Type 7. 

 

1 

Table 2.1 Description and total number of each loch type (based on Palmer et al., 
(1992) lake classification) in the Flow Country, Scotland, from SNH (2001) 
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Trophic Category % lochs in the Flow Country 

Dystrophic 15 

Oligotrophic 82 

Mesotrophic <1 

Eutrophic <1 

Mixed Influences <2 

Table 2.2 Percentage of Flow Country lochs belonging to different trophic categories, 
from SNH (2001)  
 

2.3 Site Selection 

The overall aim of this research was to examine common scoter declines at Flow 

Country lochs; site selection therefore focused on lochs which currently or 

historically had records of breeding scoter. The analyses in this thesis are carried out 

at a number of different temporal and spatial scales, which are illustrated in Table 

2.3).  

 SPATIAL SCALE 

Flow Country 18 Lochs 4 Lochs 

TE
M

P
O

R
A

L 
SC

A
LE

 

Present day Chapter 4 

(Maxent SDM 

analysis) 

 

Chapter 3 

(Ordinations and 

GLMs) 

 

Chapter 4 

(GLMs within-loch and 

landscape) 

 

* 

1987 to 2014  Chapter 4 

(GLMs climate 

analysis) 

 

 

- 

 

 

- 

1850 and 

present 

 

- 

 

Chapter 5 

(Top-bottom analysis) 

 

* 

1850 to 

present 

 

- 

 

 

- 

Chapter 6 

(Big Ben 

analysis) 

*Four lochs included in the 18-loch analysis 

Table 2.3 The temporal and spatial scale of analysis in each thesis chapter 
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Chapter 3 focuses on contemporary data from 18 Flow Country lochs which were 

split evenly between the current and historic categories (identified in Table 2.4). 

Chapter 4 examines scoter loch use at two spatial scales, and two temporal scales. 

Analysis examining the relationship between annual climate variation and changes in 

scoter abundance is based on climate data for the whole Flow Country region; dating 

back to the late 1980s, when surveys of common scoter first began. Species 

distribution modelling in chapter 4 was based on present day data and covered 

almost the entire Flow Country (an area of approximately 100km2). Chapter 4 also 

examines the links between landscape features and within-loch variables at the 18 

lochs for which detailed survey data were available (from chapter 3). The top-bottom 

analysis in chapter 5 focuses on the 18 lochs at two points in time, firstly the present 

day (represented by the core tops) and secondly a period ca. 1850 (taken from the 

bottom of the core). Chapter 6 focuses on fine temporal change at a sub-set of four 

sites (selected from the original 18, and denoted with a * in Table 2.4 

 

Selection of the 18 study lochs 

The RSPB Forsinard reserve has been annually monitoring common scoter at 

approximately 100 lochs and pool systems since 2002; these data were combined 

with earlier more sporadic survey data and Rare Breeding Birds Panel (RBBP) records 

to identify sites used by common scoter. Approximately 40 lochs had been used by 

scoter either historically or post 1995, and of these very small pool systems were 

discounted as these were not likely to yield sediment suitable for palaeolimnological 

analysis. The remaining sites were categorised as either historic (recorded common 

scoter use prior to 1995) or current (records of scoter since the first surveys in the 

late 1980s) in terms of scoter use (Table 2.4). An equal number of historic and current 

breeding sites were selected for use in this study; the final selection of our 18 sites 

was based on those which i) had some existing environmental data (particularly 

relating to fish populations), ii) were set in a landscape setting typical of that found 

in the Flow Country (namely open bog (without forestry), plantation forestry or areas 

of deforested plantation) and iii) we could gain landowner permission to survey. The 

18 sites were spread across an area of 450km2 (Figure 2.1), including seven different 

landowners or estates. Seven of the lochs are set in an open bog setting, six are at 
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least partially surrounded by forestry and the remaining five have deforested area 

within close proximity (Table 2.3). The sites were all included in a recent study 

(Hancock et al., 2015; Hancock et al., in prep.) and therefore useful additional data 

were available concerning brown trout frequency. 

 

Selection of the 4 lochs 

Selection of the four sites that were the focus of Chapter 6 was primarily based on 

the lithostratigraphic data from the Glew cores taken in 2013 (chapter 5). Cores that 

demonstrated a conformable stratigraphy and a coherent XRF profile were 

prioritised. Secondly sites were also selected with contrasting scoter loch values. 

FEAR and LEIR are the two highest scoring sites that are frequently used by common 

scoter. AMHU has a mid-range SLV and TALA has a low SLV score.  

Chapter 6 aims to examine two theories for common scoter decline, namely possible 

changes in fish populations and the effects of plantation forestry. However, the 

reliability of fish data available at the time of writing was somewhat questionable, as 

there was evidence that several of the sites identified from rod and line surveys, 

(methods detailed in section 2.4.1.2) to be fishless were known to support fish (based 

on estate stocking data and trout fishing literature Hancock pers. comm., Sandison, 

2015). Indeed, for all of the lochs in which no fish were caught during rod and line 

surveys (BEUL, CLAC, DUGE, DUIN, and LOSG) there was evidence from other sources 

that fish were, in fact, present. Due to the ambiguity of the fish data the site selected 

had a range of fish densities rather than “no” fish.  

The four sites were set in a mixture of landscape settings bog (TALA), primarily bog 

small amount of forest (AMHU), bog with more substantial amount of forest (FEAR) 

and bog with areas of deforestation (LEIR).  
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Loch name 
(Loch code) 

Loch Type Brown Trout 
abundance 

(fish per rod hour) 

Catchment  
Area 
(ha) 

Dominant landcover 
types+  

(percentage of 
catchment) 

Loch a'Mhuillinn 
(AMHU)* 

Historic 2.7 470 Bog (94) 
Forestry (6) 

Lochan Beag Beul na Faire 
(BEUL) 

Current 0 6 Bog (100) 

Loch nam Breac 
(BREA) 

Historic 1.6 942 Bog (86) 
Forestry (14) 

Caol Loch 
(CAOL) 

Current 0.4 87 Bog (100) 

Loch nan Clach Geala-west 
(CLAC) 

Current 0 20 Bog (100) 

Lochan Croc nan Lair 
(CROC) 

Current 0.1 6 Forestry (53) 
Bog (47) 

 
Loch Culaidh 

(CULA) 
Current 0.5 25 Bog (100) 

Lochan Dubh Cul na Beinne 
(DUCU) 

Historic 5.2 96 Bog (100) 

Lochan Dubh Nan Geodh 
(DUGE) 

Historic 0 71 Bog (91) 
Forestry (9) 

Loch an Duine 
(DUIN) 

Current 0 30 Bog (100) 

Loch nam Fear 
(FEAR)* 

Current 0.3 22 Bog (68) 
Forestry (32) 

Grassie Loch 
(GRAS) 

Current 0.7 38 Bog (75) 
Deforested Area (25) 

Loch na h-Eaglaise Beag 
(HEBE) 

Historic 1.3 155 Bog (100) 

Loch na h-Eaglaise Mor 
(HEMO) 

Historic 0.8 437 Bog (100) 

Loch Leir 
(LEIR)* 

Current 2 96 Bog (91) 
Deforested area (9) 

Loch Losgann 
(LOSG) 

Historic 0 37 Bog (100) 

Loch Scye 
(SCYE) 

Historic 0.4 166 Bog (100) 

Loch Talaheel 
(TALA)* 

Historic 1.6 25 Bog (100) 

+ Terrestrial vegetation cover in the catchment based on CEH data Hughes et al. 2004 

* denotes sub-sites, chapter 6, 

Table 2.4 The full name and code of each study loch, together with brown trout 

densities (from rod and line surveys) and dominant landcover types 
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2.4 Methods 

2.4.1 Existing datasets 

Existing data on Flow Country lochs is sparse. However, it is the only area in Scotland 

for which routine and standardised monitoring of common scoter occurs. This thesis 

uses common scoter survey data, together with the limited amount of existing 

physico-chemical and biological data that is available. Records of common scoter loch 

use are vital to be able to understand decline and were provided by RSPB Forsinard 

reserve. Fish surveys conducted in 2010 and 2011 are particularly pertinent to issues 

of scoter decline as fish have been implicated as a possible cause of scoter decline 

both in the Flow Country and other British and Irish sites (Hancock et al.,2015, 

Partridge, 1987). These survey data were provided by RSPB and WWT. Aquatic 

macrophyte surveys were conducted by SNH at several of the study sites in the 

1980s, and are included to provide useful insights into the recent ecological 

conditions and potential change within the lochs. Data from the Centre for Ecology 

and Hydrology (CEH) lakes portal was used to characterise the catchments of the 

study lochs. 

 

2.4.1.1 Common Scoter surveys 

The first surveys of Common Scoter in the Flow Country were conducted in the late 

1980s and periodically throughout the 1990s predominantly by RSPB staff and 

volunteers. Although not standardised across many sites, the surveys did indicate a 

decline in breeding numbers that was confirmed by the national surveys of 1995 and 

2007. Annual standardised monitoring of common scoter breeding in the Flow 

Country has been organised by RSPB since 2002. Around 100 sites including lochs and 

pool systems in the Flow Country are visited on the same day during two key periods 

of scoter breeding season. Up to 3 coordinated “early” surveys are carried out 

between late April and the end of May when the birds are arriving and pairing. Up to 

three “late” surveys are carried out in July and early August during the brood 

rearing/fledging period. Each loch is surveyed following the methodology adopted 

for the national surveys (Underhill et al., 1998), with the entire loch being viewed 

from different vantage points and the number of males, females and pairs noted and 

the size of ducklings recorded.  
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These data are used in Chapter 3 to develop a scoter loch value; a relative measure 

of scoter use at each of the 18 lochs over the last 20 years. Scoter presence records 

for the entire RSPB survey area are used in Chapter 4 as part of the Maxent species 

distribution modelling analysis. 

 

2.4.1.2 Fish surveys 2010 and 2011 

No electrofishing data is available for any of the study sites, however, the fish 

communities of all 18 lochs were surveyed in 2010 and 2011 (between April and 

August) using standardised rod and line surveys by RSPB and WWT. Each loch was 

fished by the same individual for a total of five hours, the total length and weight of 

each fish caught was recorded; fish diet was assessed by examining the stomach 

contents of a number of the fish caught in 2010. Brown trout abundance per site are 

expressed as mean number of fish caught per rod hour. These data are presented in 

Chapter 3 and used in the ordinations of invertebrate and diatom communities and 

also in the general linear modelling analysis examining associations between scoter 

loch value and within loch characteristics. 

 

2.4.1.3 Macrophyte surveys 1986-7 

Aquatic macrophyte surveys were conducted at eight lochs in between 1986 and 

1987 by SNH staff. The surveys involved walking the shore of lochs and recording the 

presence of submerged, floating and emergent species and their abundance using 

the DAFOR (dominant, abundant, frequent, occasional and rare) scale. These data 

are presented in Chapter 3 and are used to examine the extent of recent macrophyte 

community change in the lochs by comparing them to surveys conducted during this 

research (methods detailed in 2.4.2.1.3). 

 

2.4.1.4 Catchment characterisation  

Data from the CEH lake portal database were used to determine the catchment size 

and dominant landcover types within the catchment of each study site. In this 

database catchment size is derived using a 50m resolution digital elevation model 

(DEM) (Hughes et al.,2004). For relatively flat, low gradient landscapes such as the 

Flow Country it is possible a 50m resolution DEM may not detect subtleties in 
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landscape topography and therefore under or overestimate catchment area. 

Detailed examination of these data, together with local knowledge and ground 

truthing, suggest that these data should be treated with some caution for more 

atypical landscapes such as the Flow Country.  

Similarly, landcover classification in the catchments is based upon LCM90 Landcover 

class (Fuller et al.,1994). This classification system attempts to separate out areas of 

“open dwarf shrub heath” and “bog, deep peat”, ground truthing suggests some of 

these delineations may be inaccurate for parts of the Flow Country, therefore in the 

current study these two categories are grouped as bog. In addition, areas categorised 

as “coniferous forestry” by the LCM90 Landcover class are in some instances now 

areas of deforested plantation, therefore these are renamed as deforested area 

based on ground truthing observations in the current study.  

 

2.4.2 Data collected in this research 

2.4.2.1 Field methods 

2.4.2.1.1 Palaeolimnological samples  

Short sediment cores were collected from the littoral zone of each of the 18 lochs 

using a Glew corer (7.4cm internal diameter, (Glew, 1991)), 16 sites were cored in 

October 2013, due to access constraints the remaining two sites (Loch nam Fear 

(FEAR) and Loch a'Mhuillinn (AMHU)) were not sampled until August 2014. The cores 

were sliced in the field at 1cm intervals, each slice was collected into a whirlpack bag 

and stored in a dark and cool location in the field until cold storage in the laboratory 

(Table 2.5 for core details). In Chapter 3 the modern, surface samples (1-2cm) from 

each loch were analysed to examine contemporary communities of diatoms (section 

2.4.2.2.5) and chironomids (section 2.4.2.2.6). In Chapter 5 lithostratigraphic (section 

2.4.2.2.2) and geochemical analysis (section 2.4.2.2.3) are carried out on each slice 

along the core. Community change is examined by undertaking a top-bottom 

approach whereby the community composition is determined for both a surface 

sample (representing the contemporary communities) and a sample from close to 

the base of each core (representing historic/pre-1850 conditions).  

A wide bore (8cm) piston corer, developed by the Environmental Change Research 

Centre at UCL and known as Big Ben (Patmore et al., 2014) was used to take cores 
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from four of the study lochs in April 2016. Cores were collected close to the location 

of the previous Glew cores (coring locations provided in Table 2.6) and were sliced 

into whirlpak bags on site at 0.5cm intervals. Samples were stored in a dark and cool 

location until return to the laboratory where they were placed in cold storage.  

 

Core Code Sampling 

date 

Grid Reference Water depth 

(m) 

Total core 

length 

(cm) 

AMHU_1 30/08/2014 ND0193641944 1.9 13 

BEUL_1 15/10/2013 ND0146147633 1.2 11 

BREA_1 18/10/2013 NC8260047766 2.9 21 

CAOL_1 15/10/2014 ND0250748316 1.7 17 

CLAC_1 17/10/2013 NC9354449409 1.8 20 

CROC_1 15/10/2013 ND0398845401 2.3 11 

CULA_1 17/10/2013 NC9322849594 1.3 23 

DUCU_1 12/10/2013 NC9845154325 1 10 

DUGE_1 13/10/2013 ND0602147731 1.5 16 

DUIN_1 14/10/2013 ND0444350747 2.2 21 

FEAR_1 30/08/2014 ND0250743151 1.8 11 

GRAS_1 13/10/2013 ND0314947050 0.7 15 

HEBE_1 16/10/2013 NC8544659030 1 7 

HEMO_1 16/10/2013 NC8605959840 1.4 18 

LEIR_1 13/10/2013 NC9562445888 1.7 14 

LOSG_1 14/10/2013 ND0263749929 1.6 14 

SCYE_1 12/10/2013 ND0046455251 3 31 

TALA_1 18/10/2013 NC9558848372 1 7 

Table 2.5. Details of the 18 cores taken from the study sites in October 2013 and 

August 2014 (AHMU_1 and FEAR_1) 
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Core Code Date Location Water Depth 

(m) 

Total Core Length 

(cm) 

AMHU_BB 20/4/15 ND 0183941930 1.7 48 

FEAR_BB 23/4/15 ND0251943170 1.8 33 

LEIR_BB 21/4/15 NC9566045883 1.6 48 

TALA_BB 22/4/15 NC9556448923 0.8 33 

Table 2.6. Details of the four Big Ben cores taken in April 2016 

 

2.4.2.1.2 Water Chemistry 

Measurements were taken at each site, including pH, conductivity and oxygen 

saturation along a depth gradient (50cm intervals). These measurements were taken 

using a Hach HQ40d multiprobe in October 2013. 

Water samples were collected for analysis at each of the sites at the same time as 

sediment cores were collected in October 2013. Water for analysis was collected in 

the field into two litre acid-washed bottles; upon returning to the field base the 

sample was sub-sampled into two smaller acid-washed bottles; a filtered and 

acidified sample (for DOC analysis) and an unfiltered, unacidified sample for anion 

and, cations analysis. The filter papers from each sample was retained, wrapped in 

foil and frozen for Chlorophyll A analysis. 

 

2.4.2.1.3 Macrophyte and bathymetry surveys 

Aquatic macrophyte surveys were carried out at all 18 study lochs between 17th 

August and the 5th September 2014. 16 of the lochs were surveyed by boat and the 

remaining two, Loch an Duine (DUIN) and Loch Losgann (LOSG), which are the 

smallest and remotest lochs, were surveyed by wading from the shore. Boat surveys 

covered the lochs by rough transects, with individual survey points being selected at 

random every 5-20m depending on loch size. Between 30 and 80 points were visited 

per loch. At each point a double-headed rake was thrown out to a distance of 

approximately 3 metres and dragged along the bottom of the loch to recover any 

macrophytes growing on the bottom. At some points, the water was clear and 

shallow enough to see to the bottom. At these points a bathyscope was also used to 
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survey plants growing on the bottom. For shore based/wading surveys the double-

headed rake was thrown out 3 metres into the loch and dragged back along the 

bottom. A bathyscope was also used where depth and water clarity permitted. 

At each sample point a record was made of water depth (using an Echotest 2 depth 

sounder) and sediment depth (determined by measuring the depth a long metal pole 

could be inserted into the sediment, at points where sediment depth exceeded the 

310cm measurable by our survey pole a depth of 310cm+ was recorded). Sediment 

types brought up on the end of the pole and/or rake or observed using the using the 

bathyscope were recorded; sediment was classified based on descriptions provided 

in Lake Habitat Survey methodology developed by SNIFFER (2008) (Boulder>256mm, 

Cobble 64-256mm, Gravel 2-64mm, Sand 0.06-2mm, Silt <0.06mm, Peat/organic). 

The presence of each sediment category was recorded at each point, not just the 

dominant sediment type. Macrophyte percentage cover and macrophyte species 

percentage composition was estimated based on material brought up by the rake 

and viewed through the bathyscope. Plants were identified to genus or species in the 

field except for charophyte and mosses which were collected for identification using 

a microscope. Charophyte and aquatic mosses were collected in the field and sent to 

experts Nick Stewart and Ambroise Baker for identification. 

 

2.4.2.2 Laboratory Analysis 

 2.4.2.2.1 Water chemistry 

Water samples and filter papers collected in 2013 were sent to the University of 

Nottingham for analysis of anions, cations (by ion chromatography), DOC 

(spectrophotometric method, following filtration and inorganic carbon removal) and 

Chlorophyll A (manual colorimetric method).  

 

2.4.2.2.2 Loss-on-ignition and wet density 

Dry weight and organic content analysis was performed on every slice of the 18 Glew 

cores and the four Big Ben cores. Methods followed Dean (1974) and weights were 

measured to four decimal places. 1-2g of wet sediment was weighed into a crucible, 

these were then placed in an oven overnight at 105˚C, the next day the samples were 
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reweighed to give a dry weight. The samples were then placed in a furnace at 550˚C 

for two hours and re-weighed providing the organic content. 

Wet density was calculated for every slice of the 18 Glew cores and the four Big Ben 

cores, the sediment was weighed in a 2cm3 brass vial to calculate grams of sediment 

per cubic cm (g/cm3). 

 

2.4.2.2.3 X-ray florescence 

Samples were frozen, freeze dried and ground into a fine powder prior to 

instrumental analysis. X-ray florescence (XRF) is a type of elemental analysis that 

allows quantitative determination of the geochemical composition of sediments. 

Samples of a known weight (between 0.5 and 3 grams) are bombarded with X-rays 

which effect the electrons present in the atom by displacing electrons from inner 

orbital shells. This causes movement of electrons from outer to inner shells to fill the 

gap. This process is known as fluorescence, the amount of energy released by 

electrons moving in this way is uniquely characteristic and also allows the elemental 

concentration to be determined (typically Si, Ti, Ca, K, Fe, Mn Cl, S, Nb, Ni, Pb, Rb, Sr, 

Zn and Zr). Each slice of all 18 Glew cores and the Big Ben core taken from Loch Leir 

were analysed by a Spectro XLAB2000 X-ray fluorescence (XRF) spectrometer. 

The heavy metal profiles from XRF analysis can be used to provide a rough estimate 

of the timescale covered by recent (1850-present) sediments in the core. 

Anthropogenic atmospheric pollutants (such as heavy metals Zn, Pb and Cu) 

deposited at lakes are rapidly taken up by sediments (Smol, 2008); heavy metal 

analysis of samples along the length of sediment cores can therefore provide a 

historic record of atmospheric pollution experienced by a lake and its catchment. The 

profile of heavy metal pollutants in recently deposited lake sediment follows a 

pattern similar to the schematic profile provided for SCPs in Figure 2.2 (from Rose et 

al., (1995)). Increases are typically observed from the period of the industrial 

revolution (c.1850) until pollution legislation was introduced in the 1970s (Rose et 

al., 1995); following which a reduction in atmospheric metal pollution occurred 

which can be observed in the profile. 
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Figure 2.2 Schematic spherical carbonaceous particles (SCPs) profile adapted from 

(Rose et al., 1995), ‘1850s’ -start of SCP record; ‘1950s’ rapid increase in SCP 

concentration; and ‘1970-1980’ subsurface peak, after which SCP concentration 

decreases  

 

2.4.2.2.4 210Pb Dating 

Radiometric dating was carried out on three of the 18 Glew cores (LEIR_1, CAOL_1 

and GRAS_1) and three of the four Big Ben cores (AMHU_BB, FEAR_BB, TALA_BB) by 

the Bloomsbury Environmental Isotope Facility (BEIF) at University College London. 

The methodology has been extensively used to date lake sediment samples and is 

based on measuring naturally occurring lead-210 (210Pb) radionuclides in addition to 

artificially produced Cesium-137 (137Cs) and Americium-241 (241Am) released by 

nuclear weapons testing and nuclear reactor accidents. The six sediment cores were 

analysed for 210Pb, 226Ra, 137Cs and 241Am by direct gamma assay using ORTEC HPGe 

GWL series well-type coaxial low background intrinsic germanium detector. Lead-210 

was determined via its gamma emissions at 46.5keV, and 226Ra by the 295keV and 

352keV gamma rays emitted by its daughter isotope 214Pb following 3 weeks storage 

in sealed containers to allow radioactive equilibration. Cesium-137 and 241Am were 

measured by their emissions at 662kev and 59.5kev (Appleby et al., 1986). The 
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absolute efficiencies of the detector were determined using calibrated sources and 

sediment samples of known activity. Corrections were made for the effect of self-

absorption of low energy gamma rays within the sample (Appleby et al., 1992). 

 

2.4.2.2.5 Diatom analysis 

Diatom analysis was carried out on samples from the top (1-2cm) and the base 

(between 5 and 27cm) of each Glew core. The four Big Ben cores (sliced at 0.5cm 

intervals) were analysed for diatoms down to a 10cm depth, as this was shown from 

radiometric dating to cover the key focus period of this study (1850-present day).  

Subsamples of approximately 0.01g (wet weight) were prepared from each slice 

following Battarbee et al.,(2001). Organic matter was removed from the samples by 

adding 5ml of 30% hydrogen peroxide (H2O2) and heating to 80oC in a water bath; 

the samples were monitored for several days until all organic material was removed. 

Any remaining H2O2 and any carbonates are eliminated from the sample by adding 1-

2 drops of hydrochloric acid (HCl). Samples were centrifuged for 4 minutes at 

1200rpm, following which the supernatant liquid was decanted off and the diatoms 

re-suspended in distilled water; this washing process was repeated four times. The 

cleaned diatom suspension was then diluted to a suitable concentration, coverslips 

were arranged on a metal setting out tray, away from sources of dust and air 

currents. 0.5ml of well mixed diatom suspended was added to each coverslip and 

allowed to dry. A drop of Naphrax was added to a slide and the dry coverslip inverted 

over the top; the slides were immediately heated on a hotplate (set to 130oC) to drive 

off the toluene and allow the slide to set. A known quantity of microscopic markers 

(divinylbenzenees microspheres) were added to the samples from the four big Ben 

cores (just before to slide mounting) to allow quantification of diatom concentration. 

Slides were examined using a phase-contrast microscope at 1,000x magnification, 

with identification based on (Camburn and Charles, 2000; Krammer and Lange-

Bertalot, 1986) 

Percentage abundance of diatom species was determined for the samples from the 

Glew cores by counting 200 diatom valves on each slide. Diatom accumulation rate 

could be determined for the Big Ben cores using the microsphere markers and 

determination of sediment accumulation rate from radiometric dating analysis; 300 
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valves were counted per slide and reported as valves per gram accumulated 

sediment (g cm-2 yr-1)  

 

2.4.2.2.6 Chironomid Analysis 

Samples for the top-bottom analysis were taken from the top (1-2cm) of each Glew 

core. The bottom sample was located several slices up from the bottom of the core 

(ranging from 5 to 27cm depth depending on core length). The Big Ben cores (sliced 

at 0.5cm intervals) were analysed down to 10cm depth (as radiometric dating 

demonstrated 10cm covered the key focus period of this study, 1800-present day), 

every slice down to 5cm and every other slice between 5-10cm. 

The chironomid analysis followed (Brooks et al., 2007), approximately 1-1.5 grams of 

wet sediment was heated to 70˚C in 10% Potassium hydroxide (KOH) solution for 

approximately 5 minutes. The sample was then sieved using 212um and 92um sieves. 

The resulting material from the two sieve fractions was examined by placing a small 

quantity at a time in a grooved sorting tray under x10 to x40 level magnification. 

Head capsules were removed using fine forceps into a vial containing 70% ethanol. 

Slide mounting the head capsules with euparal requires them to be progressively 

dehydrated from 70% ethanol to 100% ethanol to eurparal essence. Ten small dots 

of euparal were added to each slide, two head capsules were placed into each, 

positioned ventral side up, before placing a 6mm coverslip over each blob of euparal. 

Chironomids were identified to species morphotypes based on Brooks et al (2007), 

and Anderson et al (2013). A total of at least 50 heads per sample were identified 

from a known volume of sediment. For the Glew core sample concentrations are 

expressed as heads per gram of wet sediment, for the Big Ben cores sediment 

accumulation rate from radiometric dating analysis was used to determine the 

number of heads per gram of accumulated sediment (g cm-2 yr-1).  

 

2.4.2.2.7 Macrofossil Analysis  

Macrofossil analysis was carried on the four Big Ben cores, radiometric dating 

indicated that the top 10cm of the cores covered the period of interest, with much 

of the most relevant material (1950s-present day) being contained within the top 
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5cm. Samples were analysed from every slice (0.5cm intervals) down to 5cm depth 

and every other sample thereafter to a depth of 10cm.  

The quantity of sediment analysed was between 22 and 66g wet weight and 25 and 

40ml volume. The quantity was calculated by first filling a 100ml measuring cylinder 

to 50ml with tap water and placing on a tared balance (accurate to 0.001g). Sediment 

was then added and the final volume and weight of sediment added was noted. The 

material was then gently washed under the tap through a stack of two sieves (355um 

and 125um mesh size). The soft, peaty nature of the sediment meant it did not need 

pre-treating with 10% potassium hydroxide (as in Sayer et al., (2012)). The two 

resulting size fractions were then examined a small amount at a time in a square petri 

dish (with 1cm squares marked on the base of the dish to facilitate a methodological 

search) under a x10 – x45 zoom stereo microscope. An estimate of charcoal remains 

was determined for the coarse (355um) fraction of all samples; the total number of 

squares on the petri dish containing charcoal was determined and then the number 

of charcoal pieces within each square enumerated for at 10 randomly selected 

squares. The mean number of charcoal remains per square was multiplied by the 

total number of squares containing charcoal. This was divided by the amount of 

sediment (grams) analysed to give a comparable estimate of the total charcoal 

remains present in each sample Plant and macroinvertebrate remains were picked 

out using fine forceps and stored in glycerol in a 24-section sorting dish. Individual 

remains were identified by reference to literature (Birks, 2002) and the UCL 

macrofossil reference collection. Sediment accumulation rates from radiometric 

dating analysis was used to determine the number of macrofossil remains of 

accumulated sediment (g cm-2 yr-1). 

 

2.4.2.3 Numerical methods 

Details of statistical analyses are provided in the methods section of each chapter, 

preparation of data for use in these analyses is as follows.  

Data manipulation 

The aquatic macrophyte, water depth and sediment characteristics were recorded at 

30-70 points per loch (as detailed in section 2.3.2.1.3); calculations to provide single 

site scores for each of these metrics were carried out as detailed in Table.2.7. 
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Variable Determination 

Sediment score  

(0-1 scale) 

Sediment types (boulders, cobbles, gravel, sand, silt and 

peat) recorded at each survey point were given a score 

between 1-6 (from boulder to peat), according to decreasing 

in particle size. As more than one sediment type could be 

recorded at each survey point scores per point were 

standardised by dividing by the number of sediment types 

recorded. A loch sediment score was calculated by summing 

the standardised scores from each point and dividing by the 

total number of sampling points per loch. 

Proportion of loch 

below 1m depth 

(%) 

Bathymetry maps were produced from the water depth 

data, a contour plugin in QGIS (QGIS Development Team, 

2016) was used to interpolate the depths between survey 

points; from this the proportion of the loch less than 1m in 

depth could be determined by dividing the area of water less 

than 1m deep by total loch area  

Total area (ha) Established for each site using the area function in QGIS 

Mean/max depth 

(c)  

Average and maximum water depths recorded  

Percentage 

vegetation cover 

(%) 

Mean percentage cover 

Plant height (cm)  Mean macrophyte height  

Plant volume 

inhabited (PVI) 

PVI = area of macrophyte cover x plant height 

                                 Water depth 

Table 2.7 Description of how the loch metrics were calculated from the macrophyte 

and bathymetry surveys carried out in 2014  

 

 

 

 



51 
 

Data transformations 

Prior to statistical analysis the normality of each univariate variable was determined 

using the Shapiro-wilks test in R (R Core Team, 2016) and where necessary data was 

transformed to provide the closest approximation of a normal distribution (Table. 

2.8).  

Multivariate community datasets were assessed for normality in Canoco 5 (ter Braak 

and Smilauer, 2012) and transformation applied as detailed in Table 2.9 
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Variable Min Max Mean Transformation 

Sediment score (0-1 scale) 0.52 0.69 0.59 Natural Log 

Proportion of loch below 1m depth 

(%) 

17 100 60 None 

Total area (hectare) 3 34 13.3 Log10 

Mean depth (cm) 74 210 113 Log10 

Max depth (cm) 100 345 195 Log10 

DOC (ppm) 4.33 15.11 8.25 Natural Log 

pH  5.13 6.80 6.11 None 

Conductivity (us/cm3) 54.30 87.30 68.06 Natural Log 

Sodium (mg/L)  0.86 12.67 9.02 None 

Potassium (mg/L)  0.36 2.36 1.10 Square root 

Magnesium (mg/L)  1.37 2.95 1.95 Natural Log 

Calcium (mg/L)  5.10 7.67 6.12 Natural Log 

Chloride (mg/L)  2.35 17.09 11.62 Natural Log 

Nitrate (mg/L) 0 0.09 0.02 Square root 

Sulphate (mg/L)  0.47 2.95 1.56 Natural Log 

Mean brown trout caught per rod 

hour 

0 5.2 0.98 Square root 

Mean brown trout weight per site (g) 0 1986 235 Square root 

Chlorophyll A (ug/L) 0.3 5.0 1.6 None 

Mean chironomid head capsules in 

surface sediments (head capsules per 

gram wet weight) 

25 137 70 Square root 

PVI  0.08 11.91 3.97 Square root 

Percentage vegetation cover (%) 1.11 61.77 27.04 None 

Plant height (cm)  2.77 29.01 12.61 Square root 

Table 2.8 Data transformations and minimum, maximum and range of values for 

each loch univariate variable  
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Community 

dataset 

Data type Chapter Transformation 

Aquatic 

macrophytes and 

mosses 

Factor 

(present/absence) 

3 and 6 none 

Chironomid Abundance (per gram 

wet sediment 

3 and 5 Log (1*Y+1) 

Abundance (g cm yr) 6 Log (1*Y+1) 

Diatoms Percentage  3 and 5 Log (1*Y+1), rare 

species down-weighted 

Abundance (g cm yr) 6 Log (100*Y+1), rare 

species down-weighted 

Macrofossils Abundance (g cm yr) 6 Log (100*Y+1) 

Table 2.9 Data type and transformation of each multivariate dataset 
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CHAPTER 3 CHARACTERISATION OF PEATLAND LOCHS AND DEVELOPING 

HYPOTHESES FOR COMMON SCOTER (MELANITTA NIGRA) DECLINE  

 

3.1 Overview 

Chapter 3 is an exploratory data chapter which assesses the heterogeneity of Flow 

Country lochs by examining newly collected and existing survey data from 18 lochs. 

Ecological surveys are combined with chemical and physical data to characterise 

present day conditions within the lochs, and examine heterogeneity between lochs. 

Constrained ordination analysis is used to examine the factors structuring 

community composition within Flow Country lochs; analysis focuses on communities 

at different trophic levels, namely diatoms, macrophytes and invertebrates. The 

second part of this chapter builds on the initial loch characterisation by using these 

data to examine associations between within loch characteristics and common scoter 

loch use. The degree of scoter loch use is determined for each loch using long term, 

standardised survey data. A general linear modelling approach is used to determine 

significant associations and formulate hypotheses for common scoter decline.  

 

3.2 Introduction 

This chapter firstly aimed to establish current ecological conditions for 18 Flow 

Country lochs. The analysis was primarily based on newly collected data but also 

brought together data from other sources to characterise current conditions within 

Flow Country lochs. The physical structure of the lochs was examined using detailed 

bathymetry surveys and assessment of sediment composition at between 30-70 

survey points. The water chemistry of the lochs was established from field based 

measurements and laboratory analysis, and was used to establish the chemical 

characteristics of the lochs. Primarily newly collected data was used to examine the 

biological communities of the lochs, this was complemented by historic macrophyte 

data and fish survey data. Communities were assessed at different levels throughout 

the food chain including primary producers, such as algae and macrophytes, as well 

as primary and secondary consumers, such as invertebrates and fish. The 

relationships between the physical, chemical and biological loch properties were 

explored using multivariate analysis in an attempt to establish the degree of 
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similarity between lochs, and additionally identify the most pertinent drivers of loch 

ecology.  

The exploration of Flow Country loch ecology provides the basis for the second aim 

of this chapter which was to identify loch characteristics associated with common 

scoter loch use, to develop and refine hypotheses for decline. Whilst the sites were 

originally selected based on either current (post 2002) or historic (pre-1995) scoter 

presence (chapter 2), this chapter quantifies the importance of the lochs to scoter. 

Detailed survey data, dating back to the 1980s, is used to establish a relative scoter 

loch value for each of the 18 sites. This measure is based not just on presence or 

absence but the number of scoters using a site. This robust measure of a lochs 

importance to scoter allows an in-depth assessment of the associations between the 

degree of scoter loch use and within loch characteristics. Exploratory multivariate 

analysis using scoter loch value is formalised by a general linear modelling approach; 

which was used to identify statistically significant loch characteristics that are 

associated with common scoter use of Flow Country lochs. 

 

3.3 Methods 

3.3.1 Study Area  

This chapter focuses on the 18 lochs in the Flow Country, identified in chapter 2, 

section 2.2.1. 

 

3.3.2 Site selection 

The basis for site selection is detailed in Chapter 2, section 2.3. The 18 sites are split 

into two types, nine are current scoter lochs, with consistent records of breeding 

since the 1980s, and the remaining nine are historic scoter lochs, which had records 

of breeding in the late 1980s and 1990s but no records since 2002. The sites are set 

in a mixture of blanket bog, forestry plantation and deforested plantation. Further 

information concerning site selection is provided in chapter 2, section 2.3. The full 

loch names and four letter abbreviated loch codes are provided in Table 2.4. 

Hereafter this chapter uses the loch codes to denote the study sites. 
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3.3.3 Existing datasets 

All the common scoter data detailed has been collected and provided by RSPB 

Forsinard reserve. These data include standardised, annual surveys (since 2002) of 

ca. 100 lochs and pool systems in addition to one-off surveys in 1989, 1991 and 1996 

of a smaller number of sites (for survey methodology see 2.4.1.1).  

RSPB conducted brown trout surveys at the study lochs between 2009 and 2011. 

Details of field and laboratory methods for these surveys can be found in chapter 2, 

section 2.4.1.2.  

Historic macrophyte survey data is used to examine recent change in Flow Country 

lochs; the data used was gathered by SNH surveys conducted in the 1980s, the 

methods of which are detailed in 2.4.1.3.  

CEH data from the lakes portal, based on Hughes et al. 2004 is used to estaimte 

catchment area and landcover types. 

 

3.3.4 New data 

Aquatic macrophyte and bathymetry surveys were carried out in August 2014 (field 

methodologies detailed in 2.4.2.1.3). Water chemistry was determined both in the 

field in August 2014 (section 2.4.2.1.2) and by laboratory analysis (section 2.4.2.1). 

16 sediment cores were taken from the study lochs in October 2013 and two (from 

Loch nam Fear and AMHU) in August 2014 (2.4.2.1.1). The present-day community 

composition of diatoms and chironomids is determined from the analysis of 

sediments from the surface of these cores (see chapter 2.3.2.1 for field methods and 

2.4.2.2.4 and 2.4.2.2.5 laboratory procedures).  

 

3.3.5 Statistical analysis and data presentation 

3.3.5.1 The characterisation of 18 peatland lochs in the Flow 

Country 

Unconstrained or indirect ordination analysis is an effective method for exploring and 

visualising patterns in multivariate datasets (Gardener, 2014). In this chapter, 

ordinations are used to explore between-loch variations in communities of 

macrophytes, diatoms and chironomids as well as chemical and physical parameters. 

Principal component analysis (PCA) was used to investigate patterns in water 
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chemistry and macroinvertebrate and chironomid communities; detrended 

correspondence analysis (DCA) was used for diatom and aquatic macrophyte 

communities. A preliminary DCA (detrending by segments and non-linear rescaling) 

of each dataset was carried out in Canoco v.5 (ter Braak and Smilauer, 2012) to 

provide an estimate of the underlying gradient length or number of “standard 

deviation units” (SD). The choice of PCA or DCA was based upon the gradient length, 

narrow lengths (<2.5) are more appropriately analysed with PCA whilst assemblages 

whose variation covers a larger range (>2.5) are more effectively dealt with using 

DCA (Braak and Prentice, 1988). PCA ordinations were constructed based on a 

Euclidean distance matrix and DCA included detrending by segments.  

Unconstrained ordinations were also used to establish the extent and type of change 

in macrophyte communities in eight of the lochs for which historic data was available. 

The presence-absence data from the 18 surveys carried out in 2014 was first 

ordinated (DCA was selected based upon gradient lengths determined in Canoco v.5) 

and the historic survey data plotted passively onto the same ordination space. 

Historic and present-day data points were joined by a line, in this way patterns in the 

extent and direction of community change could be examined and compared for 

each site, and the relative position the current communities (which lacked historic 

data) could be determined.  

Constrained or direct ordination techniques such as redundancy analysis (RDA) and 

canonical correspondence analysis (CCA) are robust techniques for examining the 

structure of community datasets in relation to environmental variables (Legendre 

and Legrendre, 2012). The aim of these analysis in this chapter was to identify 

environmental variables that were exerting statistically significant influence on 

community composition. Environmental variables included in the constrained 

analyses were determined using a forward selection procedure, which used partial 

Monte Carlo permutation tests to identify the minimum adequate predictor variables 

that explain assemblage variation. Variables were included up to a p-value of 0.1. 

Gradient lengths were again used to determine whether linear (RDA) or unimodal 

(CCA) was the most appropriate choice of constrained ordination. In community 

datasets, rare species can exert a disproportional influence on the axis scores, and 

therefore rare species were down weighted to counter this. Community datasets 
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were transformed as detailed in Table 2.8. All ordination analyses were carried out 

in Canoco v.5 (ter Braak and Smilauer, 2012).  

The degree of association between water chemistry variables was explored using a 

correlation matrix (produced using the corrplot package in R (R Core Team, 2016). 

Chironomid and diatom communities and macrophyte percentage cover at depths 

are illustrated using the software package C2 (Juggins, 2007) .  

 

3.3.5.2 Developing hypotheses for common scoter decline using 

general linear models  

General linear models (GLMS) were used to examine the loch characteristics 

associated with common scoter loch use. GLMs are tools which can be used to assess 

the relationships between a single response variable (common scoter loch use) and 

a number of potentially significant explanatory variables (environmental/habitat 

characteristics). General linear modelling was carried out in R core software and 

related figures produced using ggplot package (Wickham, 2009). Details of how the 

response and explanatory variables were formulated are detailed below. 

 

Response variable (common scoter loch value) 

Females are the most appropriate measure of a population’s reproductive potential 

and therefore were chosen for scoter loch value determination. Deriving an unbiased 

response variable for GLMs can be difficult. Simple site averages will be confounded 

by between-year declines and incomplete site coverage across years. The behaviour 

of females in the Flow Country between April and August each year falls in three 

distinct periods. Firstly, there is the period between arrival in April/May and ca. mid-

June when females are highly visible, spending much of their time in larger groups 

and later in pairs, courting and mating. The second phase takes place between June 

and July when the females become much less visible, as they spend the majority of 

the time nesting and incubating. In the final stage between the middle of July and 

late August only females who have incubated successfully can be observed with 

broods on the lochs. During the incubation period females spend much less time on 

the lochs and are likely to be undercounted. During the brood rearing period only 

successful females will remain and their loch use will be somewhat constrained by 
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the mobility of their ducklings. The period when the females first arrive and are 

pairing/mating was therefore considered the most suitable measure of loch value, as 

birds are unlikely to go uncounted and are able to spend time at the most profitable 

sites. Counts of females during this period of the year, for years between 1989 and 

2014 were used to provide a relative measure of common scoter loch use since 

declines are thought to have begun in the 1980s. The scoter loch value (SLV) does 

not represent the degree of change a site during this time. This is because it is difficult 

to confidently attach a value for overall change to a site where the total bird number 

is so consistently low (commonly 1-2 birds per site per year, maximum 4-6 birds at 

ca. three sites) and where birds are known to move between sites during the year. 

The current and historic classification used in Hancock et al.,2015 was used to ensure 

that the study sites were equally split between those with continuing use and those 

which had been abandoned. However, in relation to interpreting the findings of the 

present study a relative measure of SLV was considered more appropriate than either 

the current or historic classification or a less robust indictor of change. By using SLV 

this study is able to establish a relative measure of a lochs importance to scoter, this 

can then be considered in relation to both contemporary conditions (Chapter 3) and 

recent environmental change (Chapters 5 and 6). These data can then be used to 

explore why particular lochs are associated with consistent use by a large number of 

birds while others are occupied less frequently.  

The maximum count of female common scoter during the period between April 1st 

and 15th June for each of the 18 study lochs was determined each year between 1988 

and 2014 from data provided by RSPB Forsinard reserve. Years in which more than 4 

out of 18 sites had missing values were removed. The years 2009-2011 were also 

excluded as the data for this period additionally included multiple uncoordinated 

visits that were not readily separable from the coordinated count data and therefore 

the likelihood of birds being double counted (if they moved between sites on 

different days) increased. 11 years of count data was included in the scoter loch value 

calculation; missing counts for the 18 sites (n=23 out of 304 site-year combinations) 

were imputed using TRIM 3.53 software (Pannekoek and Strien, 2001), with a time-

effects log-linear model, accounting for serial autocorrelation and over-dispersion, 

and converted into integers (Table.3.1).  
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To derive an overall value of each loch for scoters, a general linear mixed model was 

run with the annual maximum scoter counts by loch as response variable, no 

explanatory variables, and loch as a random intercept, assuming a Poisson 

distribution and log-link function. The site random intercepts were then extracted to 

be used as the scoter loch value. This approach was preferable to simply taking the 

mean count (which assumes a normal distribution), because the scoter data are a 

Poisson distributed sample of counts from an effectively random selection of years.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



61 
 

Site 

code 1988 1991 1995 1996 2003 2004 2005 2007 2012 2013 2014 

SLV 

FEAR 1 2 2 4 0 2 2 2 3 1 1 1 

CROC 2 5 2 0 3 3 3 1 3 4 2 0.99 

GRAS 1 3 2 6 3 1 5 3 2 4 2 0.97 

BEUL 2 6 4 0 2 4 3 4 2 2 2 0.96 

LEIR 1+ 3 6 2 3 1 1 1 2 2 2 0.95 

CLAC 1 0 2 2 2 1 1 2 1 1 0 0.87 

CULA 1+ 3 4 0 1 0 0 6 1+ 0 0+ 0.83 

LOSG 2 0 0 0 0 0 2 0 0 1 1 0.53 

AMHU 1 0 0 0 0 1 1 0 0 0 0 0.5 

CAOL 1 0 2 0 0 0 0 0 0 0 0 0.47 

DUGE 0 1 1 0 0 0 0 0 0 0 0 0.47 

DUIN 0 0 0 0 0 0 0 1 1 0 0 0.42 

HEBE 3 1 0 0 0 0 0 0 0 0 0 0.38 

SCYE 0 2 0 0 0 0 0 0 0+ 0 0+ 0.32 

TALA 1 0 0 0 0 0 0 0 0+ 0 0+ 0.24 

HEMO 1 0 0 0 0 0 0 0 0 0 0 0.14 

BREA 0 0 0 0 0 0 0 0 0+ 0 0+ 0 

DUCU 0 0 0 0 0 0 0 0 0 0 0 0 

Total 

females 18 26 25 14 14 13 18 20 15 15 10 

 

Total 

sites 13 9 9 4 6 7 8 8 8 7 6 

 

Table 3.1 The maximum number of female common scoter recorded at each loch 

prior to the 15th June for selected years used in the scoter loch value (SLV) 

calculation. Strength of colour based on number of females present. Bold highlight 

with + indicates an imputed value from TRIM analysis.  
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Explanatory variables (physical, chemical and biological within loch 

characteristics) 

The explanatory variables used in the GLM related to the characteristics of the lochs 

and were initially categorised as physical, chemical or biological. A correlation matrix 

was used to identify collinearity (Pearson’s R > ±0.4) between each category of 

variables. When collinearity occurred the most biologically relevant variable were 

retained.  

 

General linear model refinement 

Following removal of collinear variables as described above, the number of potential 

explanatory variables was still high (11) when compared to the number of 

observations (N = 18 sites) (Zuur et al., 2009). Therefore, three sub-models were 

used, focusing on chemical, physical and biological explanatory variables. Each of 

these models was simplified using step wise deletion of the least significant variable 

(determined using the drop1 function in R). Non-significant interactions were deleted 

first and any variables included in a significant interaction were retained even if the 

variable was non-significant as a main effect. A final minimum adequate sub-model 

was reached when all remaining interactions and main effects were significant. 

Overly stringent sub-model refinement could have resulted in significant interactions 

being overlooked in the final model, therefore sub-models retained variables 

significant at <0.1. Two-way interactions were permitted but not higher-level 

interactions (due to the difficulty posed in ecological interpretation). The significant 

interactions and main effects from each sub-model were carried forward into the 

final model, which followed the format Table 3.2(a). This final model was refined in 

the same way, using drop1 and F-ratio, to identify the minimum adequate model 

Table 3.2(b). The final model retained variables significant at <0.01. 
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(a) Scoter site value ~ DOC+ Percentage cover + Fish abundance +sediment score: 

proportion of the loch below 1m+Percentage cover: abundance of chironomid head 

capsules 

(b) Scoter site value ~ DOC + sediment score: proportion of the loch below 1m 

Table 3.2 The structure of the overall model produced from the three sub-models 

(a) and the final minimum adequate model following refinement (b) 

 

3.4 Results 

3.4.1 The characterisation of 18 peatland lochs in the Flow Country 

 3.4.1.1 Sites overview 

The 18 study sites are all located in upland blanket bog; altitude ranges from 110 to 

190m asl. The catchments include a mixture of open bog, plantation forest and 

cleared forest. The surface area of the lochs ranges from 3 to 34 hectares and depth 

from 1 to 3.8 metres. The underlying geology of the sites includes sandstone and 

igneous rock types (Table 3.3). The geographic location and description of each loch 

is provided in Figures 3.1 to 3.18. 
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Loch Name Loch 

Code 

Grid 

Reference 

Surface 

Area 

(ha) 

Max 

Depth 

(cm) 

Altitude 

(m asl) 

Geology 

Loch a'Mhuillinn AMHU ND018422 22 230 140 Sandstone1 

Lochan Beag Beul na faire BEUL ND015476 3 140 190 Sandstone1 

Loch nam Breac BREA NC827479 29 345 180 Sandstone2 

Caol Loch CAOL ND025486 17 320 150 Sandstone1 

Loch nan Clach Geala CLAC NC932496 4 180 190 Sandstone2 

Lochan Croc nan Lair CROC ND039452 12.5 255 140 Sandstone1 

Loch Culaidh CULA NC863390 11 190 130 Sandstone2 

Lochan Dubh Cul na 

Beinne 

DUCU NC984544 7 110 180 Igneous3 

Lochan Dubh Nan Geodh DUGE ND060478 34 190 130 Sandstone1 

Loch an Duine DUIN ND044507 4 110 110 Sandstone1 

Loch nam Fear FEAR ND025431 9.5 180 170 Sandstone1 

Grassie Loch GRAS ND030469 7 100 150 Sandstone1 

Loch na h-Eaglaise Beag HEBE NC854590 11 130 140 Sandstone2 

Loch na h-Eaglaise Mor HEMO NC861599 15 220 140 Sandstone2 

Loch Leir LEIR NC955458 9.4 175 170 Igneous3 

Loch Losgann LOSG ND026500 3 140 140 Igneous3 

Loch Scye SCYE ND006554 35 380 160 Igneous3 

Loch Talaheel TALA NC955489 6 120 180 Igneous3 

1. Lower old red sandstone-conglomerate sandstone, siltstone and mudstone, 2. Middle old red 

sandstone-conglomerate sandstone, siltstone and mudstone, 3. Igneous (felsic rock) extrusion 

Table 3.3 Location and physical characteristics of the 18 study lochs in the Flow 

Country 
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Loch a'Mhuillinn (AMHU), 

ND018422  

 

Loch AMHU is owned by the 

Dalnawillin estate and covers an 

area of 22 hectares. It reaches a 

maximum depth of 2.3m; 30% of the 

loch is less than 1.5m deep (Figure 

3.2(A)). Its shoreline morphology 

includes sandy bays at both its north 

and south ends (Figure 3.1). The 

sediment of this loch is a mixture of 

boulders, cobbles, sand and silt but 

is predominantly sandy (Figure 

3.34). The mean percent cover of 

aquatic macrophytes and mosses is 

11.5% (Figure 3.2(B)). The loch is also 

notable for Oreodytes alpinus a rare 

and protected species of water 

beetle, last recorded at this loch in 

2010. The land surrounding AMHU is 

predominantly open bog, the loch 

has a track running along is eastern 

edge. Examination of aerial imagery 

from both the 1950s and more 

recent google earth images indicates 

drainage ditches being a common 

feature of land to the west of AMHU 

 

(A) 

 

(B) 

Figure 3.1 Loch a'Mhuillinn (AMHU), (A) 

1940s aerial photograph (National 

Collection of Aerial Photography (NCAP), 

1940), (B) Present day aerial image (Bing 

Aerial, 2017) 
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(A) (B) 

Figure 3.2 Loch a'Mhuillinn (AMHU) (A) Loch bathymetry, 2015 (contours in cm) 

and (B) Percentage macrophyte cover, 2015 
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Lochan Beag Beul na Faire 

(BEUL), ND015476 

 

Lochan Beag Beul na Faire is a 

small (3 hectares) and shallow 

(maximum 1.4m) loch (Figures 3.3 

and 3.4). It is located on the RSPBs 

Forsinard reserve, to the east of 

the larger Skyline loch. Coniferous 

forestry was planted close to the 

east and south shores of Lochan 

Beag Beul na Faire in the 1985 but 

was later felled in 2003. The 

sediment of this loch is 

predominantly sand, silt and peat 

(Figure 3.34), mean percentage 

macrophyte cover is 45% (Figure 

3.4(B)).  

 

 

 

 

 

 

 

 

 

 

 

 

 

(A) 

 (B) 

Figure 3.3 Lochan Beag Beul na Faire (BEUL), 

(A) 1940s aerial photograph (National 

Collection of Aerial Photography (NCAP), 

1940), (B) Present day aerial image (Bing 

Aerial, 2017) 
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(A) (B) 

Figure 3.4 Lochan Beag Beul na Faire (BEUL), (A) Loch bathymetry, 2015 (contours 

in cm) and (B) Percentage macrophyte cover, 2015 
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Loch nam Breac (BREA), NC827479 

Loch nam Breac is a large deep loch 

on the west side of the RSPB 

Forsinard reserve. It covers an area 

of 29 hectares and reaches 3.45m in 

depth (Figure 3.6 (A)). The outflow 

of this loch (on the north east 

corner) has a weir controlling its 

outflow. Much of the west side of 

Loch nam Breac was planted with 

coniferous forestry in the 1986 and 

remained present at the time of the 

present study (Figure 3.5). The 

dominant sediment types in this 

loch were hard cobbles, boulders 

and gravel (Figure 3.34); mosses 

were more commonly recorded at 

this site than macrophytes with 

Fontinalis squamosa being the most 

commonly recorded moss (Table 

3.8). The mean percent cover per 

sample point for this loch was just 

6%, considerably lower than at 

other sites surveyed during this 

study. 

 

(A) 

 

(B) 

Figure 3.5 Loch nam Breac (BREA),, (A) 

1940s aerial photograph (National 

Collection of Aerial Photography (NCAP), 

1940), (B) Present day aerial image (Bing 

Aerial, 2017) 
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(A) (B) 

Figure 3.6 Loch nam Breac (BREA), (A) Loch bathymetry, 2015 (contours in cm) and 

(B) Percentage macrophyte cover, 2015 

 

 

 

 

 

 

 

 

 



71 
 

Caol Loch (CAOL), ND025486 

The Gaelic word Caol means 

long/thin, which aptly describes 

the shape of Caol Loch (Figure 

3.7). It covers an area of 17h and 

reaches a maximum depth of 

3.2m (Figure 3.8). Caol loch, is 

part of the RSPB Forsinard Flows 

reserve and to the north is a large 

expanse of open and unmanaged 

blanket bog. The land cover to 

the south includes areas of 

deforestation, remaining 

plantation and other waterbodies 

located to the south of the 

railway line. Caol Loch had the 

most diverse macrophyte 

community of the 18 sites (Table 

3.7). At the south end of this loch 

before the outflow, the loch 

becomes very shallow and is 

dominated by Juncus and 

Equisetum species. There is 

evidence of historic fishing at the 

loch with two small fisherman’s 

lodges close to the south end of 

the loch.  

 

(A) 

(B) 

Figure 3.7 Caol Loch (CAOL), (A) 1940s aerial 

photograph (National Collection of Aerial 

Photography (NCAP), 1940), (B) Present day 

aerial image (Bing Aerial, 2017) 
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(A) (B) 

Figure 3.8 Caol Loch (CAOL), (A) Loch bathymetry, 2015 (contours in cm) and (B) 

Percentage macrophyte cover, 2015 
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Loch nan Clach Geala-west (CLAC), 

NC932496 

 

This long, shallow loch is located 

between a larger deeper loch to the east 

and several smaller lochs and pool 

complexes to the west and north (Figure 

3.9). The deepest point of this loch is at 

1.8m and is 4 hectares in size. There was 

an area of forestry plantation to the west 

of this loch. As part of the RSPB reserve 

this loch has restored bog to its west. 

Mean percentage cover at Loch nan 

Clach Geala-west was 36% (Figure 3.10) 

common macrophytes included Juncus 

bulbosus and Lobelia dortmanna (Table 

3.7) 

(A) 

 

(B) 

Figure 3.9 Loch nan Clach Geala-west 

(CLAC), (A) 1940s aerial photograph 

(National Collection of Aerial 

Photography (NCAP), 1940), (B) Present 

day aerial image (Bing Aerial, 2017) 
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(A) (B) 

Figure 3.10 Loch nan Clach Geala-west (CLAC), (A) Loch bathymetry, 2015 

(contours in cm) and (B) Percentage macrophyte cover, 2015 
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Lochan Croc nan Lair (CROC), ND039452 

 

The land surrounding Lochan Croc nan 

Lair has changed most dramatically out 

of the 18 study lochs, being now totally 

enclosed by coniferous forestry 

plantations 1985 (Figure 3.11). The loch 

is owned by the Summerleaze estate 

who stocked the loch with 5,000 Trout in 

2005 (M. Hancock pers. comm.). The 

dominant vegetation in this loch is 

aquatic mosses, including Sphagnum 

denticulatum, Sphagnum squarrosum 

and Warnstorfia fluitans (Table 3.6). the 

mean percentage cover was 37% (Figure 

3.12 (B)). The sediment in this loch is 

predominantly sand, silt and peat 

(Figure 3.34) and reaches a maximum 

depth of 2.56m (Figure 3.12 (A))  

 

(A) 

 

(B) 

Figure 3.11 Lochan Croc nan Lair 

(CROC), (A) 1940s aerial photograph 

(National Collection of Aerial 

Photography (NCAP), 1940), (B) 

Present day aerial image (Bing Aerial, 

2017) 
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(A) (B) 

Figure 3.12 Lochan Croc nan Lair (CROC), (A) Loch bathymetry, 2015 (contours in 

cm) and (B) Percentage macrophyte cover, 2015 
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Loch Culaidh (CULA), NC863390 

 

Lying less than 1km to the north of 

the considerably larger loch Ruthvan, 

Loch Culaidh is the most southerly 

situated loch in our study (Figure 

3.13). Owned by the Achentoul 

estate, the loch has a history of 

fishing; 5 trout were caught during 

the 2010-2011 surveys. The loch has 

a complex undulating shoreline 

shape, having a number of sandy 

bays, predominant aquatic 

macrophytes include Isoetids in 

shallow shoreline areas and large 

areas of floating Sparganium sp. in 

the centre (Table 3.7). The loch 

reaches a maximum depth of 1.7m 

with 55% being less the 1m deep 

(Figure3.14 (A)). The mean 

percentage cover recorded at Loch 

Culaidh was 50%, range 5-90% 

(Figure 3.14(B). 

 

(A) 

 

(B) 

Figure 3.13 Loch Culaidh (CULA), (A) 1940s 

aerial photograph (National Collection of 

Aerial Photography (NCAP), 1940), (B) 

Present day aerial image (Bing Aerial, 

2017) 
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(A) (B) 

Figure 3.14 Loch Culaidh (CULA), (A) Loch bathymetry, 2015 (contours in cm)  and 

(B) Percentage macrophyte cover, 2015 
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Lochan Dubh Cul na Beinne (DUCU), 

NC984544 

 

Lochan Dubh Cul na Beinne is one of 

two study lochs owned by the Shurrery 

estate, considerably smaller and 

shallower than neighbouring lochs 

Scye and Calium, Lochan Dubh Cul na 

Beinne has a simple shape and 

bathymetry (Figure 3.16). The loch 

itself is situated within a shallow 

depression in the landscape and has 

the remnants of a weir at its outlet, 

perhaps suggesting it had been deeper 

(Figure 3.15). 26 trout were caught at 

this loch in 5 rod hours in 2011, the 

highest recorded from any of the study 

sites. Typical macrophytes at Lochan 

Dubh Cul na Beinne included Isoetes 

lacustris, Littorella uniflora and 

Myriophyllum alterniflorum. Two 

species of Charophyte were recorded 

at the loch Chara virgate and Nitella 

flexilis agg. (Table 3.7) mean 

percentage cover at Lochan Dubh Cul 

na Beinne was 22% (Figure 3.16) 

 

(A) 

 

(B) 

Figure 3.15 Lochan Dubh Cul na Beinne 

(DUCU), (A) 1940s aerial photograph 

(National Collection of Aerial 

Photography (NCAP), 1940), (B) Present 

day aerial image (Bing Aerial, 2017) 
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(A) (B) 

Figure 3.16 Lochan Dubh Cul na Beinne (DUCU), (A) Loch bathymetry, 2015 

(contours in cm) and (B) Percentage macrophyte cover, 2015 
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Lochan Dubh Nan Geodh (DUGE), 

ND060478 

 

Lochan Dubh Nan Geodh is a large 

(34h) and fairly deep (1.9m) loch on 

the eastern edge of the study area, 

the south shore of this loch is planted 

with coniferous forestry plantations 

(Figure 3.17). Mean percentage cover 

at this loch was particularly low 

(Figure 3.18), only 3.3%, with most 

common species recorded species 

being mosses (Table 3.8). 52% of the 

loch is less than 1m deep (Figure 

3.18) and approximately 45% of 

sediment recorded was soft, sand, silt 

and peat (Figure 3.34). 

 

(A) 

 

(B) 

Figure 3.17 Lochan Dubh Nan Geodh 

(DUGE), (A) 1940s aerial photograph 

(National Collection of Aerial Photography 

(NCAP), 1940), (B) Present day aerial 

image (Bing Aerial, 2017) 
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( C ) (D) 

Figure 3.18 Lochan Dubh Nan Geodh (DUGE), (A) Loch bathymetry, 2015 (contours 

in cm) and (D) Percentage macrophyte cover, 2015 
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Loch an Duine (DUIN) 

 

Loch an Duine is located on some 

the most pristine bog in the Flow 

Country, towards the centre of the 

SSSI, it is a small and peat 

dominated loch located to the east 

of the larger loch a’Chiteadh (Figure 

3.10). Juncus bulbousus was the 

most frequently recorded 

macrophyte at this site (Table 3.7); 

the majority of the vegetation was 

Sphagnum mosses (Table 3.8). 

Shore based survey conducted at 

Loch an Duine in 2015, therefore no 

bathymetry or macrophyte cover 

maps were produced for this loch 

 

(A) 

 

(B) 

Figure 3.10 Loch an Duine (DUIN), (A) 1940s aerial photograph (National Collection 

of Aerial Photography (NCAP), 1940), (B) Present day aerial image (Bing Aerial, 

2017)  
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Loch nam Fear (FEAR), ND025431 

 

Loch nam Fear is the most productive 

loch for breeding common scoter in the 

Flow Country. The aquatic 

macrophytes of Loch nam Fear are 

dominated by Nitella flexilis agg. and 

the mean percentage cover was 42% 

(Figure 3.20). The loch is now 

surrounded by forestry to the north 

and east (Figure 3.19). Loch nam Fear 

reaches a depth of 1.8m, 44% of the 

loch is less than 1m deep. The outlet of 

this loch is located in the south west 

corner, with water levels controlled by 

a weir which has in recent times 

become broken, no longer performing 

its original purpose. Fish in this loch 

include brown trout and stickleback 

(RSPB data) 

 

(A) 

 

(B) 

Figure 3.19 Loch nam Fear (FEAR), (A) 

1940s aerial photograph (National 

Collection of Aerial Photography (NCAP), 

1940), (B) Present day aerial image (Bing 

Aerial, 2017) 
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(A) (B) 

Figure 3.20 Loch nam Fear (FEAR), (A) Loch bathymetry, 2015 (contours in cm) 

and (B) Percentage macrophyte cover, 2015 
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Grassie Loch (GRAS), ND030469 

 

Grassie Loch is a very shallow loch, 

with 100% of its area below 1m on 

depth (Figure 3.22). It lies between 

two larger and deeper lochs Garbh 

and Caise to the east and west and 

has the railway line running to the 

north (Figure 3.21). The three lochs 

are enclosed the south by plantation 

forestry. Grassie Loch has a number 

of small islands present in its centre 

on which gulls nest. The sediment of 

Grassie Loch is predominantly silt 

(Figure 3.34). Macrophyte species 

include Littorella uniflora, Lobelia 

dortmanna, Myriophyllum 

alterniflorum and mean percentage 

cover is 20% (Table 3.7). 

 

(A) 

 

 

(B) 

Figure 3.21 Grassie Loch (GRAS), (A) 

1940s aerial photograph (National 

Collection of Aerial Photography (NCAP), 

1940), (B) Present day aerial image (Bing 

Aerial, 2017) 
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( C ) (D) 

Figure 3.22 Grassie Loch (GRAS), (A) Loch bathymetry, 2015 (contours in cm)  

and (D) Percentage macrophyte cover, 2015 
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Loch na h-Eaglaise Beag (HEBE), NC854590  

 

Loch na h-Eaglaise Beag and Loch na h-

Eaglaise Mor are located in the north 

westerly quadrant of our study area, 5km 

from the nearest track. Similar to Loch 

Losgann and Loch an Duine these are 

considered to be amongst the least 

impacted sites in the Flow Country. Loch na 

h-Eaglaise Beag, is located 500m south west 

of Loch na h-Eaglaise Mor, and is smaller 

than its neighbour (Figure 3.23). It has a 

substrate more dominated by hard cobbles 

and gravel than silt and peat (Figure 3.34). 

The loch is shallow with a maximum depth of 

130 and proportion below 1m depth of 85% 

(Figure 3.24). From aerial imagery of the site 

a significant number of drainage ditches can 

be observed around Loch na h-Eaglaise Beag, 

indicating that despite its remote location it 

has been impacted by anthropogenic land 

use activities. Percentage cover at Loch na h-

Eaglaise Beag was low (mean 1%), most 

commonly recorded species was 

Potamogeton natans and Fontinalis 

antipyretica (Tables 3.7 and 3.8). 

 

(A) 

 

(B) 

Figure 3.23 Loch na h-Eaglaise Beag 

(HEBE), (A) 1940s aerial photograph 

(National Collection of Aerial 

Photography (NCAP), 1940), (B) 

Present day aerial image (Bing 

Aerial, 2017) 
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(A) (B) 

Figure 3.24 Loch na h-Eaglaise Beag (HEBE), (A) Loch bathymetry, 2015 (contours 

in cm) and (D) Percentage macrophyte cover, 2015 
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Loch na h-Eaglaise Mor (HEMO), 

NC861599 

 

Loch na h-Eaglaise Mor is one of a pair 

of lochs located on the north-west 

extent of the scoters Flow Country 

range; Loch na h-Eaglaise Mor is the 

most northerly study site and is the 

closest site to the sea (Figure 3.25). 

Loch na h-Eaglaise Mor is deeper and 

larger than Loch na h-Eaglaise Beag, 

with only 28% of the total area below 

1m in depth (Figure 3.26). The most 

frequently occurring macrophyte was 

Myriophyllum alterniflorum (Table 

3.7), with a mean percentage cover of 

9%. The DOC concentrations at Loch 

na h-Eaglaise Mor and Loch na h-

Eaglaise Beag were amongst the 

highest recorded at any of the study 

sites (Table 3.5). 

 

(A) 

 

(B) 

Figure 3.25 Loch na h-Eaglaise Mor 

(HEMO), (A) 1940s aerial photograph 

(National Collection of Aerial Photography 

(NCAP), 1940), (B) Present day aerial 

image (Bing Aerial, 2017) 
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(A) (B) 

Figure 3.26 Loch na h-Eaglaise Mor (HEMO), (A) Loch bathymetry, 2015 (contours 

in cm) and (D) Percentage macrophyte cover, 2015 
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Loch Leir (LEIR), NC955458 

 

Loch Leir is located on the RSPB 

Forsinard flows reserve; the remains 

of the forestry plantations can be 

seen on the recent Google Earth 

image to the north and west of the 

loch (Figure 3.27). To the south east is 

a bog pool complex. The forestry was 

planted in 1985 and was amongst the 

first to be felled in 2003. Loch Leir 

reaches a depth of 1.7m with 48% 

below 1m (Figure 3.28). Aquatic 

macrophytes in this loch are Isoetes 

lacustris, Littorella uniflora and 

Lobelia dortmanna together with 

Subularia aquatica a species less 

common in Flow Country lochs. Mean 

percentage cover was 22%. 

 

(A) 

 

(B) 

Figure 3.27 Loch Leir (LEIR), (A) 1940s 

aerial photograph (National Collection of 

Aerial Photography (NCAP), 1940), (B) 

Present day aerial image (Bing Aerial, 

2017) 
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(A) (B) 

Figure 3.28 Loch Leir (LEIR), (A) Loch bathymetry, 2015 (contours in cm) and (D) 

Percentage macrophyte cover, 2015 
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Loch Losgann (LOSG), 

ND026500 

 

Located to the west of loch 

an Duine, Loch Losgann is 

slightly larger but also 

located in some of the most 

pristine blanket bog in the 

Flow Country, and 

surrounded by networks of 

small pools and lochans 

(Figure 3.29). LOSG has a 

similar sediment 

composition and aquatic 

macrophyte community to 

loch DUIN and has two 

species of moss not 

recorded at the other sites 

Riccardia chamedryfolia, 

Scapania undulata (Table 

3.8). A shore based survey 

was conducted at Loch 

Losgann in 2015, therefore 

no bathymetry or 

macrophyte cover maps 

were produced for this loch 

 

 

(A) 

 

(B) 

Figure 3.29 Loch Losgann (LOSG), (A) 1940s aerial 

photograph (National Collection of Aerial 

Photography (NCAP), 1940), (B) Present day aerial 

image (Bing Aerial, 2017) 
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Loch Scye (SCYE), ND006554 

 

Loch Scye is the largest (35h) and 

deepest (3.8m) study loch, located in 

the north-west area of Flows and 

owned by the Shurrery estate. It has 

large sandy bays located on its south 

and north west shores (Figure 3.30). 

Its inlet, located towards the 

northern end of the loch, flows 

through coniferous forestry 

plantations before entering Loch 

Scye. Fish at Loch Scye include brown 

trout and stickleback. It has a small 

fishing hut on its south shore and 

otters are also known to visit this loch 

as evidence by their spraints. Mean 

percentage cover at Loch Scye was 

24, and 34% is less than 1.5m deep 

(Figure 3.31). 

 

(A) 

 

(B) 

Figure 3.30 Loch Scye (SCYE), (A) 1940s 

aerial photograph (National Collection of 

Aerial Photography (NCAP), 1940), (B) 

Present day aerial image (Bing Aerial, 

2017) 
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(A) (B) 

Figure 3.31 Loch Scye (SCYE), (A) Loch bathymetry, 2015 (contours in cm) and 

(B) Percentage macrophyte cover, 2015 
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Loch Talaheel (TALA), NC955489 

 

Loch Talaheel is located on part of the 

Forsinard Flows nature reserve to the 

north of Loch Sletill (Figure 3.32). It is a 

small (4h), shallow (1.3m deep) loch which 

was 1985 surrounded by plantation 

forestry. The forestry was felled in 1999 

and was amongst the first to be removed 

by RSPB. The loch an inlet on its north-west 

side and an outlet to the south. Its 

sediment composition is dominated by 

sand, aquatic macrophytes include Isoetes 

lacustris, Juncus bulbosus, Littorella 

uniflora, Lobelia dortmanna and 

Myriophyllum alterniflorum (Table 3.7), 

mean percentage cover is 27% (Figure 

3.33). 

 

(A) 

 

(B) 

Figure 3.32 Loch Talaheel (TALA), (A) 

1940s aerial photograph (National 

Collection of Aerial Photography 

(NCAP), 1940), (B) Present day aerial 

image (Bing Aerial, 2017) 
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( C ) (D) 

Figure 3.33 Loch Talaheel (TALA), (A) Loch bathymetry, 2015 (contours in cm)  

and (D) Percentage macrophyte cover, 2015 

 

3.4.1.2 Physico-chemistry 

Bathymetry 

Overall the loch shorelines are characterised by steep sided steps down from the 

surrounding peat into shallow (<50cm) water and more gently sloping areas of 

shallow wave washed shores consisting of either sand or peat and small cobbles. The 

lochs are all shallow (only three reaching more than ca. 2.5m in depth). The 

bathymetry is typically gently sloping towards the centre or towards one end. The 

deepest loch is SCYE and the shallowest GRAS (Figure 3.34) 
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Figure .3.34 Maximum (blue bar), mean (orange bar) and interquartile range (text) of 

water depths recorded in the surveys of the 18 study lochs in 2015 

 

Sediment composition 

All six sediment types were identified in the study sites; sand and cobbles were 

present at all the sites as was peat and/or silt. Gravel and boulders were found at 

seven and nine of the 18 sites respectively. Sediment depth ranged from 0 to in 

excess of 310cm; sediment score gives an indication of the predominant sediment 

type recorded in the loch, the sediment composition of sites with low sediment 

scores are characterised by substrates with a larger particle sizes (boulders, cobbles 

and gravel) whereas sites with high scores are dominated by finer particle sediments 

(sand, silt and peat). Loch DUIN had the highest sediment score, followed by Lochs 

FEAR, CULA, and CROC; the largest and deepest sites (SCYE and DUGE) had the lowest 

sediment scores (Figure 3.35).  
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Water chemistry 

The pH range in August 2014 was pH 5.13-6.82 (Table 3.5) which is within the range 

for small, predominantly northern dystrophic peat pools dominated by Sphagnum 

species (categorised as type A by Duigan et al.,(2006)). The lochs with the lowest pH 

(DUIN and DUGE) also had the highest organic content in the surface sediments 

(measured as loss on ignition (LOI)). Conductivity range is 54.8 – 87.3 uScm-1 below 

the mean value for this lake type (120.10 uScm-1), but within the range (12.10 – 

530uScm-1, Duigan et al.,(2006)). The chlorophyll A range was predominantly below 

the mean value recorded for oligotrophic lakes, with the exception of GRAS (2.598 

ug/L) and LEIR (4.980 ug/L), both of which were below the maximum value for 

oligotrophic loch types (OCED, 1982). Dissolved organic carbon (DOC) ranged from 

4.33ppm to 14.72ppm with a mean of 8.30ppm. Dissolved oxygen (DO) ranged from 

12.44 – 13.21 mg/L; when measured at 50cm depth intervals during October 2013, 

the lochs were not stratified.  

Nitrate in the lochs was low (Table 3.6, 0.0-0.1 mg/L) as is typical of oligotrophic, 

acidic systems (Rydin and Jeglum, 2013). 

 

 

 

 

 

 

 

 

 

 



102 
 

Site 

Code 

pH Conductivity 

(us/cm3) 

DOC 

ppm 

DO 

(mg/L) 

LOI 

surface 

(%) 

Chlorophyll A 

(mg/L) 

AMHU 5.53 54.3 6.52 11.79 44.1 1.77 

BEUL 5.56 61.7 5.33 12.79 69.2 1.27 

BREA 6.1 59.1 10.78 11.56 76.5 1.62 

CAOL 6.7 77.8 6.20 12.68 35.0 0.62 

CLAC 5.8 56 4.33 12.86 53.9 1.04 

CROC 5.4 76.2 4.97 12.75 23.2 0.34 

CULA 6.8 69.5 4.57 12.54 56.7 1.89 

DUCU 6.8 57.6 15.11 12.84 15.8 1.14 

DUGE 5.2 87.2 5.10 12.75 86.6 2.23 

DUIN 6.8 82.2 6.89 12.65 83.7 1.03 

FEAR 5.13 72.3 6.38 11.63 56.4 0.37 

GRAS 6.8 87.3 9.41 13.21 39.2 2.60 

HEBE 6.4 64.4 14.72 12.51 16.0 0.64 

HEMO 6.58 71.9 14.10 11.69 38.3 1.97 

LEIR 6.2 62.2 9.37 11.71 41.0 4.98 

LOSG 5.4 56.5 8.87 12.54 33.8 1.64 

SCYE 6.7 73.7 5.99 12.53 33.0 2.08 

TALA 6.17 55.2 9.97 11.89 6.6 1.40 

Min. 5.13 54.3 4.33 11.56 6.6 0.34 

Max. 6.8 87.3 15.11 13.21 86.6 4.98 

Mean 6.115 68.1 8.30 12.38 45.0 1.59 

Table 3.4 Water chemistry recorded at the 18 study lochs in April 2015 
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Site 

Code 

Sodium 

mg/L 

Potassium 

mg/L 

Magnesium 

mg/L 

Calcium 

mg/L 

Chloride 

mg/L 

Nitrate 

mg/L 

Sulphide 

mg/L 

AMHU 9.5 1.2 1.9 5.8 11.3 0.01 1.4 

BREA 9.1 1.4 1.9 7.2 9.6 0 1 

BEUL 9.2 1.3 1.4 5.1 15.5 0.1 2.4 

CAOL 11.1 0.6 2.2 6.5 13.9 0.03 2.1 

CLAC 8.6 0.4 1.5 5.2 8 0.01 1.4 

CROC 11.4 1.2 2 6.2 15.8 0.02 2.7 

CULA 10.3 0.4 2 6.3 13.1 0.02 2.1 

DUCU 9.8 1.5 1.7 6.8 10 0.02 1.2 

DUGE 12.7 1.4 2 5.2 17.1 0.02 2.9 

DUIN 9.7 0.7 1.5 5.4 10.2 0.01 1.2 

FEAR 11.7 0.9 3 7.4 10.1 0.03 1.2 

GRAS 11.6 0.8 2.5 6.2 11.7 0.01 1.4 

HEBE 12.1 0.6 1.9 5.5 2.4 0 0.5 

HEMO 0.9 1.8 1.9 5.9 13.3 0 1.2 

LEIR 11.1 1.7 2.6 7 13.3 0 1.2 

LOSG 10.5 1 1.5 5.1 11.3 0.04 1.1 

SCYE 1.6 0.6 2 7.7 12.3 0.03 1.7 

TALA 1.7 2.4 1.6 5.7 10.4 0.04 1.5 

Min. 0.9 0.4 1.5 5.1 2.4 0.0 0.5 

Max. 12.7 2.4 3.0 7.7 17.1 0.1 2.9 

Mean 9.03 1.11 1.95 6.12 11.63 0.02 1.57 

Table. 3.5 Water chemistry, anion and cation analysis of water from the 18 study 

lochs  
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A correlation matrix of water chemistry variables from the study lochs is shown in 

Figure 3.36, significant (<0.01) correlations are highlighted. Strong positive 

correlations can be seen between calcium and both magnesium and pH. Sulphate 

and chloride show a strong negative correlation with DOC and are themselves 

correlated. There is also a significant negative correlation between nitrate levels and 

magnesium.  

 

Figure 3.36 Correlation matrix of water chemistry variables, significant positive (red) 

and negative (blue) statistically significant correlations are highlighted, the strength 

of the correlation is indicated by the strength of colour (scale on the right).  

 

Principle component analysis (PCA) was used to examine variation in the water 

chemistry at the 18 study sites. Closely positioned sites on the PCA have a similar 

water chemistry; PCA also highlights relationships between the variables, a small 

angle between variables indicates a strong correlation (Braak and Prentice, 1988). 

Figure 3.37 shows axes 1 and 2 of the PCA, Cl and SO4 are strongly correlated with 

one another and both are negatively correlated with DOC. Na and conductivity 
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appear correlated, although the correlation matrix (Figure 3.36) shows not 

significantly so. PCA analysis of the sites water chemistry reveals four distinct 

groupings (Figure 3.37). DUIN, HEBE, HEMO, DUCU and BREA are all positioned along 

the increasing DOC gradient. On the opposite side of the ordination space DUGE and 

CROC are located at low DOC concentration and high sulphate and chloride 

concentrations. LOSG, TALA, CLAC and AMHU have high potassium concentrations 

but are low in pH, conductivity, sodium, magnesium and calcium. BEUL is a slight 

outlier in this group demonstrating some nitrate influence. The remaining sites CULA, 

CAOL, FEAR, LEIR, SCYE and GRAS are grouped together with high scores for pH, 

conductivity and associated ions. 

. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.37 Axis 1 and 2 of a PCA of sites by water chemistry, potassium (K), dissolved organic 

carbon (DOC), pH, calcium (Ca), magnesium (Mg), conductivity, sodium (Na), chloride (Cl), 

sulphate (SO4) and nitrate (NO3) 
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3.4.1.3 Aquatic macrophytes 

Percentage cover  

Mean percentage cover at the sites ranges from <5 to 60% (Figure 3.38). Two of the 

largest, deepest lochs DUGE and BREA are amongst those with the lowest mean 

percentage cover; together with the two most northerly sites lochs HEMO and HEBE. 

The sites with the highest mean percentage cover (BEUL, CULA, FEAR and LOSG) are 

set in a mixture of landscape setting and have contrasting positions in the PCA of 

water chemistry characteristics. LOSG and BEUL are associated with lower pH, 

conductivity and higher NO3 and K, and FEAR and CULA with higher pH, conductivity 

and Mg, Ca and Na.  

Mean percentage macrophyte cover at different water depths is shown in Figure 

3.39. Sites with the highest macrophyte cover across all depth intervals are BEUL, 

CULA, FEAR and LOSG. Whilst AMHU, BREA, DUGE, and HEBE have the lowest mean 

percentage cover of less than 20% over all depth intervals. Although HEMO has one 

of the lowest overall mean percentage cover scores, examination of the different 

depth intervals reveals that at water depths between 0 and 0.5m mean percentage 

cover is approximately 60%. At eight sites (AMHU, BEUL, CAOL, BREA, CROC, FEAR 

and Loch LEIR) macrophytes are able to colonise the deepest parts of the lochs. At 

remaining 10 sites aquatic macrophytes are not able to colonise the deepest points 

in the lochs. Maximum macrophyte colonisation depth does not appear to be related 

to either loch area, maximum depth or landscape setting. Several of the largest and 

deepest lochs are able to support benthic macrophyte communities at their deepest 

points whilst in a number of small, shallow lochs macrophyte colonisation does not 

exceed 1-1.5m 
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Figure 3.38 Mean percentage cover recorded at each of the 18 lochs 
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Community Composition 

Species frequently occurring in the study lochs included Lobelia dortmanna, Littorella 

uniflora, Isoetes lacustris, Myriophyllum alterniflorum and Juncus bulbosus. 

Potamogeton species included P. natans, P. perfoliatus and P polygonifolius. Two 

charophyte species Chara virgata and Nitella flexilis agg. were also recorded in BREA, 

FEAR, and DUCU. FEAR was dominated by N. flexilis agg.; it was recorded at 59 out of 

70 survey points, with a mean percentage cover of 48%. (mode 100%) The most 

diverse aquatic macrophyte communities were at CAOL, CULA, and GRAS, whilst 

HEMO and HEBE had the lowest species diversity (Table 3.7). The macrophyte 

communities of CROC, LOSG and DUIN are typical of species poor, acidic pools and 

small lochs, dominated by Sphagnum and J. bulbosus and categorised by Palmer et 

al., (1992) as type 1. AMHU, BEUL, CAOL, CLAC, CULA, GRAS and TALA type 2 sites, 

peaty lochs with species of L. uniflora, L. dortmanna and P. natans. BREA, DUGE, 

HEBE, HEMO and SCYE have a higher occurrence of M. alternaflorum, I. lacustris and 

the moss F. antipyretica, they are larger and rockier and classified as type 3 by Palmer 

et al., (1992). SNH, (2001) identify a limited number of type 4 lochs in the Flow 

Country (9 out of 406 lochs), FEAR and DUCU belong to this group having a higher 

occurrence of Chara species, particularly Loch nam Fear which was dominated by N. 

flexilis agg.  

The macrophyte communities of CROC, DUGE and LOSG were dominated by aquatic 

mosses (Table 3.8). The most frequently recorded moss species were Sphagnum 

denticulatum (8 sites), Fontinalis antipyretica (7 sites) and Fontinalis squamosa (6 

sites). Two moss species were only recorded at a single site Sphagnum squarrosum 

(GRAS) and Rhytidiadelphus squarrosus (SCYE). BREA and LOSG contained four 

species of moss that were not recorded at any other sites Hygrohypnum luridum, 

Hypnum jutlandicum (BREA) and Riccardia chamedryfolia, Scapania undulata (LOSG). 

Similarities in macrophyte communities between lochs was explored using 

detrended correspondence analysis (DCA), axis 1 and 2 account for 69.3% of the 

variation community composition. With the exception of the outliers, HEBE (low 

macrophyte diversity), LOSG (moss dominated) and FEAR (dominated by N. flexilis), 

the 18 sites are difficult to differentiate, mostly being positioned towards the centre 
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of the ordination space, indicating much similarity in the types of macrophyte 

communities present at the lochs. 
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Factors structuring macrophyte communities 

Canconical correspondence analysis was used to examine the relationships between 

the lochs macrophyte communities and environmental variables. Forward selection 

procedure (section 3.3.5.1) identified mean fish weight, Ca and DOC as significant 

explanatory variables, accounting for a total of 24.8% of the variation observed in the 

macrophyte community.  

Charophytes Chara virgata and Nitella flexilis agg. are both associated with high DOC. 

The majority of the moss species are positioned on the left-hand side of CCA axis 1 

indicating they are associated with low Ca, DOC and fish weight. Two clear exceptions 

to this are Hygrohypnum luridum and Hypnum jutlandicum mosses associated with 

high DOC and Sphagnum squarrosum a species associated with high fish weight. 

Potamogeton species are associated with sites where fish weight is high. As a genus 

commonly associated with mesotrophic conditions, high fish weight and 

Potamogeton presence could indicate sites with higher nutrient levels and 

consequently productivity. The small growing species of Isoetids, Lobelia dortmanna, 

Isoetes lacustris and Litterella uniflora are also associated with low DOC which could 

be related to more light attenuation at these sites. 
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Recent change in macrophyte communities using historic data 

There is very little historic environmental data for the Flow Country lochs; in the late 

1980s Scottish Natural Heritage (SNH) conducted aquatic macrophyte surveys at 8 of 

the 18 study sites. Table 3.9 indicates changes in macrophyte species between 1987-

90 and 2014 surveys. The four sites with a scoter loch value (SLV) >0.5 have a mean 

of 6.75 species in the 1980s and a small decline to a mean of 5.75 species by 2014. 

Conversely in the low scoring scoter lochs (with SLV<0.5) an increase in mean number 

of species occurs between the 1980s survey and 2014, from 3.25 (1980s) to 5.25 

(2014). Species lost from lochs with high scoter value are P. natans, P. perfoliatus and 

P. Polygonifolius, J. bulbosus, Sparganium sp. and G. fluitans. Of the low scoring 

scoter sites, CAOL (SLV 0.47) saw the largest increase in species from four to nine, 

new species recorded in 2014 were S. aquatica, Sparganium sp., P. perfoliatus, P. 

natans and G. fluitans. This increase in species could suggest an increase in nutrient 

availability at CAOL. 

A DCA of macrophyte communities is shown in Figure 3.42, axes 1 and 2 account for 

a total of 42% of the variation in macrophyte community composition in 2014. Lochs 

with a low SLV are all moving in the same direction along axis 1 of the DCA whilst 

lochs with a higher SLV move in contrasting direction within the ordination space. 

CLAC and DUGE have undergone the smallest amount of change, both move along 

axis 1 but in opposite directions. The macrophyte communities of LOSG and CAOL 

have undergone the most change. 
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Potamogeton 

 polygonifolius 

Glyceria fluitans 

Sparganium sp 

Isoetes lacustris 

Juncus bulbosus 

Littorella uniflora 

Lobelia dortmanna 

Myriophyllum 

 alterniflorum 

Subularia aquatica 

Potamogeton natans 

Potamogeton 

 perfoliatus 

TOTAL 

YEAR 

SCOTER LOCH VALUE 

LOCH CODE 
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Figure 3.42 Axis 1 and 2 of a DCA ordination of macrophyte communities in 18 Flow 

Country lochs. 2014 survey data represented by coloured symbols, for the 8 sites 

where historic survey data was available the 1980s survey data has been plotted 

passively, the position of historic community composition is represented by the black 

circles 

 

3.4.1.4 Diatom communities 

Community composition  

Surface sediment samples from the 18 lochs were analysed for diatom remains. 

Whilst surface sediments may not represent a complete record of species present at 

the time of sampling (Battarbee et al., 2001) they represent a standardised approach 

which enables rapid comparisons between systems. Species that exploit different 

habitat niches will be represented as remains in surface sediments, using surface 

sediments is therefore an efficient way to compare communities across multiple 

sites. Diatoms form a key part of the trophic structure in lakes and are sensitive to 

habitat structure and water chemistry. Examining diatom communities can also 

provide useful insights into the physical and chemical characteristics of the lochs.  

A total of 94 diatom species were recorded in the surface sediment samples from the 

18 lochs, with an average of 24 species per loch (range 19-34). The 20 most frequently 
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recorded diatom species are illustrated in Figure 3.43. Fragilaria sensu lato dominate 

the diatom assemblages; species of Fragilaria exigua and Staurosira construens var 

venter were particularly abundant. Benthic species of Eunotia were also abundant in 

several sites (BEUL, CAOL CROC, DUGE, DUIN, LOSG and TALA). Planktonic species of 

Aulacoseria were absent from a number of the lochs (BEUL, LEIR and LOSG), and 

when present did not form a large proportion of the diatom community (typically 

making up <20% of the species).  

Patterns in diatom community assemblages between lochs were investigated using 

DCA. To clarify visualisation only the 16 most frequently occurring species are 

illustrated in Figure 3.44, axes 1 and 2 account for 86.4% of the total variation. Lochs 

HEBE and AMHU are somewhat separate from the other sites, both having 21 species 

recorded and are characterised by Fragilaria exigua. Similarly, lochs CAOL and SCYE 

are also separate, but with lower DCA axis 2 scores and are characterised by 

Achnanthes species and Pseudistaurosira. elliptica. BEUL, CLAC, CROC, DUGE, DUIN 

and LOSG form a distinct group and are characterised by Eunotia species, including 

E. incisa, E. rhomboidea and E. exigua. Diversity at these sites ranges from 22-28 

species. The remaining eight sites are somewhat difficult to separate, suggesting the 

diatom communities at these sites is relatively similar characterised by S. contruens 

var venter, Staurosirella pinnata, Gyrosigma sp., T. flocculosa, A. saxonica and 

Cavinula cocconeiformis.  
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Factors structuring diatom communities 

Canconical correspondence analysis (CCA) was used to examine the relationship 

between diatom communities and (forward selected) environmental variables with 

the aim of highlighting important determinants of community structure. Ca, DOC and 

percentage cover are all identified as significant explanatory variables accounting for 

13.4, 7.9, 6.9% of the variation respectively.  
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3.4.1.5 Chironomid communities 

Surface sediments from the 18 lochs were examined for chironomid head capsules, 

remains in these surface sediments represent the species inhabiting the loch at the 

time of sampling. This highly standardised methodology allows the abundance of 

chironomids and the community assemblages to be accurately compared across 

sites. Chironomids form an important link in the food chain with species acting as 

both grazers and predators. As a group, they are themselves a key prey items for a 

number of vertebrates including fish and waterbirds; chironomids are also sensitive 

to changes in habitat quality and water chemistry. Identifying patterns in chironomid 

abundance and community composition can therefore provide useful data for loch 

characterisation. 

 

Chironomid abundance 

Abundance of chironomid head capsules per gram of wet sediment is shown for each 

of the sites in Figure 3.46. The sites with highest abundance in their surface 

sediments are HEBE, CLAC, and CAOL. Ordinations from other variables indicate 

these sites are not particularly similar in terms of their physical or chemical 

characteristics, or their diatom of macrophyte communities. Similarly, no clear 

pattern is evident for the four sites with the lowest chironomid abundance (BREA, 

CROC, DUCU and LOSG) although the sites are amongst those with the lowest pH and 

highest fish abundance. 

 

Chironomid community composition  

A total of 72 chironomid morphotypes were identified. The 20 most frequently 

occurring chironomid morphotypes are shown in Figure 3.47. Psectrocladius 

sordidellus, a species typically associated with less eutrophic, acidic conditions (Pillot, 

2014) and the eurytopic morphotype Tanytarsus mendax were found at all 18 sites.  

Polypedilum nebeculosum, Ablabesmyia, Heterotanytarsus and Microtendipes 

pediullus were found at 14-16 of the 18 sites. Polypedilum nebeculosum are common 

in benthic sediments and sometimes amongst plants in less acidic and more 

mesotrophic conditions (Pillot, 2009). Orthocladius, Parakiefferiella and Cripotopus 

were rare, being found at only 1 or 2 sites.   
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PCA was used to explore patterns in chironomid community composition, to facilitate 

visualisation only the 20 most frequently occurring taxa are displayed in Figure .3.48; 

PCA axis 1 and 2 explain 45% of the variation in the chironomid communities. BEUL 

and CLAC are positioned somewhat separately in the ordination space, indicating a 

community composition at these sites that is distinct from the other 16 sites. The 

remaining sites are distributed across the ordination space, with no clearly distinct 

groups, indicating there is variation between lochs but no distinctly similar groups of 

chironomid communities 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.46 Mean chironomid head capsule abundance in the surface sediment of the 

18 lochs 
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Figure 3.47 Abundance per gram wet sediment of the 20 most frequently occurring 

chironomid species recorded in the tops of the sediment cores taken in October 2013 
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Factors structuring chironomid communities 

Redundancy analysis (RDA) was used to examine the patterns in chironomid 

community composition in relation to environmental variables. Significant variables 

were identified using forward selection, Mg, mean fish weight, DOC and percentage 

of deforested area within a 500m buffer of the loch were all identified as significant 

explanatory variables, in total explaining 41.4% of the community variation 
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3.4.1.6 Fish communities 

Fish can be an important top-down driver of loch ecology. Characterising the 

communities and abundance of fish within lochs is particularly relevant in studies of 

diving water birds as they are commonly competing for the same habitat and food 

resources. Although no fish stocking or electrofishing data was available for the lochs, 

brown trout and stickleback were surveyed in the 18 study lochs between 2009 and 

2011 in a study by RSPB; a total of 154 trout were caught in a total of 170 rod hours 

(two sites were not surveyed in 2010). The number of trout caught per loch in each 

5-hour survey ranged from 0 to 26 (Table 3.10). Fish were not caught at four of the 

18 lochs (BEUL, CLAC, DUIN and LOSG). However, evidence from other sources 

(predominantly related to recommendations for trout fishing) indicate that BEUL, 

DUIN and LOSG are known to contain trout (Sandison, 2015; Hall, 1884). The diet of 

brown trout caught in the study lochs was determined by examining the stomach 

contents of those caught and was found to consist of freshwater macroinvertebrates, 

predominantly Trichoptera larvae, Hemiptera adults, Plecoptera larvae, Bivalvia and 

chironomid larvae (M. Hancock pers. comm.).   
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Loch 

Code 

Number of 

Fish caught in 

5 rod hours  

Fish per 

rod 

hour 

Species recorded Mean weight 

 

2010 2011 

AMHU 20 7 2.7 Brown Trout 91.5 

 

BEUL× 0  0 0 Brown Trout 0 

BREA 12 4 1.6 Brown Trout 58.3 

 

CAOL 1 

 

3 0.4 Brown Trout, Stickleback 307.5 

 

CLAC 0   0 0 - 0 

CROC 0   1 0.1 Brown Trout 1986 

 

CULA 4 

 

1 0.5 Brown Trout, Stickleback 114.2 

 

DUCU * 26 5.2 Brown Trout 129.1 

 

DUGE× 0 0 0 Brown Trout 0 

DUIN× 0   0 0 Brown Trout 0 

FEAR 2 1 0.3 Brown Trout, Stickleback 446.7 

 

GRAS 4 

 

3 0.7 Brown Trout, Stickleback 178.0 

 

HEBE 8 

 

5 1.3 Brown Trout, Stickleback 271.3 

 

HEMO 6 

 

2 0.8 Brown Trout, Stickleback 192.9 

 

LEIR 11 

 

9 2 Brown Trout, Stickleback 97.6 

 

LOSG× 0   0 0 Brown Trout  0 

SCYE * 2 0.4 Brown Trout 259.5 

 

TALA 9 7 1.6 Brown Trout 95.0 

 

* No survey, × Other local knowledge on fish in this loch,  Stocked by estate with 5000 Trout in 2005 

Table 3.9 Results from the 2010 and 2011 fish surveys of the 18 study lochs (RSPB 

data) 
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3.4.1.8 Sites overview 

Whilst physically Flow Country lochs appear quite similar, in terms of bathymetry, 

maximum water depth and sediment types, examination of the chemistry of the 

lochs indicates four distinct groups associated with different chemical variables 

including pH and conductivity and DOC. Macrophyte cover in the lochs ranged from 

0 to 100% (mean 25%) and aquatic macrophytes have colonised the deepest parts of 

8 out of the 18 sites. Macrophyte species are typical of those associated with low, 

nutrient and acidic conditions; three lochs are categorised as type 1, seven type 2 

and six type 3, the remaining two are type 4 lochs (Duigan et al., 2006). Ordination 

analysis indicates that there is some overlap in species occurring at the lochs, with 

FEAR, HEBE and LOSG the only distinct outliers. Diatom communities of the study 

sites are again typical of acidic systems. However, there is some evidence of nutrient 

tolerant species occurring at some sites. Ordination indicates 3-4 distinguishable 

groups, with AMHU and HEBE particular outliers. Chironomid species observed in the 

surface sediments are typical of low cool, low nutrient lakes; abundance of 

chironomids was greatest in HEBE and lowest in DUCU. The chironomid communities 

are spread throughout the ordination space making differentiation of groups 

difficult, but HEBE is again a distinct outlier. Fish weight, DOC, Mg and deforested 

area explain a significant proportion of the variation in chironomid communities. Fish 

in the lochs include brown trout and stickleback, however the robustness of the rod 

and line survey data is somewhat questionable, as several lochs that recorded no fish 

are known to contain trout and are recommended for sports fishing. Despite this the 

fish data could give an approximate estimation of relative fish density within the 

lochs and mean fish weight was shown to be an influential variable explaining 

variation in chironomid communities. 

Figure.3.50 shows axis 1 and 2 of a PCA of summarising the within loch variables. The 

largest, deepest lochs (SCYE and DUGE) are positioned in the lower right corner of 

the plot associated with high total area, mean water depth and max water depth. 

Proportion of the loch below 1m (or overall loch shallowness) is in the opposite 

corner and is also correlated with high sediment scores (denoting fine particle 

sediment types), lochs CLAC, DUIN, LOSG and TALA are associated with these 

variables. Measures of high plant and invertebrate abundance are drawn into the 
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lower left side of the plot, associated with high Na and NO3 and low DOC and fish 

abundance. Sites associated with these variables are BEUL, CULA, FEAR and GRAS all 

sites with a scoter loch value of >0.5. Opposite in the upper right of the plot and 

associated with high DOC, fish abundance, pH, chlorophyll A and K are AMHU, BREA 

HEMO, LEIR, of these sites only loch LEIR has a scoter loch value of >0.5. 
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Figure 3.50 Axis 1 and 2 of a PCA of the 18 study sites by (summary) environmental 

variables, Chlorophyll A (Chl A), pH, dissolved organic carbon (DOC), fish abundance, 

potassium (K), calcium (Ca), total area, mean water depth, magnesium (Mg), 

maximum water depth, fish weight, conductivity (Cond), chloride (Cl) sulphate (SO4), 

nitrate (NO3), mean percentage cover, abundance of chironomids (Ab chiros), 

diatom diversity, percent volume inhabited (PVI) mean plant height, sediment score 

(Sed score) and proportion of the loch below 1m depth (shallowness). 
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3.4.2 Developing hypotheses for common scoter decline using general 

linear models 

The results presented so far have characterised the current conditions within Flow 

Country lochs and examined some of the potential factors structuring communities 

of aquatic plants, diatoms and chironomids. The second part of this chapter will build 

on these data by using them in a modelling approach to identify statistically 

significant associations between loch characteristic and scoter loch use outlined in 

section 3.3.5.2 and Section 3.4.1 and Table 3.1). General linear model refinement of 

the biological, chemical and physical sub-models (section 3.3.5.2) identified five 

variables to be used in the final model: DOC, mean percentage macrophyte cover, 

fish abundance (fish caught per rod hour), sediment score (high sediment score 

denotes fine particle sediments and low scores coarse grain sediments) and 

proportion of the loch below 1m deep (method detailed in 2.4.2.3). The final model 

was itself simplified to give a minimum adequate model which contained DOC, 

sediment score and proportion below 1m and a significant interaction between 

sediment score and proportion below 1m (Table 3.11). 

 

Coefficients: Estimate  

(std. error) 

Degrees of 

freedom 

t value p-value 

Intercept -5.574779 

(1.756485) 

4, 13 -3.174 0.007328  

DOC -0.062053 

(0.014013) 

4, 13 -4.428 0.000681  

Sediment score 1.676562  

(0.457900) 

4, 13 3.661 0.002874 

Proportion below 1m 0.095006  

(0.026488) 

4, 13 3.587 0.003314 

Sediment score x prop below 

1m 

-0.023748 

(0.006883) 

4, 13 -3.450 0.004305 

Table 3.10 Significant variables and interactions in the minimum adequate model of 

scoter loch value with environmental variables 

There is a statistically significant decrease in scoter loch value (Table 3.1) with 

increasing DOC (Figure 3.51). Sediment score and proportion of the loch below 1m in 

depth are also significant explanatory variables with a significant interaction. At deep 
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lochs (where proportion below 1m is low) scoter site value increases significantly 

with sediment score; at moderately deep lochs the relationship remains positive but 

is less strong. In shallow lochs (where proportion below 1m is high) there is a negative 

relationship between scoter site value and sediment score (Figure 3.52).  

Figure 3.51 Relationship between common scoter loch value and dissolved organic 

carbon (DOC), with 95% confidence interval indicated by the grey area. 
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Figure 3.52 Relationship between common scoter loch value and sediment score at 

three intervals or proportional shallowness, with 95% confidence interval indicated 

by the grey area. 
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3.5 Discussion  

The characterisation of 18 Flow Country Lochs 

Characterisation of 18 lochs has demonstrated that chemically, biologically and 

physically the Flow Country systems are comparable to other peatland lochs in 

Scotland and northern Europe (Maitland et al., 1994; Rydin and Jeglum, 2013); 

typically shallow, acidic and low nutrient systems. However, despite the superficially 

homogenous appearance of the lochs, there is a substantial amount of between-loch 

variability, even at sites that are closely located. The dynamic and complex nature of 

freshwater lochs is easy to underestimate, particularly in a landscape like the Flow 

Country. It is evident that multiple factors are coming together on a loch by loch basis 

to create a heterogeneous wetland landscape that is able to support a variety of 

species. Consideration of landscape and regional scale influences on these systems 

is an important next step, which could highlight key drivers of loch ecology and 

influences on loch functioning, these areas will be covered in Chapter 4. The site 

characterisation process undertaken in this chapter has provided a single snap shot 

of conditions within the lochs. Disentangling the drivers of loch ecology and 

functioning would also benefit from a longer-term perspective in which current day 

conditions can be considered. Chapters 5 and 6 use a palaeolimnological approach 

to provide a temporal context to the contemporary characterisation undertaken in 

chapter 3.  

 

Developing hypotheses for common scoter decline 

This chapter has demonstrated a statistically significantly relationship between 

common scoter loch use and dissolved organic carbon (DOC), sediment type and 

shallowness.  

The DOC concentrations recorded in this study were lower than seasonal averages 

recorded in other studies of European peatland lakes (20-40mg/l Rydin & Jeglum 

(2013)) but similar to concentrations recorded at Irish lakes (Drinan et al., 2013). In 

addition to being related to common scoter use, constrained ordinations have shown 

that DOC is also influential in explaining variation in chironomid, diatom and 

macrophyte communities. DOC in peatland lakes enters from allochthonous and 

groundwater sources, and organic rich soils, such as peatlands, can result in 
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particularly high concentrations especially when damaged. The export of DOC from 

terrestrial peatland is estimated at between 1.5 to 14 tCkm2 year depending on the 

condition of the peatland and anthropogenic management (Clark et al., 2007; Hope 

et al., 1997; Koehler et al., 2009; Ryder et al., 2014). Studies have demonstrated an 

increase in DOC concentrations in Britain’s freshwaters since  the 1990s (Worrall and 

Burt, 2007). It has been postulated that the increase has been caused by changes in 

climate (particularly increasing temperature (Freeman et al., 2001; Worrall et al., 

2003), drought Holden and Burt, 2003), decreased acidity (Davies et al., 2005; Evans 

et al., 2001) and land use changes (such as forestry and rotational burning, Clay et 

al., 2009a; Nieminen, 2004; Yallop and Clutterbuck, 2009). Coloured DOC can directly 

influence water clarity, and an association between low growing isoetid species and 

low DOC levels was highlighted in the constrained ordinations, suggesting DOC could 

be influential in light attenuation. No statistically significant correlation between DOC 

and secchi depth could be identified. However, this could be due to the fact that in 

many Flow Country lakes the recorded secchi depth was equal to loch depth, with 

the disc still being visible on the bottom of the loch. In addition to changing water 

colour, increases in DOC can lead to increased retention of metal elements (such as 

aluminium and iron) due to complexation with DOC. Such metals have been shown 

to have detrimental effects on invertebrate and fish populations (Evans et al., 2005) 

and therefore could indirectly have implications for breeding scoter using the lochs. 

However, without data from a wider spatial and/or temporal scale it is difficult to 

identify trends and drivers of DOC in Flow Country lochs. 

The physical structure of the lochs has been shown to be significantly related to 

scoter loch use. Soft sediments (with small particle size) have been shown to be more 

important to scoter in deeper lochs (where proportion of the loch below 1m is low), 

whilst at shallow sites the importance of fine sediments is reduced. The mechanism 

by which common scoter feed is not well understood. Diet studies indicate they are 

able to consume prey items that are embedded in the benthos (such as bivalves and 

chironomids, Fox, 2003), within stands of aquatic macrophytes (such as Trichoptera), 

and also fast moving, motile prey items (such as sticklebacks, Coleoptera and 

Hemiptera) (L.Griffin, G. Hilton pers. comm.); young scoter have also been observed 

feeding on invertebrates emerging at the surface of lochs (M. Hancock pers. comm.). 
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The results from this study indicate that soft sediments are more important to 

common scoter on deeper lakes, which could suggest an energetic balance is being 

struck. The energetic cost of feeding at deeper depths may be somewhat ameliorated 

by ingesting food that requires less energetic cost to consume, such as sedentary 

benthic invertebrates and bivalves in soft sediments. Whilst in shallow lochs, where 

the energetic costs of diving are less, time and energy can be spent pursuing more 

motile species or grazing on invertebrates in stands of aquatic macrophytes.  

Aerial photographs of the lochs from the 1940s suggest there has been little change 

in the size, shape and therefore presumably depth of the lochs in the last 60-70 years. 

However anthropogenic peatland management (such as rotational burning, grazing, 

peat cutting, drainage and forestry plantations) has the potential to indirectly 

influence the sediment composition in several ways; by effecting hydrological 

pathways and levels of infiltration in the surrounding peatland, and/or reducing or 

changing vegetation cover, all of which can ultimately result in increased rates of 

erosion and inputs of allochthonous peat sediment (Anderson et al., 2000; Drinan et 

al., 2013a; Drinan et al., 2013b; Holden et al., 2004; J. Miller et al., 1996; Kenttämies, 

1981; McElarney et al., 2010; Ramchunder et al., 2009; Turkia et al., 1998; Yallop and 

Clutterbuck, 2009). However, it is not possible to determine whether any change in 

the composition of lochs sediments has taken place that could be effecting common 

scoter loch use without long term survey data. Chapters five and six of this thesis will 

address this by examining the character of sediments in dated lake cores. 

Aquatic macrophyte, chironomid and fish abundance were also shown to be 

ecologically important to common scoter loch use, despite not being statistically 

significant, with each variable being carried through from the sub-models before 

refinement of the final model excluded them from the minimum adequate model. 

Macrophyte and invertebrate composition and abundance in freshwater lochs are 

influenced by both top down (predation/grazing) and bottom up (water chemistry 

and habitat) processes. In the current study, the abundance of chironomids and 

macrophytes have been shown to be negatively correlated with both brown trout 

abundance and water chemistry variables such as DOC. Similarly, the composition of 

both chironomid and macrophyte communities have been shown to be significantly 

influenced by both top down (fish weight) and bottom up (DOC, Mg) variables. 
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Hancock et al.,(2015) demonstrated a significant negative relationship between large 

bodied invertebrate abundance and brown trout abundance in Flow Country lochs, 

and a statistically significant (positive) relationship between scoter loch type and 

large bodied invertebrates. However, statistically significant relationships were also 

identified between common scoter loch type and water level stability and 

macrophyte abundance. This could suggest that large bodied invertebrate 

abundance is higher in lochs with more macrophyte cover because higher 

macrophyte abundance provides structure in which invertebrates can conceal 

themselves from trout. Whilst no direct statistically significant association could be 

identified between common scoter loch type and brown trout abundance, it was 

hypothesised that changes in the competitive balance between common scoter and 

brown trout could have resulted in common scoter declines at Flow Country lochs. In 

contrast to Hancock et al., (2015), the results from this chapter place the most 

emphasis on bottom up drivers of loch ecology, with DOC, sediment type and water 

depth being the most influential factors effecting common scoter loch use. There is 

no indication of common scoter loch use being influenced by either predator 

presence (Hancock et al., 2015) or limits on available nesting habitat. Therefore, 

declines in the Flow Country are considered primarily in relation to within-loch 

characteristics, and particularly those which influence levels of invertebrate food 

availability. By combining data from this chapter with current literature and 

knowledge of pertinent Flow Country issues, the following hypothesis for common 

scoter decline can be identified: 

(1) That afforestation and drainage of the Flow Country catchments in the 1980s has 

altered the physico-chemistry of lochs through increased sedimentation and/or DOC 

import which could adversely affect physical loch structure and/or invertebrate food 

supply for the common scoter. 

(2) Common scoters compete with brown trout for food, and the competitive balance 

between brown trout and scoters may have altered in recent decades, either as a 

result of decreased fishing pressure or fish stocking events. Changes in brown trout 

abundance or population structure could have resulted reduced invertebrate 

abundance which could be detrimental for common scoter. 
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Evidence from contemporary ecological data indicates that both bottom up (water 

chemistry, habitat) and top down (predation) process are influencing both 

invertebrate abundance and common scoter loch use; it is therefore not possible to 

disentangle competing hypotheses for decline using contemporary data alone. The 

addition of a spatial and a temporal context to these contemporary data could help 

to disentangle these conflicting hypotheses, and provide a firm foundation for 

conservation management. Chapter 4 of this thesis will examine how landscape scale 

processes, and annual variations in regional climate, could be influencing common 

scoter distribution and abundance in the Flow Country. Long term perspectives from 

two temporal scales will be presented in Chapters 5 and 6, to provide firstly 

information concerning the type and extent of change that has occurred over the last 

150-200 years and secondly a fine temporal scale perspective of environmental 

change, contemporaneous with common scoter decline.  
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3.6 Key findings and implications 

• Flow Country lochs are diverse heterogeneous systems despite superficial 

similarities. Groups of lochs have been identified representing the different 

types of loch identified by Palmer, (1992). 

→ The management of Flow Country lochs needs to be adaptable and 

responsive to the different types of systems identified. 

• Communities of Flow Country lochs are influenced by both bottom up and top 

down processes 

→ The drivers of Flow Country loch ecology are complex and difficult to 

interpret with a single snap shot of current conditions  

• There is a statistically significant relationship between common scoter loch use 

and DOC and physical loch properties (shallowness and sediment type); there 

has also been shown to be an ecological relevant (although not statistically 

significant) relationship between common scoter loch use and aquatic 

macrophytes, fish and invertebrates  

→ The physcial, chemical and biological characteristics of Flow country 

lochs have the potential to influence common scoter breeding success. 

Understanding how these features vary spatially and temporally could 

be vital in understanding recent common scoter declines 
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CHAPTER 4: ANNUAL CLIMATE VARIATION AND LANDSCAPE INFLUENCES ON 

COMMON SCOTER ABUNDANCE AND DISTRIBUTION IN THE FLOW COUNTRY 

 

4.1. Overview 

This chapter examines landscape and climate influences on common scoter decline 

in the Flow Country. The effects of annual climate variation on changes in common 

scoter numbers are examined at both local and regional scales using general linear 

modelling analysis. Landscape scale features associated with common scoter 

presence are explored using a species distribution modelling (SDM) approach, 

namely Maxent. The indirect influences of key landscape features on within-loch 

variables important to common scoter (as identified in the previous chapter) are also 

examined. 

 

4.2. Introduction  

In chapter 3 the limnological characteristics of 18 Flow Country lochs were examined; 

the sites being a mixture of current and historic scoter breeding lochs. The analysis 

demonstrated that despite superficial similarities there is much between-loch 

variation in Flow Country loch communities, and that community variation is driven 

by both top down and bottom up processes. Female common scoter counts for the 

early part of the breeding season (April-June) between 1988-2014, were used to 

assign a scoter loch value (SLV) to each of the 18 sites. This was used as a response 

variable in a GLM which examined the relationship between scoter loch value and a 

number of loch characteristics. Statistically significant variables were DOC, sediment 

type and water depth. The abundance of brown trout, chironomids and aquatic 

macrophytes were also identified as being somewhat influential explanatory 

variables, which were taken through the initial model refinement process. These 

variables were also identified as significant explanatory variables in the multivariate 

analysis of diatom, chironomid and macrophyte communities. Identifying the loch 

characteristics directly associated with common scoter presence (using GLMs), and 

the potential mechanisms structuring these variables (using multivariate community 

analysis) is just the first step towards determining what are the most pertinent driver 

of common scoter decline. A vital next step is to examine the wider context of decline 
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and assess the role of both landscape and climate processes, both directly (by 

influencing scoter themselves) and indirectly (by influencing the quality of the habitat 

available to scoter). 

At the southern edge of their breeding range, the decline of common scoter in the 

Flow Country has been attributed to a northwards shift in the population, seemingly 

supported by populations in more northerly parts of the breeding range reporting 

stable or slightly increasing populations (Birdlife International, 2017). However, 

common scoter in Scotland have long been outside of the climate envelope typically 

associated with the species, and indeed models of common scoter distribution in 

Europe (developed based on climate data associated with peak common scoter 

populations in Britain) have failed to predict their presence in either Scotland or 

Ireland (Huntley et al., 2007). Attributing the decline to climate change should 

perhaps therefore be treated with caution, especially as it has the potential to 

significantly influence conservation management and planning for the species in 

Britain. The examination of whether changes in common scoter abundance in the 

Flow Country are associated with annual variations in climate may provide useful 

insights into the extent to which longer term climate change may affect the species 

in Scotland. Annual climate variation has the potential to influence common scoter 

breeding in the Flow Country both directly, by effecting breeding propensity and 

success and wintering mortality rates, and indirectly, by influencing loch ecology and 

particularly the availability and timing of invertebrate food resources. Detrimental 

climate and/or extreme weather events during winter could affect common scoter 

numbers by increasing mortality and/or reducing body condition and therefore the 

likelihood of both attempting to breed and breeding success. Cold, wet conditions on 

the breeding grounds have been shown to effect body condition (Lehikoinen et al., 

2006), breeding propensity (Coulson, 2010) and nest success (Iles, 2012) of other 

subarctic seaduck species. Laying and incubating have high energetic demands for 

females, and the addition of adverse climate conditions could further drain 

resources. To compensate, more time may need to be spent away from the nest 

feeding, increasing the likelihood of both nest failure and/or predation. Adverse 

conditions later in the breeding season, during brood rearing, can also be detrimental 

to ducklings whose thermoregulatory capacity is limited (Koskimies and Lahti, 1964) 
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and death from exposure a particular risk. It is possible however that rather than 

poor climate conditions being detrimental for the birds indirectly, an indirect effect 

of poor weather is to change the abundance and phenology of key resources, such 

as freshwater invertebrates, resulting in phenological mismatch (Drever and Clark, 

2007). Common scoter, as species which breed late in the season, could be 

particularly susceptible to changes in the timings of resources as there is less 

opportunity for second laying attempts.  

Changes in total common scoter breeding numbers associated with either the direct 

or indirect effects of annual climate variation could potentially be identified by 

examining numbers both the following year (if non-breeding juveniles are returning 

to the breeding grounds) or following a two-year lag (if birds are waiting until sexual 

maturity before returning to the breeding grounds). Common scoter can breed from 

two years of age; however anecdotal evidence suggests non-breeding birds may be 

returning to Scottish breeding grounds as one-year olds. Therefore, in this chapter 

the effects of annual climate variation on the number of birds at the breeding 

grounds will be examined in the context of both a one year and two-year lag. Three 

hypotheses around the effect of annual climate variations on numbers of common 

scoter in the Flow Country will be explored in this chapter and can be summarised as 

follows: 

i) Number of common scoter in the Flow Country will be lower in years 

following harsh European winter conditions due to increased mortality 

and/or breeding deferral 

ii) Common scoter numbers will be lower in years which follow those with 

poor (cold, wet) summer (April-August) due to lower breeding success 

and therefore fewer juveniles returning to the breeding grounds the 

following year  

iii) Common scoter numbers will be lower in years which experienced poor 

(cold, wet) summer (April-August) two summers previously due to lower 

breeding success and therefore fewer birds returning to the breeding 

grounds once sexually mature  
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Landscape scale processes, such as geology and land use, can have a significant 

influences on the chemistry and biology of oligotrophic lochs, particularly in 

ombrotrophic peatlands (Drinan et al., 2013b). However, few studies have examined 

these processes in relation to breeding water birds. Landscape features that have the 

potential to influence common scoter in the Flow Country fall into two categories. 

Firstly, landscape features that can influence the ecology of the loch directly, such as 

surrounding land use, loch management and connectivity (via streams) effecting 

processes such as nutrient inputs, erosion rates and water levels/quality. Secondly 

there are landscape features that could act as proxies for other mechanisms 

structuring common scoter distribution; connectivity of sites for human access (by 

tracks and roads) could increase disturbance rates or indirectly represent the extent 

of predator control and/or management of scoter competitors (such as brown trout). 

Maxent is a useful analytical tool that enables exploration of numerous potential 

landscape features that could be influencing species distribution. The contribution of 

all potentially influential features can be assessed in relation to a species distribution, 

rather than non-statistically significant variables being excluded (as with GLMs) (Elith 

et al., 2011). This adaptive approach will be useful for common scoter in the Flow 

Country as it allows examination of all the hypothesised influences on scoter 

distribution. Previous studies of peatland lochs have highlighted the importance of 

geology, forestry, clear felling and bog quality (Clay et al., 2009b; Cummins and 

Farrell, 2003a; Drinan et al., 2013b, 2013c; Miller et al., 1996; McElarney et al., 2010; 

Tetzlaff et al., 2007; Titus and Malcolm, 1992; Turkia et al., 1998; Wilkie and Mayhew, 

2003) in structuring loch communities, and these factors will therefore be considered 

in relation to common scoter distribution in the Flow Country. Number of streams 

and proximity of roads/tracks will also be included to give an indication of 

anthropogenic accessibility and wetland connectivity which may also be important 

to scoter. The relationship between landscape features (identified as influential by 

Maxent) and the within loch characteristics identified as important in Chapter 3 

(DOC, sediment type, shallowness, macrophyte cover, chironomid and fish 

abundance and fish weight) will be examined using GLM approach to identify 

potential links between landscape scale processes and within-loch characteristics. 
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The overall aim of this chapter is to build on results from chapter 3 (that 

characterised lochs used by common scoter, Figure 4.1a). Annual climate variation 

and potentially influential landscape variables will be considered in relation to their 

direct impact on scoter phenology (Figure 4.1b and 4.1c). In addition, the indirect 

effects of landscape scale processes on breeding success via alterations to Flow 

Country loch ecology will also be assessed (Figure 4.1.d). 

 

Fi
gu

re
 4

.1
 S

ch
em

at
ic

 d
ia

gr
am

 il
lu

st
ra

ti
n

g 
th

e 
th

re
e 

sp
at

ia
l s

ca
le

s 
w

h
ic

h
 a

re
 e

xa
m

in
ed

 in
 r

el
at

io
n

 t
o

 

co
m

m
o

n
 s

co
te

r 
in

 c
h

ap
te

rs
 3

 a
n

d
 4

, a
) 

re
la

ti
o

n
sh

ip
 b

et
w

e
en

 c
o

m
m

o
n

 s
co

te
r 

an
d

 lo
ch

 v
ar

ia
b

le
s 

(i
n

ve
st

ig
at

ed
 in

 c
h

ap
te

r 
3

),
 b

) 
re

la
ti

o
n

sh
ip

 b
et

w
ee

n
 c

o
m

m
o

n
 s

co
te

r 
p

o
p

u
la

ti
o

n
s 

an
d

 c
lim

at
e 

in
ve

st
ig

at
ed

 

u
si

n
g 

(t
h

is
 c

h
ap

te
r)

, c
) 

in
fl

u
en

ti
al

 la
n

d
sc

ap
e 

ch
ar

ac
te

ri
st

ic
s 

w
ill

 b
e 

ex
am

in
ed

 u
si

n
g 

M
ax

en
t 

an
al

ys
is

 (
th

is
 

ch
ap

te
r)

, d
) 

re
la

ti
o

n
sh

ip
 b

et
w

e
en

 la
n

d
sc

ap
e 

an
d

 lo
ch

 c
h

ar
ac

te
ri

st
ic

s 
w

ill
 b

e 
ex

am
in

ed
 u

si
n

g 
G

LM
s 

(t
h

is
 

ch
ap

te
r)

 



149 
 

4.3Methods 

4.3.1 Study Area  

The Flow Country peatlands in northern Scotland is the study area focused upon in 

this chapter, details and descriptions of which are provided in Chapter 2.1. 

 

4.3.2 Study sites 

The basis of site selection is detailed in Chapter 2.3. The Flow Country is considered 

at two spatial scales in this chapter. Firstly, annual climate variation is examined at a 

regional scale, using data that relates to climatic conditions for Europe and northern 

Scotland. Secondly, the maximum entropy (Maxent) analysis will examine landscape 

scale variables and will focus on an area of approximately 100,000 hectares of the 

Flow Country as shown in Figure 4.2. This area includes all known common scoter 

breeding lochs in the Flow Country together with additional lochs known to be 

unused by common scoter and those which have not been surveyed. Approximately 

100 lochs (with perimeter above 100m) are included in this analysis (Figure 4.2). The 

relationship between influential landscape features (identified by Maxent analysis) 

and ecologically relevant within-loch characteristics associated with common scoter 

presence (identified in Chapter 3) will be examined at 18 lochs. Selection of these 

sites is detailed in Section 2.2. 
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4.3.3 Statistical analysis and data presentation 

4.3.3.1 Annual climate variation and change in common scoter 

numbers in the Flow Country 

General linear models (GLMs) were used to examine the relationship between the 

change in annual numbers of breeding common scoter and climate variables; GLMs 

are a robust tool for determining the significance of relationships between a single 

response variable and multiple explanatory variables (Zuur et al., 2009). 

 

Response variable  

The response variable used in the GLM was the annual change in common scoter 

numbers in the Flow Country, calculated as lambda (Figure.4.3); a lambda value of 1 

means there has been no change in the total numbers of female scoter between 

years, whilst values less than 1 indicate decline and more than 1 indicate increases. 

Lambda was used in preference to raw breeding numbers as the aim of the analysis 

was to examine the factors associated with changes in common scoter numbers 

rather than those associated with different absolute numbers of scoter. Lambda also 

reduces the degree of temporal autocorrelation that would be generated by using 

absolute numbers. 

 

Lambda λ = N(t)+1/N(t) 

Figure. 4.3 Calculation of lambda, N = abundance, t= time 

 

Explanatory variables 

Both temperature and rainfall have been identified as climate variables pertinent to 

breeding common scoter (Huntley et al., 2007). These were therefore used as 

explanatory variables in the GLM. The North Atlantic Oscillation (NAO) was also used 

to give an indication of wider European trends in temperature and rainfall (Table 4.1).  
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Climate Variable 

(Data Source) 

Description 

Temperature 

(Wick, Met Office) 

The mean of minimum temperatures (ᵒC) recorded at 

Wick between April and August. 

Rainfall 

(Wick, Met Office) 

Total rainfall (mm) recorded at Wick between April to 

August 

Summer North Atlantic 

Oscillation 

(NAO)(National Center 

for Atmospheric 

Research Staff, 2017)  

Summer NAO is based on the difference of normalised sea 

level pressure for the region between Portugal and 

Iceland for the months of July to August. Positive summer 

NAO signifies warmer, drier conditions, negative values 

indicate colder, wetter summers. Data will be used from 

i) the previous summer and ii) two summers previously 

Winter North Atlantic 

Oscillation 

(NAO)(National Center 

for Atmospheric 

Research Staff, 2017) 

Winter NAO is based on the difference of normalised sea 

level pressure for the region between Portugal and 

Iceland for the months of December to March. Winter 

NAO above zero indicate warmer, wetter conditions 

whilst values below zero indicate colder, drier winters. 

Data will be used from the winter previous to the 

summers breeding record 

Table 4.1 Data sources and description of climate variables used to examine 

influence of climate on common scoter breeding in the Flow Country, Scotland. 

 

GLM refinement and data presentation 

The model underwent step wise deletion of the least significant variable (determined 

using the drop1 function in R). General linear modelling was carried out in R (R Core 

Team, 2016) and related figures produced using ggplot package (Wickham 2009) and 

the computer software package C2 (Juggins, 2007).  

 

4.3.3.2 Landscape scale variables in relation to scoter breeding 

distribution 

Maxent overview 

The machine learning method, maximum entropy, was used to examine the 

relationship between common scoter presences and landscape variables. The 
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analysis was carried out using the Maxent software version 3.3.3k (Phillips et al., 

2011). The Maxent algorithm estimates the distribution of a species by constraining 

the occurrence data by landscape (or other environmental) variables. Maxent 

includes regularisation mechanisms which reduces the risk of overfitting and means 

there is less need to remove correlated explanatory variables (Elith et al., 2011). 

Maxent has been extensively validated and is considered one of the most effective 

methods for modelling species distributions, particularly from presence-only data 

(Elith et al., 2011). 

 

Presence data 

The Maxent software uses point data for species presences. These data were collated 

from RSPB annual monitoring records (RSPB unpublished data). Records of female 

presence at a loch between the period from April to mid-June for the years 2004 to 

2014 were used to identify ca. 30 lochs at which scoter were known to be present, 

the remaining lochs were those which had either been surveyed and found not to 

have scoter present or those which had not been surveyed. Maxent has been 

developed to deal with presence only data (Phillips and Dudík, 2008), therefore non-

presence points being a mixture of surveyed and unsurveyed sites would not 

substantially effect the results. Female scoter presence for use in the Maxent analysis 

was denoted by a point positioned in the centre of each loch centroid. 

 

Environmental data 

Maxent uses Geographic Information Systems (GIS) raster layers for environmental 

variables. Open source software QGIS version 2.1.4.3 (QGIS Development Team, 

2016) was used to produce rasterised layers for the lochs that derived landscape data 

based on characteristics within a 500m buffer. A buffer zone around each loch was 

used in preference to using catchment sized areas as the area would represent the 

terrestrial habitat the birds were likely to be using for nesting. Common scoter use 

of the Flow Country is centred on freshwater lochs, therefore, the environmental 

rasters also focus on the lochs by only including data representative of the loch and 

a 500m buffer around the loch and excluding data for other parts of the terrestrial 

peatland. This meant that areas of terrestrial peatland without lochs would not be 
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identified as possible habitat for scoter presence by Maxent. The percentage of bog 

within a 500m loch buffer, track proximity, number of proximal streams, soil 

moisture and superficial and bedrock geology were used in the Maxent analysis. 

These variables were selected as they have the potential to influence either common 

scoter directly or the important within-loch variables identified in Chapter 3 via 

processes such as erosion, nutrient availability and water quality. A description of the 

data and the sources are identified in Table 4.2. Landcover type was divided into 

broadly, into either forestry or bog. No data was available about specific nest habitats 

or microhabitat use by scoter in the areas around the lochs therefore the focus was 

on how larger scale landscape features may be influencing distribution across the 

Flow Country. Variables such as slope, altitude and terrestrial vegetation (classified 

using normalized difference vegetation index (NDVI)) community were not included 

in the Maxent as no data is available concerning how scoter use terrestrial areas of 

the Flow Country. Bedrock geology was categorised into three types (1 igneous types 

(predominantly granite), sedimentary (2, sandstone, siltstone) and metamorphic (3, 

predominantly limestone). 
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Variable Description and data source 

Stream Number of streams within 500m around each loch (EDINA, 2017) 

Road and 

Track 

Minimum distance from each loch to the nearest road or track. Road 

layer from EDINA, (2017), track data digitised from Bing aerial maps 

and OS maps 

Area of bog 

within 500m  

Three land cover types are disguisable within 500m of lochs in the 

Flow Country, areas of bog, forestry and deforestation. The 

percentage of each 500m loch buffer that contained bog was used in 

the Maxent analysis as a measure of bog area, by considering 

percentage bog in reverse this metric can also give an indication of 

forested and deforested area within the 500m buffer. 

Soil wetness Tasselled cap transformation is a conversion of the image received 

by a satellite (in this case Landsat 8) to create new composite bands 

that have specific interpretations including greenness, yellowness 

and wetness. The tasselled cap wetness score was calculated from 

Landsat 8 (L8 OLI/TRS) images of the Flow country taken in 2001. 

Mean tasselled cap wetness scores for land within a 500m buffer 

zone were calculated for each loch to give an indication of habitat 

quality or bog condition.  

Superficial 

Geology 

Dominant surface geologies within a 500m buffer area of each loch 

was determined from EDINA (2017), categories comprised i) peat, ii) 

clay silt and sand,  iii) clay silt gravel iv) diamicton, sand and gravel 

Bedrock 

Geology 

Bedrock geologies from the 500m loch buffers were determined 

from EDINA (2017), and amalgamated into three broad categories 1 

igneous types (predominantly granite), 2 sedimentary (sandstone, 

siltstone) and 3 metamorphic (predominantly limestone) 

Table 4.2 Data sources and description of physical variables used to examine 
influence of landscape on common scoter breeding in the Flow Country 
 

Maxent analysis configuration 

Common scoter loch presence was divided into training (80% of the samples) and 

test (20% of the samples) datasets. The procedure was repeated 10 times using the 

“random seeds” option to allow cross validation (Phillips et al., 2011). 
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Maxent outputs 

Each pixel in the study area is assigned a raw, cumulative and logistic value denoting 

the likelihood of species occurrence. All three outputs are monotonically related; the 

logistic output provides a likelihood of presence (scaled between 0 and 1) and is 

easiest to interpret ecologically. Response curves for each environmental variable 

are also produced that illustrate how each variable affects the Maxent prediction. 

Maxent does not determine the statistical significance of variables being used to 

model species distribution (or output p-values) rather it determines how much each 

is contributing to the model fitting process and therefore the relative important of 

each variable. This approach can allow a more holistic view to be taken than in GLMs, 

with the ability to consider the relevance of all variables without exclusion based on 

arbitrary statistical significance.  

 

Model evaluation 

Maxent models are evaluated based on Area Under Curve (AUC) values, which assess 

the capacity of the model to accurately distinguish presences from absences. For AUC 

values <0.5 predictions are considered to be no better than random, while AUC 

values >0.75 are considered suitable for conservation planning (Elith et al., 2011).  

  

4.3.3.3 Landscape scale variables in relation to limnology of 18 Flow 

Country lochs 

The relationship between significant landscape variables (identified by the Maxent 

analysis) and the ecological relevant within-loch variables (identified in Chapter 3) 

was examined using a general linear modelling approach at the 18 lochs focused on 

in Chapter 3. The aim was to identify whether any of the loch characteristics 

important to common scoter could be explained by any of the influential landscape 

derived variables identified by Maxent. Four GLMs were run in R using DOC, sediment 

score, shallowness (proportion of the loch less than 1m deep), fish abundance and 

percentage macrophyte cover as response variables. The three variables that 

contributed most to the Maxent model (85%) were used as explanatory variables. 

Each GLM underwent step-wise deletion of the least significant variable (determined 

using the drop1 function in R) to determine the minimum adequate model. 
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4.4. Results 

4.4.1 The influence of annual climate variation on common scoter in 

the Flow Country 

Relationships between numbers of common scoter breeding in the Flow Country and 

climatic variables was examined from 1987 to 2014, during this period there were 

just four years (1989, 1990, 1992 and 2000) during which no co-ordinated count data 

was available for the Flow Country region (Figures 4.4 and 4.5).  

General linear models run to examine annual changes in the number of breeding 

common scoter (calculated as lambda) in relation to regional and local climate 

conditions could not identify any statistically significant explanatory variable (p >0.05 

in all cases) (Table 4.3). 

 

 

Figure.4.4 Annual number of female common scoter and change in numbers 

(lambda) recorded in the Flow Country between 1987-2014 (no counts available for 

1989, 1990, 1992 and 2000), mean summer rainfall (mm), mean summer 

temperature (ᵒC) and summer NAO in the previous two years. 
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Figure 4.5 Annual number of female common scoter and change in numbers (lambda) 

recorded in the Flow Country between 1987-2014 (no counts available for 1989, 

1990, 1992 and 2000), and mean winter rainfall (mm) and previous winter 

temperature (ᵒC) for the (October to March)  
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Model Coefficients Estimate  

(std. error) 

d.f t-value p-value 

1) Previous winter Intercept 0.612089 

(0.576986) 

3,20 1.061 0.301 

 
Rainfall 0.007063 

(0.007917) 

 

3,20 0.892 0.383 

 Temperature -0.027850 

(0.093799) 

3,20 -0.297 0.770 

 
NAO 0.074435 

(0.147641) 

3,20 0.504 0.620 

2) Previous summer Intercept 0.457030 

(1.241714) 

3,20 0.368 0.717 

 Rainfall -0.006053 

(0.010457) 

3,20 -0.579 0.569 

 Temperature 0.121337 

(0.157725) 

3,20 0.769 0.451 

 NAO -0.137608 

(0.152515) 

3,20 -0.902 0.378 

3) Two summers 

previously 

Intercept 0.587635 

(1.250011) 

3,20 0.470 0.643 

 Rainfall 0.008149 

(0.012857) 

3,20 0.634 0.533 

 
Temperature -0.001221 

(0.158931) 

3,20 -0.008 0.994 

 
NAO 0.033507 

(0.171873) 

3,20 0.195 0.847 

Table 4.3 Results from three general linear models used to examine the relationship 

between change in numbers of common scoter in the Flow Country and climate 

variables  
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4.4.2 Landscape scale influences on the breeding distribution of 

common scoter in the Flow Country 

 

Maxent model output 

The likelihood of common scoter occurrence at lochs across the study area is 

visualised in Figure 4.6. Lochs with the highest likelihood of occurrence are centred 

around the core of the Flow Country peatland area. 

The most important predictors of scoter breeding presence identified by Maxent 

were percentage bog area (within 500m buffer of the loch), soil moisture (mean 

tassel cap score within 500m buffer of the loch) and bed geology (a categorical 

variable), which explained 48.8, 29.9 and 17.4% of scoter breeding variability 

respectively (Table 4.4).  

The relationship between individual variables and probability of scoter presence are 

shown in Figure 4.6. The land cover in the 500m loch buffers was categorised as bog 

or forestry (forestry included areas of deforested plantation), and therefore the 

extent of bog in the buffer could be equally considered as the area not covered by 

forestry. Probability of female scoter presence was low where percentage of bog was 

low (and therefore forestry was high). The probability of scoter presence increased 

with proportion of bog in the buffer, peaking at approximately 60% bog (or 40% 

forestry). Between 60-100% bog the probability of scoter presence again declined 

(Figure 4.7.a). Tasselled cap moisture scores represent relative soil moisture across 

the surveyed area (the ca.  100km2 area identified in Figure 4.2). Probability of scoter 

presence peaks at intermediate moisture values, indicating scoter presence is more 

likely were soil moisture is neither extremely low or high. The probability of common 

scoter presence was shown to be highest in lochs situated on granite bedrocks. The 

other variables (number of streams and proximity of roads) together (on average 

across 10 model runs) explain <2% of the variation. 
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Model 

run 

Contribution 

Soil 

moisture 

Proportion 

of bog  

Bedrock 

geology  

Surface 

geology  

Road 

Proximity 

Stream 

frequency 

1 19.0513 57.1266 16.3215 4.8447 0.5986 2.0572 

2 8.5215 89.0216 2.4559 0.001 0 0 

3 32.5071 19.6081 38.3556 8.1643 0 1.3649 

4 20.6355 57.452 13.078 4.6539 2.8696 1.311 

5 57.3482 25.5648 14.2152 2.8718 0 0 

6 40.9391 47.6718 11.0503 0.3389 0 0 

7 44.9403 24.4712 26.8561 3.7325 0 0 

8 51.2296 13.4025 32.9932 2.3746 0 0 

9 5.6565 86.993 6.7801 0.1233 0 0.4471 

10 18.652 66.3578 11.9594 2.2861 0 0.7447 

Av. 29.9481 48.7669 17.4065 2.9391 0.3468 0.5925 

Table 4.4 Contribution of variables to each of the 10 Maxent model runs 
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Maxent model evaluation 

The mean training AUC from the 10 bootstrapped model runs was 0.8263 (range 

0.7750-0.9203) and the mean test AUC was 0.7593 (range 0.4324-0.9893) (Table 4.5). 

Both results are above the random threshold (0.5) and conservation planning 

threshold (0.75 (Franklin, 2010)). The difference between the training and testing 

AUCs was small (average difference 0.067), as was the standard deviation (0.09) of 

the 10 test AUC values suggesting little over-fitting of the model. 

 

Model run Training AUC Test gain Test AUC 

Test AUC Standard 

Deviation 

1 0.92 0.88 0.89 0.02 

2 0.81 1.93 0.99 0.00 

3 0.80 -0.15 0.60 0.17 

4 0.82 -0.48 0.43 0.10 

5 0.83 0.60 0.82 0.07 

6 0.80 0.89 0.92 0.02 

7 0.78 0.00 0.65 0.11 

8 0.79 0.25 0.69 0.17 

9 0.78 0.49 0.76 0.09 

10 0.84 0.99 0.75 0.18 

Av. 0.82 0.54 0.75 0.09 

Table 4.5 Results of Maxent model evaluation for each of the 10 model runs 

 

4.4.3 Landscape scale drivers of loch ecology in relation to 

hypotheses for common scoter decline 

The relationship between the three most influential landscape variables identified in 

the Maxent analysis (bog area, soil moisture score and dominant bedrock geology 

that together explain 96% of scoter breeding presence) and within loch 

characteristics identified in Chapter 3 (DOC, sediment score, proportion below 1m 

deep, fish abundance and percentage vegetation cover) were examined using a 

series of general linear models. No significant relationship was identified between 

landscape and within-loch features of the 18 lochs. 
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4.5. Discussion 

Studies suggest that annual climate variation at both overwintering sites and 

breeding grounds have the potential to influence numbers of breeding seaducks 

(Coulson, 2010; Jónsson et al., 2009; Lehikoinen et al., 2016, 2006; Swennen, 1983). 

Direct effects include changes in migration timing and behaviour (e.g. breeding 

propensity) and timing mismatches with peaks in food resources. The indirect 

consequences of annual climate variation are diverse, and potentially include 

changes to competitor, predator and/or pathogen frequencies, as well as changes to 

habitat quantity or quality. Results from the current study, however, show that 

changes in common scoter breeding numbers since 1987 are not significantly 

associated with annual variations in climate, at either local (breeding grounds) or 

regional (wintering ground) scales. This result contrasts with Zipkin et al., (2010) who 

demonstrated significant association between wintering numbers of seaducks (12 

species of the Tribe Mergini) in North America and NAO. Similarly, Lehikoinen et al., 

(2006) documented positive correlations between body condition and NAO in 

populations of female eider in north Europe. However, Oja and Pöysä, (2007) found 

no evidence of an effect of NAO on the timing of hatching in species of mallard (Anas 

platyrhynchos) and common goldeneye (Bucephala clangula). As suggested by Zipkin 

et al., (2010) the response of seaducks to annual climate variation is likely to be both 

intricate and indirect. Whilst annual climate fluctuations may be influencing the 

behaviour, timing and success of seaduck migrations and breeding, any associated 

variations in the total number of birds attempting to breed, may be more difficult to 

detect, particularly as birds that are forced to winter further south, or arrive at the 

breeding grounds in poorer condition, may still attempt to breed. In conditions where 

summer climate is less extreme than is typical for the species (such as common scoter 

in Scotland compared to common scoter in sub-arctic Russia) the effects of 

suboptimal climate, such as poor body condition may be less detrimental and 

therefore have less of an impact on total numbers and/or breeding success.  

The Flow Country is a unique landscape in Britain, its oligotrophic lochs are more akin 

to the subarctic lakes of Scandinavia and Russia which corresponds to the core 

breeding distribution of common scoter. Indeed, climate envelope models, based on 

climate data from the 1990s (prior to common scoter decline), failed to accurately 
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predict common scoter breeding presence in either Ireland or Scotland. Whilst this 

could suggest that common scoter have always been outside their typical climate 

envelope in Britain, it could equally suggest that other factors (such as geology, 

topography and land use resulting from Britain’s geographic position in Europe) are 

combining to create an atypical habitat that make Scotland available for breeding 

scoter. 

The landscape variables that were the most influential in explaining common scoter 

distribution in the Flow Country were the proportion of bog close to the loch, soil 

moisture and bedrock geology. Maxent analysis identified the proportion of bog as 

the most influential variable in predicting common scoter presence in the Flow 

Country. The proportion of bog close to the loch could equally be considered in terms 

of proportion of forested (and deforested) area, as these constituted the remaining 

percentage of the area not accounted for by bog. The probability of common scoter 

presence was found to be highest at 50-70% bog or 30-50% forest/deforested area. 

Commercial forestry in the Flow Country has been a controversial issue since planting 

took place in the 1980s, with many conservationists concerned about the effects of 

forestry and its associated activities (drainage and fertiliser addition) on the acidic, 

low nutrient and predominantly treeless environment of the Flow Country (Stroud et 

al., 1988). The consequences for lochs of these forestry activities on catchments of 

deep peat was not particularly well studied at the time. However, concerns included 

acidification and eutrophication as well as increases in sediment movement by 

erosion and via drainage channels (Lindsay et al., 1988; Nature Conservancy Council, 

1986; Stroud et al., 1988). Evidence to date has not been able to establish a strong 

relationship between common scoter loch use and plantation forestry (Harris, 1995), 

suggesting that if there is a relationship then it is not linear or easy to detect. 

Common scoter do not avoid lochs with forestry, and indeed some of the lochs that 

are most productive for scoter are those surrounded by, or close to large forestry 

blocks. In accordance with other evidence the results from this study suggest that 

any relationship between forestry and common scoter is complex and not a simple 

positive or negative relationship. Ecologically there appear to two possible 

interpretations of the relationship identified by Maxent, one correlative and the 

other causal. The distribution of forestry in the Flow Country is typically localised in 
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large blocks (ranging from <1km2 to ca.  40km2). The most substantial area of forestry 

is located between Forsinard and Loch More, which is also where the majority of 

common scoter breeding lochs are located. Common scoter are known to have been 

breeding in this core area since before the forestry was planted. It is therefore 

possible that the relationship between forestry and common scoter is coincidental 

rather than causal. Common scoter are known to be strongly site faithful in other 

parts of the breeding range (E. Burrell and I.K. Peterson pers. comm.). It is therefore 

possible that birds in the Flow Country are continuing to breed at sites at which they 

have historically bred, regardless of disturbance or ecological changes caused by the 

forestry. If this is the case, and the birds are continuing to attempt breeding despite 

forestry, which could have implications for the observed decline. Changes in 

terrestrial and aquatic habitats associated with the forestry could be having a 

detrimental effect on food supplies by reducing invertebrate abundance or 

substantially influencing community composition.  

Alternatively, it is possible that the observed association between common scoter 

and forestry is causal. The optima identified by the Maxent analysis (30-50%) could 

suggest that some forestry in the catchment is beneficial to common scoter, and that 

is why they are more likely to be found at these sites. Moderate amounts of forestry 

close to the lochs could have indirect consequences for common scoter; for example, 

they may provide habitat for alternative prey species, that are preferable to 

predators that would typically feed on scoter. This was demonstrated by Bêty et al., 

(2001) who observed strong patterns with breeding goose success and predator prey 

oscillations in Canada. Areas of forestry have also been shown to influence lochs by 

increasing inputs of both sediments (by erosion and drainage (Ramchunder et al., 

2009) and/or nutrients (from fertilisers, Cummins and Farrell, 2003b; Nieminen, 

2004). Increasing nutrients could make the lochs more productive (and therefore 

likely to contain more food); changes in sediment composition could make lochs 

more profitable feeding areas for common scoter by influencing loch bathymetry and 

sediment types. However, if forestry was having a positive effect on food supply and 

feeding habitat, the relationship between scoter distribution and proportion of 

forestry would be positive, with common scoter being most probable at sites where 

forestry was highest, instead of the distribution identified by Maxent.  
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Overall, it appears more likely that the relationship between forestry and common 

scoter distribution is correlative rather than causal; despite forestry being planted in 

the core of the common scoter range they continue to attempt breeding. Common 

scoter declines could therefore be indicative of changes occurring as a result of 

forestry activities, particularly as common scoter have been shown to be significantly 

associated with loch characteristics that are known to be influenced by forestry (DOC, 

Muller and Tankéré-Muller, 2012), sediment type (via erosion Turkia et al., 1998) and 

the abundance of invertebrates and fish (Drinan et al., 2013b; Graham et al., 2014). 

GLM analysis was, however, unable to identify any significant association between 

forestry and the important loch characteristics identified in Chapter 3. Subtle and/or 

indirect influences of forestry on these variables could be difficult to determine using 

only a contemporary snap shot of conditions. A temporal perspective is necessary to 

more fully understand the changes forestry may have had on the ecology of Flow 

Country lochs since the 1980s. 

Soil moisture was the second most influential variable identified by the Maxent and, 

similarly to proportion of forestry, showed a unimodal relationship, with likelihood 

of scoter presence peaking at intermediate soil moisture values. Extremes in soil 

moisture may be avoided by scoter as they represent more challenging nesting 

conditions, where nests are more likely to be flooded (in extremely wet areas) or to 

be exposed/difficult to conceal in extremely dry areas where vegetation may be 

sparse. Whilst it is possible soil moisture is indirectly affecting common scoter by 

influencing loch ecology (through processes such as increased sediment transport in 

areas of low soil moisture), no significant relationship could be identified using GLM. 

Bedrock geology accounted for an average of 13% of the scoter distribution, with 

scoter being more likely at sites with igneous bedrock types. Bedrock geology can 

influence loch ecology by influencing water chemistry. However, none of the 

variables identified in Chapter 3 were found to be significantly associated with 

bedrock geology. As the bedrock geology of the Flow Country will not have changed 

over the period of common scoter decline, it is more likely therefore that geology is 

just one of several factors contributing to the heterogeneity of Flow Country lochs 

and the distribution of common scoter.  
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Brown trout populations in Flow Country lochs are influenced by levels of fishing and 

overall levels of reproduction and restocking. The proximity of lochs to tracks and the 

connectivity of lochs by streams were included in the Maxent analysis as possible 

proxies for fishing pressure (with lochs closer to tracks potentially receiving more 

frequent visits by anglers) and fish abundance (with lochs connected to higher 

number of streams potentially providing more areas of gravel/coarse sediments for 

depositing eggs). Common scoter distribution was not substantially influenced by 

either proximity of tracks or degree of stream connectivity, suggesting that common 

scoter distribution is not influenced by brown trout, although it is conceded that 

neither of these proxies is particularly robust. 

Common scoter abundance in the Flow Country is not related to recent climate 

variations. Analysis was able to identify several landscape features that are 

associated with common scoter presence, the most influential of which was forestry. 

However, determining the nature of these relationships (whether causal or 

correlative) proved more difficult. It was not possible to establish the extent to which 

landscape scale processes directly influence loch charactersitics that are important 

to common scoter. In cases where the variables relating to competing hypotheses 

are not spatially separable (as is the case here) but are temporally distinct, a longer-

term perspective is vital. Chapters 5 and 6 of this thesis will use palaeolimnology to 

add this necessary temporal perspective. By examining timescales both concurrent 

to decline and prior to its initiation, palaeolimnology has the potential to disentangle 

competing hypotheses with spatially correlated variables, and additionally place 

present day conditions within the context of long term variability.  
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 4.6 Key findings and implications 

• No statistically significant relationship was identified between changes in the number 

of common scoter breeding in the Flow Country and annual climate variations at 

either regional (wintering sites) or local (breeding grounds) scales 

→ Annual climate variation does not appear to be a strong factor influencing 

decline of common scoter in the Flow Country either directly (by effecting the 

birds themselves) or indirectly (by effecting habitat quality, quantity or timings 

of resources), which could indicate other factors besides climate are more 

pertinent to common scoter use of the atypical Flow Country environment. 

• Species distribution modelling identified the proportion of bog and forestry close to 

lochs as being the most influential variable explaining common scoter distribution, 

followed by soil moisture and bedrock geology. Both bog and soil moisture display 

unimodal relationships with probability of scoter presence, whilst igneous type 

bedrock geologies were most strongly associated with common scoter presence.  

→ Landscape variables associated with common scoter presence could be 

correlative or causal, however on the balance of evidence a correlative 

relationship appears more probable. The core of common scoter breeding 

area in the Flow Country is located in the centre of the area selected for 

forestry activities. The unimodal relationship between scoter presence and 

proportion of forestry, together with continued scoter declines, does not 

support the theory that scoter are benefiting from or avoiding changes 

occurring in consequence of the forestry. 

• Examination of the relationships between landscape features influencing scoter 

distribution and within-loch variables (identified as important in Chapter 3) revealed 

no statistically significant relationship between landscape and within-loch features 

important to common scoter. 

→ Whilst a landscape perspective has provided evidence of the influence of 

forestry on scoter distribution, it has not been able to provide substantial 

evidence of the direct or indirect landscape influences on common scoter 

decline. A temporal perspective that can disentangle spatially correlated 

hypotheses may be a useful next step. 

 

→  
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CHAPTER 5 THE USE OF TOP-BOTTOM PALAEOLIMNOLOGICAL ANALYSIS TO 

EXAMINE RECENT ENVIRONMENTAL CHANGE AT 18 FLOW COUNTRY LOCHS AND 

INVESTIGATING THE VALUE OF A COASRE TEMPORAL SCALE PERSPECTIVE ON 

COMMON SCOTER DECLINE  

 

5.1 Overview 

This chapter examines the feasibility of using sediment cores taken from shallow 

lakes to investigate recent environmental change. The integrity of the cores will be 

examined using lithostratigraphic and geochemical techniques. The timescale 

covered by each core will be established using heavy metal profiles and corroborated 

by radiometric dating of 3 of the 18 cores. Taxa representing different trophic groups 

(diatoms and chironomids) will be used to examine recent environmental change 

using a top-bottom palaeolimnological approach. The extent and type of community 

change experienced at Flow Country lochs will be further explored in the context of 

current common scoter loch use, with the aim of gaining insights into the causes of 

decline. 

 

5.2 Introduction 

The Flow Country is an atypical environment in Britain; its remote location and 

challenging terrain have resulted in a vast wetland landscape, which superficially 

appears little influenced by the usual anthropogenic pressures. However, closer 

examination reveals a history of peat cutting and low intensity grazing, land 

management for shooting and fishing pursuits and more recently forestry plantations 

and windfarm developments. With a highly distinctive wetland flora and fauna, and 

recent declines in iconic species (such as the common scoter), the Flow Country is a 

priority for conservation. Chapter 3 of this thesis used detailed survey data to 

characterise 18 lochs in the Flow Country and established that, despite superficial 

similarities, there is currently much physical, chemical and biological variation 

between the lochs. The causes of this variation were explored in Chapters 3 and 4 by 

examining the landscape scale, climate variability and within loch processes 

structuring communities. Similar to much other freshwater research, this thesis has 

so far used only contemporary data to provide an overview of current environmental 
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conditions. Additional analyses have been used to identify the loch and landscape 

characteristics associated with a species of interest, in this case the common scoter. 

This approach has identified a number of hypotheses for common scoter decline. 

However, a major limitation of using only contemporary data is that they provide 

only a single snapshot of conditions. This can be insufficient to disentangle competing 

hypotheses for decline, or to establish how current conditions relate to longer term 

trends and natural variability. Palaeolimnology is a technique that can be used to 

provide long term environmental data by examining information archived in lake 

sediments. Biological remains and geochemical analysis of dated sediment cores 

taken from lochs, can be used to reconstruct past algal, invertebrate and plant 

communities. Palaeolimnology is reliant on sediments within a loch being deposited 

in a time-depth sequence and remaining undisturbed by bioturbation or mixing by 

strong water currents. Despite the technique being applied in a diverse range of 

freshwater habitats, there are still reservations in the conservation community about 

its application, particularly in shallow, potentially wind-stressed systems such as the 

Flow Country. This chapter aims to evaluate the use of lake sediment cores in a 

potentially challenging palaeolimnological environment, namely shallow, wind-

stressed lochs containing soft sediments which have the potential to be easily 

disturbed. Lithostratigraphic analysis will be used to assess the stratigraphy of 18 

cores. This will be complemented by geochemical analysis of heavy metal 

concentrations throughout the core lengths, which will provide further evidence 

regarding core integrity, and an estimate of timescales covered. The analysis of large 

numbers of samples from fine resolution sediment cores for multiple taxa, is a time 

intensive and potentially costly process. This chapter will therefore investigate the 

use of a less time intensive, top-bottom approach to examine coarse resolution 

changes over a large number of sites. Top-bottom analysis focuses on a sample taken 

from the surface slices of a core (representing modern communities) and a historic 

sample taken from a slice towards the base of a core; both the extent and type (or 

direction) of community change can be examined. Top-bottom analysis has been 

successfully employed to assess the extent of anthropogenic impacts (Bradshaw et 

al., 2006; Brooks et al., 2005), and to identify reference or pre-disturbance conditions 

to guide loch management and restoration (Bennion et al., 2010; Dalton et al., 2009; 
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Dixit and Smol, 1994). In this chapter top-bottom analysis will be used to provide a 

temporal context to the contemporary environmental data presented in Chapters 3 

and 4. The extent and type of change in communities representative of different 

trophic levels (diatom algae and chironomid midge larvae) will be determined for a 

time approximately representing 150-200 years BP and present day. 

The use of palaeolimnological data to address issues of current conservation concern, 

such as species decline, is only slowly increasing, despite a growing body of evidence 

demonstrating its applicability to a range of conservation issues (Ayres et al., 2007; 

Bennion et al., 1996a; Birks, 1996; Davies and Bunting, 2010; Davies et al., 2014; 

Sayer et al., 2012). Waterbirds are particularly sensitive to changes in habitat quality 

(Lehikoinen et al., 2016; Rodríguez-Pérez and Green, 2012) and have been shown to 

be valuable indicators of wetland health (Green and Elmberg, 2014). Disentangling 

the hypotheses for an observed decline in waterbird numbers to effectively prioritise 

conservation management, is often difficult due to a lack of long term environmental 

data contemporaneous with that of the decline. Despite palaeolimnology being a 

well-established technique by which historic environmental conditions in freshwater 

can be established, there have only been two examples of palaeolimnology being 

used to examine water bird declines in the UK (Allott et al., 1994; Brooks et al., 2012). 

Chapters 5 and 6 of this thesis will therefore also assess the use of palaeolimnology 

to disentangle hypotheses for a water bird decline. Competing hypotheses for 

common scoter decline in the Scottish Flow Country peatlands established in 

Chapters 3 and 4 and Hancock et al., (2015) centre around both bottom up and top 

down controls of the abiotic and biotic characteristics of lochs where they breed.  

Community change at 18 lochs will be examined in the context of common scoter 

decline. The extent of current common scoter loch use was established in Chapter 3 

(and termed scoter loch value, SLV) and will be used in this chapter to compare the 

type and extent of community change in the lochs relative to current scoter loch 

value. 

Overall this chapter has two components the first will use lithostratigraphic and 

geochemical analysis of samples along the entire core length, together with top-

bottom analysis of diatom and chironomid communities to: 
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i) Determine the integrity of cores from shallow, wind stressed lochs and 

establish the suitability of cores from challenging conditions, such as the Flow 

Country, for use in palaeolimnological studies; 

ii) Provide a temporal context for the contemporary data presented in Chapters 

3 and 4, by examining the extent and type of recent environmental change 

experienced at 18 Flow Country lochs over the last 150-200 years 

iii) Explore whether groupings of lochs (section 3.4.1.8) identified in Chapter 3 

are consistent over centennial scales; 

iv) Identify a smaller number of sites suitable for more detailed fine resolution, 

multiproxy palaeolimnological analysis (Chapter 6)  

Secondly, this chapter will investigate the use of palaeolimnology to address an issue 

of current conservation concern, the decline of the common scoter in the Flow 

Country. Recent environmental change at 18 lochs will be examined (using a top-

bottom approach) in the context of current scoter loch use to:  

i) Investigate the extent of ecosystem change in lochs with high and low current 

scoter loch value; 

ii) Establish the type/direction of ecosystem change in lochs with high and low 

current scoter loch value; 

iii) Highlight temporal variation in loch characteristics, with a particular focus on 

those that have been shown to be associated with current scoter loch use and 

distribution, invertebrate, fish and macrophyte abundance, DOC, sediment 

composition and water depth 

 

5.3 Methods 

5.3.1 Study Area 

This chapter focuses on 18 lochs in the Flow Country, Northern Scotland. Further 

information about the area is provided in Chapter 2.1. 

5.3.2 Site Selection 

The 18 lochs that are the focus of this chapter are a mixture of current and historic 

common scoter breeding lochs, set in a mixture of landscape settings. The basis for 

the selection of these 18 sites is detailed in 2.2. The full loch names and four letter 

abbreviated loch codes are provided in Table 2.4, hereafter this chapter uses the loch 
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codes to denote the study sites. Descriptions and characterisation of the sites is 

provided in Chapters 2 and 3. A scoter loch value (SLV) was calculated for each of the 

lochs in Chapter 3 (section 3.3.5.2, Table 3.1). This value represents the relative 

current common scoter use on a normalised scale (1 most used, 0 not used) and is 

used in this chapter in the interpretation of temporal change within the lochs. 

 

5.3.3 Field and Laboratory Methods 

This chapter uses a palaeolimnological approach to examine recent environmental 

change in Flow Country lochs. Short sediment cores were taken from 18 lochs 

(detailed in 2.4.2.1.1) in 2013 and sliced at 1cm intervals. Lithostratigraphic analysis 

(2.4.2.2.2) was conducted along the entire length of each of these cores to examine 

core integrity. Geochemical X-ray fluorescence (XRF) analysis was used to examine 

heavy metal profiles along the core and provide further evidence of core integrity as 

well as an approximate dating estimate (2.4.2.2.3). Slices from the top (1-2cm) and 

the bottom (ranging between 5 and 27 cm) of the core were analysed for diatom and 

chironomid remains. Details of the laboratory methods used are presented in 

2.4.2.2.5 and 2.4.2.2.6. Three of the 18 cores were dated using radiometric 210Pb 

dating methods (2.4.2.2.4).  

 

5.3.4 Statistical analysis and data presentation 

Unconstrained ordinations are useful for examining and comparing community 

composition across sites (Legendre and Birks, 2012), and are used in this chapter to 

examine which species are associated with the lochs in the bottoms and tops of the 

cores. Diatom data underwent DCA and chironomid data PCA. The choice of method 

was based on gradient lengths, determined in Canoco ver 5. 

Procrustes rotation analysis is an effective tool for comparing two or more 

ordinations by determining the deviation between corresponding points from two 

(or more) datasets. In a top-bottom context, procrustes rotation can be used to 

establish the amount of community change at a site between the bottom and top of 

a core. The method compares the two ordinations by applying uniform scaling to one 

ordination (core bottom) to minimise the sum of squared deviations (termed m2) 

between it and a target ordination (core top). Small m2 values denote sites at which 
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the tops and bottoms are similar, whilst large m2 values indicate sites which have 

experienced substantial community change. The deviations between samples in the 

two ordinations are called residuals and can be represented in a separate plot to 

facilitate comparison between sites, with the median and 3rd quartile ranges 

highlighted.  

The procrustean randomisation test (PROTEST) is an analysis of congruence and is 

conducted to formalise the results of the procrustes analysis by determining whether 

the m2 value generated is smaller (or samples from tops and bottoms are more 

similar) than would have been expected by chance. The PROTEST randomly reorders 

one dataset whilst maintaining the integrity of the other. The original m2 value is 

then compared to the randomly generated one. This procedure is carried out 

multiple times (in this case 999) and a probability of obtaining an m2 equal to or 

smaller than that obtained for the original dataset determined and given a p value. 

The level of agreement between ordinations results is indicated by the rotation sum 

of squares (RSS) and the root mean square error (RMSE), with lower values indicating 

better agreement.  

Constrained ordination, with forward selection of explanatory variables, is useful in 

top-bottom analysis to provide insights into the potential drivers of community 

change, as sites “move” in the ordination space relative to environmental variables. 

In this chapter, the procedure was carried out for both chironomid and diatom 

communities. Constrained ordinations of the samples from the tops of the cores 

were first completed, with significant environmental variables identified using partial 

Monte Carlo permutation tests in Canoco. The samples from the bottoms of the cores 

were then passively plotted onto the same ordination space. Diatom data underwent 

CCA and chironomid data RDA, the choice of method being based on gradient 

lengths, determined in Canoco ver 5. 

Data transformation followed methods detailed in Chapter 2 section 2.4.2.3. All 

ordination analyses were carried out in Canoco ver5 (ter Braak and Smilauer, 2012). 

Procrustes rotation and procrustean randomisation tests (PROTEST) (Jackson, 1995) 

were conducted in R (R Core Team, 2016) using the vegan package (Oksanen et al., 

2007). The stratigraphic plots from lithostratigraphic and geochemical analyses were 
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constructed using C2 software (Juggins, 2007) and radiometric dating results are 

illustrated using Microsoft Excel. 

 

5.4. Results 

5.4.1 Lithostratigraphy 

The core stratigraphies varied between sites (Figures 5.1 and 5.2). However, no 

consistent spatial pattern could be identified between the profiles of the different 

lochs. 13 cores did include 1 or 2 distinct sandy sediment layers but no discernible 

pattern could be determined in relation to either the depth at which the layers 

occurred, loch location or dominant surrounding land cover type.  

CAOL, CULA, DUCU, HEMO, SCYE and TALA all showed little variation in organic 

content along the core length, although slight increases were evident at CULA and 

CULA. With the exception of TALA, all these sites are those in which no sandy layers 

were visible, and which have no or minimal forestry close by. Loch TALA is the 

exception having both sand visible along its core length and large areas of forestry 

nearby (which was deforested in the 1990s). The profile of loch TALA is unusual 

compared to the other 17 cores in having an organic content of less than 5% along 

its length. The five sites with stable LOI profiles and little/no proximal forestry are, 

however, not the only sites without forestry. HEBE, DUIN and LOSG are three sites 

which are particularly distant from forestry and yet these sites have distinct changes 

in their LOI profiles and visible sandy layers.  

BREA, BEUL, CROC, DUGE and DUIN all have very high organic content, close to 100% 

for the majority of the core, with declines in LOI associated with sandy layers 

apparent at different points along the core length.  

Overall, LOI data (Figure 5.1) suggests the cores taken from these shallow Flow 

Country lochs have visible stratigraphies (rather than a homogenous LOI) which 

suggests the cores integrity is intact. Several lochs have periods of dynamic change 

associated with visible sandy layers. However, there is no consistent pattern 

discernible in relation to either overall LOI profile or landscape features such as tracks 

or forestry.  
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5.4.2 Core Chronology 

X-ray fluorescence analysis  

Studies have shown that even remote lakes have experienced increases in the 

atmospheric deposition of heavy metals since industrialisation (Yang et al., 2002). 

Flow Country lochs lack industrial activities within their catchments, the closest 

industrial centre being Inverness 100km to the south. Consequently, heavy metals 

detected within Flow Country loch sediments will be solely from atmospheric, long 

range pollution sources. Any change observed in the heavy metal concentrations 

along the cores (as described in section 2.4.2.2.3) can be used to establish an 

approximate timescale for the period covered by the core. In this chapter XRF 

analysis was used to establish both core integrity and an approximate estimate of 

timescale using heavy metal lead (Pb) profiles (Figure 5.3).  

The cores all have visible stratigraphies indicating the integrity of the cores has not 

been compromised. AMHU, BEUL, CAOL, CLAC, CULA, DUCU, DUGE, DUIN, FEAR, 

GRAS, LEIR and TALA demonstrated the typical peak in heavy metal Pb 

concentrations followed by a decrease. At sites LOSG and CROC the rise is observable 

but the following decrease is not clear, perhaps indicating that the tops of these two 

cores had been disturbed/missing. The profiles of BREA, HEBE, HEMO and SYCE do 

follow a pattern of increased Pb followed by a decrease but the peak of Pb is not well 

defined.  

XRF dating estimates were corroborated by more robust 210Pb dating for 3 of the 18 

cores (the results of which are detailed in the following section). 1900 and 1960, 

established by the 210Pb method, are indicated on the XRF profiles and the age-depth 

curves for LEIR, GRAS and CAOL in Figure 5.4. Whilst 1960 is fairly consistently placed 

between 2 and 4 cm depths, the depth range at which 1900 is recorded varies more 

substantially between the three lochs (3, 6 and 10cm respectively). The sediment 

accumulation rate at LEIR is particularly low.  

The position of samples selected for top-bottom analysis of chironomid and diatom 

communities are also illustrated in Figure 5.3. The surface samples taken from 1-2 

cm represent conditions post-1960 based on the data from the three dated cores. 

Whilst some surface samples may represent contemporary communities, the slow 

accumulation rate of some systems may mean that the slice represents several 
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decades. The bottom samples were initially taken from 1cm above the base of the 

core, but where insufficient heads (chironomids) or valves (diatoms) were found in 

the slice, a sample was taken from 1-2cm further up the core. Chironomid 

concentrations at CULA and especially GRAS were particularly low in the base of the 

core and consequently samples were taken from several cm further up the core. The 

dates for the bottom samples were estimated based on the position of the sample in 

the XRF profile. Approximate dates were categorised as being either prior to 1850 

(before an increase in Pb concentrations) or between 1850-1970 (during the rise in 

Pb concentration but before the reductions). Details of the estimated dates for the 

chironomid and diatom samples are shown in Table 5.1. 
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Figure 5.4 The XRF Pb profiles (A) and age-depth curves (B) for CAOL, LEIR and GRAS 

with the dates for 1960 and 1900 as determined by radiometric technique indicated 

by the red line 
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Site Chironomid bottom sample Diatom bottom sample 

Depth (cm) Estimated 

date 

Depth (cm) Estimated date 

AMHU 12-13 Pre-1850 11-12 Pre-1850 

BEUL 18-19 Pre-1850 16-17 Pre-1850 

BREA 8-9 Pre-1850 8-9 Pre-1850 

CAOL 14-15 Pre-1850 14-15 Pre-1850 

CLAC 17-18 Pre-1850 17-18 Pre-1850 

CROC 9-10 Pre-1850 9-10 Pre-1850 

CULA 14-15 1850-1970 19-20 Pre-1850 

DUCU 8-9 Pre-1850 7-8 Pre-1850 

DUGE 12-13 Pre-1850 12-13 Pre-1850 

DUIN 20-21 Pre-1850 17-18 Pre-1850 

FEAR 10-11 Pre-1850 9-10 Pre-1850 

GRAS 5-6 1850-1970 13-14 Pre-1850 

HEBE 6-7 Pre-1850 6-7 Pre-1850 

HEMO 14-15 Pre-1850 14-15 Pre-1850 

LEIR 13-14 Pre-1850 12-13 Pre-1850 

LOSG 11-12 Pre-1850 11-12 Pre-1850 

SCYE 26-27 Pre-1850 26-27 Pre-1850 

TALA 6-7 1850-1970 5-6 1850-1970 

Table 5.1 The time period for the bottom samples of diatom and chironomids 

estimated from the position on the Pb XRF profile 

 

Radiometric dating 

Due to cost constraints, only 3 of the 18 cores were radiometrically dated. The results 

confirmed the approximate dates calculated using XRF analysis. 1963 was calculated 

as being at 2.5cm sediment depth in CAOL and 3.5cm in LEIR and GRAS.  
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When dating recent lake sediments using 210Pb, models are typically validated by 

examining the 137Cs and 241Am peaks associated with nuclear weapons testing in 1963 

and the Chernobyl accident in 1986 (Appleby, 2002). 

The results for radiometric dating of CAOL are shown in Figures 5.5, 5.6 and Table 

5.2. Total 210Pb reaches equilibrium with supported 210Pb at approximately 12cm. A 

stable sediment accumulation rate is indicated by the more or less exponential 

decline in unsupported 210Pb activities from 1-6cm. Dips in unsupported 210Pb at 6.5 

and 8.5 indicate increased sediment accumulation rates during these periods. The 

reduction in sediment accumulation rate towards the top of the core, combined with 

the maximum level of 137Cs activity, could indicate some surface sediments are 

missing, however, this is not supported by the XRF Pb profile which indicates this core 

is intact and not missing its top. The 137Cs versus depth profile is of little use for dating 

as the signal does not show a clear peak, just a steady decline from the surface 

sediment. A clearly defined 241Am peak at 2.5cm, combined with the concurrent 

levels of 137Cs activity, correlates with fallout from atmospheric weapons testing in 

1963. Core chronologies were calculated using the CRS model due to non-monotonic 

variation of unsupported 210Pb in the core. The chronology was corrected using the 

241Am recorded peak of 2.5cm being formed in 1963.  

The radiometric dating results from loch LEIR are shown in Figures 5.7, 5.8 and Table 

5.3. The total 210Pb activity reached equilibrium with unsupported 210Pb at 6cm. The 

decline in the gradient of unsupported 210Pb activities from 4.5cm to the surface 

sediment indicates a gradual increase in sediment accumulation rates during this 

period (ca. 1920 to 2013). Similar to CAOL, the 137Cs activity versus depth profile 

shows a decline from the surface sediments which means the 137Cs is not useful for 

dating. A sharp peak of 241Am was recorded at 3.5cm which suggests this was the 

period of the 1963 nuclear weapons testing. Loch LEIR core chronologies were 

calculated using the CRS dating model, which places 1963 at 3.5cm and agrees with 

the 241Am record. Sediment accumulation rates in the core show a slow increase from 

0.0039 g cm-2 yr-1 in the 1910s to 0.007 g cm-2 yr-1 in the present day (Figure 5.8). 

Loch GRAS radiometric dating results are shown in Figures 5.9, 5.10 and Table 5.4. 

Total 210Pb activity reached equilibrium depth with supported 210Pb activity at c. 7.5 

cm of the core. An increase in recent sediment accumulation rates is indicated by 



186 
 

irregular declines in unsupported 210Pb with depth. The 137Cs peak was recorded at 

1.5cm which is likely to be derived from the 1986 Chernobyl fallout. The small peak 

of 241Am might be derived from the fallout of the atmospheric testing of nuclear 

weapons but is less useful for dating due to the low value. Chronologies of the core 

were calculated using the CRS dating model which was corrected using the 137Cs 

peak, identifying 1.5 cm as from in 1986. The corrected CRS model places 1963 

around 3.5 cm, which is in agreement with the 241Am record. Sediment accumulation 

rates at GRAS are fairly uniform up until ca. 1986 following which a steep decline can 

be observed, although showing an increase in recent years. 

In the three cores radiometrically dated in this chapter some of the 137CS peaks were 

difficult to discern, which could result from sediment mixing. However the evidence 

from the heavy metal profiles and the presence of a clear 241Am peak shows the core 

stratigraphies are intact, and that rather than physically mixing the 137Cs has possibly 

experienced chemical diffusion in the surface sediments (Appleby, 1997). 

Sediment accumulation rate in the three sites has been relatively stable for at least 

the last 80 years (Figures, 5.6, 5.8 and 5.8), indicating no strong influence of forestry 

activities on sediment accumulation rate. CAOL_1 is the only site that shows 

substantial change in sediment accumulation rate, with two peaks at ca. 1915 and 

ca. 1930.  
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Figure 5.5 Fallout radionuclide concentrations in core COAL, showing (a) total 210Pb 

(solid pink line) and unsupported 210Pb (solid blue line) (b) unsupported 210Pb, and (c) 

137Cs (solid blue line) and 241Am (dashed line) concentrations versus depth. 

 

Depth Drymass Chronology Sediment accumulation rate 

  Date Age     

cm g cm-2 AD yr ± g cm-2 yr-1 cm yr-1 ± % 

0 0 2013 0     

0.5 0.0255 2008 5 2 0.0052 0.083 7.1 

1.5 0.0927 1991 22 4 0.003 0.04 7.7 

2.5 0.1761 1963 50 12 0.0045 0.036 13.9 

3.5 0.2589 1954 59 12 0.0084 0.102 17.1 

4.5 0.3402 1943 70 13 0.0092 0.102 21.5 

5.5 0.4368 1932 81 15 0.0084 0.062 26.8 

6.5 0.6114 1922 91 23 0.034 0.189 63.2 

7.5 0.7922 1917 96 26 0.0166 0.107 62.7 

8.5 0.9216 1914 99 27 0.034 0.214 76.1 

9.5 1.1101 1908 105 29 0.041 0.19 96 

10.5 1.3533 1893 120 30 0.0087 0.037 78.9 

Table 5.2. 210Pb chronology of core CAOL_1, Scotland. 
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Figure 5.6. Radiometric chronology of core COAL, showing the CRS model 210Pb dates 

(dashed line), corrected CRS dates (solid blue line) and sediment accumulation rates 

(black dashed line) 

 

 

 

Figure 5.7. Fallout radionuclide concentrations in core LEIR_1, showing (a) total 

210Pb (solid pink line) and unsupported 210Pb (solid blue line) (b) unsupported 210Pb, 

and (c) 137Cs (solid blue line) and 241Am (dashed line) concentrations versus depth. 
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Depth Drymass Chronology Sediment accumulation rate 

  Date Age     

cm g cm-2 AD yr ± g cm-2 yr-1 cm yr-1 ± % 

0 0 2013 0     

1 0.0527 2005 8 2 0.007 0.108 10 

2.5 0.1619 1989 24 2 0.0065 0.066 10.1 

3.5 0.2972 1965 48 3 0.0048 0.028 12.3 

4.5 0.5075 1918 95 8 0.0039 0.016 28 

5.5 0.8036 1858 155 28 0.0081 0.033 117 

Table 5.3. 210Pb chronology of core LEIR_1. 

 

 

 

 

 

 

 

 

 

Figure 5.8. Radiometric chronology of core LEIR_1, showing the corrected CRS dates 

(solid blue line) and sediment accumulation rates (black dashed line) 
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Figure 5.9. Fallout radionuclide concentrations in core GRAS_1, showing (a) total 

210Pb (solid pink line) and unsupported 210Pb (solid blue line) (b) unsupported 210Pb, 

and (c) 137Cs (solid blue line) and 241Am (dashed line) concentrations versus depth. 

 

Depth Drymass Chronology Sediment accumulation rate 

  Date Age     

cm g cm-2 AD yr ± g cm-2 yr-1 cm yr-1 ± % 

0 0 2013 0     

0.5 0.0406 2008 5 6 0.0073 0.074 71.4 

1.5 0.1466 1986 27 6 0.0032 0.025 7.2 

2.5 0.2984 1977 36 6 0.0199 0.1 11 

3.5 0.5445 1966 47 6 0.02 0.071 9.1 

4.5 0.871 1949 64 6 0.018 0.048 11.7 

5.5 1.3006 1924 89 8 0.021 0.036 19 

6.5 2.0439 1893 120 14 0.024 0.029 56 

7.5 2.9717 1854 159 22 0.024 0.026 85.7 

Table 5.4. 210Pb chronology of core GRAS_1. 
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Figure 5.10 Radiometric chronology of core GRAS_1 showing the CRS model 210Pb 

dates (dashed line), corrected CRS dates (solid blue line) and sediment accumulation 

rates (black dashed line) 

 

5.4.3 Recent environmental change at Flow Country lochs using a top-

bottom palaeolimnological approach 

5.4.3.1 Community change in Flow Country lochs  

The short sediment cores taken from 18 Flow Country lochs have been shown to have 

an intact stratigraphy, without evidence of physical sediment mixing due to wind or 

bioturbation. A top-bottom examination of diatom and chironomid communities was 

undertaken with the aim of examining recent environmental change at the sites over 

the last 150-200 years. The contemporary limnological data detailed in Chapter 3 will 

be examined in a temporal context, loch groupings identified during the previous 

analyses will be explored. Diatoms and chironomids are useful indicators of 

environmental change because they represent different levels within the loch’s 

trophic structure and are sensitive to both water chemistry, climate and structural 

and habitat change. 
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Diatoms  

The twenty most commonly occurring diatom species in the tops and bottoms of the 

18 cores are illustrated in Figure 5.11. Typically, the communities are dominated by 

benthic species in both the tops and bottoms of the cores. Fragilaria sensu lato 

species are the most common in both the tops and bottoms of the cores, particularly 

Fragillaria exigua and Staurosira construens var. venter. Eunotia and Achnanthes taxa 

also occur in both bottoms and tops, and include species commonly associated with 

low nutrient, acidic conditions. Asterionella formosa, a species typically associated 

with more nutrient rich habitats, occurs more frequently in communities in the tops 

of the cores, being present in 5 out of the 18 sites currently, whilst in the bottom 

samples it is only present at 3 sites. Overall levels of diversity (number of species 

recorded) in the tops and bottoms of the cores are shown in Figure 5.12, whilst these 

data must be treated with caution, as they potentially represent slightly different 

time periods, they can none the less give a useful indication of relative levels of 

diversity between contemporary and historic communities. The maximum number 

of species recorded is similar in both the tops and bottoms. The range is smaller in 

the surface samples, which could indicate that the flora of the loch is becoming more 

diverse, particularly as there was no strong evidence of diatom degradation/damage 

in the historic samples. SCYE is the most diverse site in both the tops and bottoms, 

and HEMO the least diverse in both instances. There appears to be no clear pattern 

in change in diversity in relation to known changes in landscape setting, such as 

forestry.  

Unconstrained ordinations of the tops and bottoms are presented separately in 

Figure 5.13. Separate ordinations were presented partly to explore whether sites 

were characterised by similar species in both the tops and bottoms of the cores, and 

also to give an impression of whether the groupings of the sites observed in the 

contemporary samples were mirrored in the historic records. It is acknowledged 

however that these conclusions need to be considered with caution, as the samples 

from the bottoms of the cores may represent different points in the lochs ecological 

history. In both top and bottom ordinations CLAC, CROC, DUIN, DUGE and LOSG are 

all positioned on the left side of the ordination space, and are associated with species 

of Eunotia. CULA is also positioned within this group of sites in the bottom ordination 
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but not in the top ordination. Conversely BEUL is positioned in this group in the top 

ordination, but in the bottom ordination is located closer to the main group of sites, 

although still remains a slight outlier. In the bottom ordination, the remaining sites 

are similar to one another, forming a closely located group on the right-hand side of 

the ordination space. The only exception is FEAR. This site is clearly separate from 

the main two groups in the bottom ordination, and is characterised by Nitzhia 

gracilis, S. pinnata, A. saxonica and N. Jaernefelti. In the surface samples FEAR is 

located within the main group of lochs, indicating the community composition has 

become more similar to the other sites over the last 150 to 200 years. Overall the 

groupings of lochs by diatom communities are relatively similar in the tops and tops 

of the core, with the exception of BEUL, CULA and FEAR. 

Procrustes rotation of the diatom ordinations for the tops and bottoms of the cores 

was carried out to examine the similarity and underlying gradients of the datasets 

(Birks et al., 2012). Figure 5.14 indicates the difference in fitted site values between 

the bottom (the closed circles) and top samples (arrow heads) for the diatom 

communities. The comparative length of residuals for each site can be seen in Figure 

5.14 inset (B). Residuals highlight patterns of correspondence, large residuals 

indicate samples that do not have similar communities in the tops and bottoms of 

the cores, and small residuals highlight bottom samples which have similar 

community composition. Overall the diatom communities show low concordance 

between tops and bottoms of the cores (m2 =0.8033), however, this is not 

statistically significant (p=0.073) (Figure 5.14). Sites with the highest concordance 

(small procrustes residuals) are BEUL, CLAC, CROC, CULA, DUGE and SCYE. HEMBE 

has the largest procrustes residual with respect to diatom communities. The loch 

with the largest amount of forestry surrounding it CROC is also the site with the least 

community change, whilst some of the sites with the lowest percentage of 

surrounding forestry display the most floristic change in diatom communities. No 

correlation is evident between trout abundance and amount of diatom community 

change. 
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Figure 5.12 Diatom diversity (total number of species) in the tops (black) and 

bottoms (red) of the 18 cores 

 

 

 

 

 



196 
 

  

Fi
gu

re
 5

.1
3

 A
xi

s 
1

 a
n

d
 2

 o
f 

D
C

A
 o

rd
in

at
io

n
s 

o
f 

th
e 

d
ia

to
m

 c
o

m
m

u
n

it
ie

s 
in

 t
h

e 
to

p
 (

A
) 

an
d

 b
o

tt
o

m
s 

(B
) 

o
f 

th
e 

co
re

s 
 



197 
 

 

Fi
gu

re
 5

.1
4

 R
es

u
lt

s 
fr

o
m

 t
h

e 
P

ro
cr

u
st

es
 r

o
ta

ti
o

n
 a

n
d

 P
R

O
TE

ST
 a

n
al

ys
is

 f
o

r 
d

ia
to

m
 c

o
m

m
u

n
it

ie
s 

(A
) 

P
ro

cr
u

st
es

 s
u

p
er

im
p

o
si

ti
o

n
 p

lo
t 

(B
) 

P
ro

cr
u

st
es

 r
o

ta
ti

o
n

 r
es

id
u

al
s 

p
lo

t,
 s

h
o

w
in

g 
th

e 
d

if
fe

re
n

ce
s 

b
et

w
ee

n
 t

h
e 

P
C

A
 c

o
n

fi
gu

ra
ti

o
n

 f
o

r 
th

e 
to

p
 a

n
d

 b
o

tt
o

m
 s

am
p

le
s,

 (
C

) 
ro

o
t 

m
ea

n
 

sq
u

ar
e 

er
ro

r 
(P

R
M

SE
),

 r
o

ta
ti

o
n

 s
u

m
 o

f 
sq

u
ar

es
 (

P
R

SS
),

 m
1

2
 a

n
d

 a
ss

o
ci

at
ed

 p
-v

al
u

e
. T

h
e 

fi
sh

 a
b

u
n

d
an

ce
 (

p
er

 r
o

d
 h

o
u

r)
 a

n
d

 p
er

ce
n

ta
ge

 o
f 

fo
re

st
ry

 in
 t

h
e 

ca
tc

h
m

en
t 

(f
ro

m
 C

EH
 d

at
a)

 a
re

 s
h

o
w

n
 o

n
 t

h
e 

ri
gh

t 

 



198 
 

Chironomids 

The stratigraphic plots (Figure 5.15) of the 20 most frequently occurring chironomid 

species were used to explore changes in the abundant species composition. 

Cladotanytarsus type 2, Micropseptra, Phaenopsectra type A, Psectrocladius 

septentrionalis are amongst the 20 most frequently occurring taxa in the tops of the 

cores but not in the bottoms. Phaenopsectra sp. and Psectrocladius septentrionalis 

are both taxa have been shown to be associated with acidified systems (Pillot, 2014). 

Pagastiella, Pseudorthocladius, Pseudosmittia, Theinemannimyia occur frequently in 

the bottom samples (in between 7-11 sites), and occur less frequently in the core 

tops (3-6 sites). Pseudorthocladius are associated with aquatic macrophytes and 

Pseudosmittia with littoral habitats in oligotrophic lakes (Pillot, 2014). Chironomid 

diversity and abundance in the tops and bottoms of the cores are shown in Figure 

5.16. Despite the core bottom samples potentially representing different time 

periods the diversity recorded at each is similar to the contemporary samples. The 

abundance of heads per gram of wet sediment ranges from 4 to 153 in the bottoms 

and 19 to 135 in the tops. LOSG has a noticeably higher abundance of head capsules 

in the bottom sample, however it is difficult to interpret this without finer resolution 

dating. 

Comparing ordinations for the chironomid communities in the tops and bottoms of 

the cores shows little overlap in groupings of sites between the tops and bottom 

(Figure 5.17). The sites are distributed across the ordination space in both cases and 

it is difficult to confidently delineate groups of similar lochs. Outliers in the tops are 

not the same as those outliers present in the bottom ordination. 

The chironomid procrustes analysis also shows a low overall level of concordance 

between bottom and top samples in the 18 cores (m2= 0.7799) indicating change 

which is significant at the 0.05 level (p=0.05) (Figure 5.18). Sites with the lowest 

residual distances, and therefore having changed the least, are CULA, LEIR, SCYE, 

TALA. Lochs BEUL, CAOL, CLAC and HEBE have high residual distances outside of the 

third quantile range. There is no clear relationship in the amount of change indicated 

for chironomid communities and the environmental variables neither with fish 

abundance or proportion of bog in the catchments. 
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Figure 5.15 The abudance (per gram wet sediment) of the 20 most frequently occurring 

chironomid species in the tops (black) and bottoms (red) of the 18 cores 
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5.4.3.2 Drivers of recent ecological change and implications for 

breeding scoter 

Figures 5.19 and 5.20 show the constrained ordinations of modern chironomid and 

diatom communities with significant (<0.05) environmental variables identified. 

Samples from the bottoms of the cores are passively plotted. Top-bottom ordination 

plots can be used to indicate the extent (length of line between top and bottom 

samples) and type (direction of line between top and bottom samples) of community 

change that has occurred between bottom and top samples from a core. However, 

inferences based on top-bottom ordination plots must be approached with caution 

when potentially different timescales are being considered as has been shown to be 

the case here.  

Neither the chironomid nor diatom top-bottom plots show correlation in the 

direction or extent of community change in relation to scoter loch value. However, 

five of the eight sites with SLV <0.5 appear in the upper left of the diatom ordination 

for the majority of their length (AMHU, BREA, HEBE, HEMO, SCYE), indicating that the 

communities of these sites were distinct from the sites with higher SLV both 

historically and today.  

Similarly, many of the low scoring sites in the chironomid plot are positioned together 

in the lower left of the ordination space (associated with high DOC and fish weight) 

for at least part of their length. The only exceptions are CROC and LOSG high scoring 

SLV sites located in this area dominated by low scoring SLV sites.  

The two sites with the highest SLV (LEIR and FEAR) are shown to move almost parallel 

to one another in both chironomid and diatom plots; as do BEUL, and CLAC, indicating 

the type of change experienced has been similar at these sites. 
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Figure 5.19 Axis 1 and 2 of a CCA of modern diatom communities with significant 

(<0.01) environmental variables identified, samples from the bottoms of the cores 

are passively plotted. Sites are categorised by scoter loch value (SLV), yellow SLV=0, 

blue SLV=<0.5, green SLV=>0.5 
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Figure 5.20 Axis 1 and 2 of a RDA of modern chironomid communities with significant 

(<0.01) environmental variables identified, samples from the bottoms of the cores 

are passively plotted. Sites are categorised by scoter loch value (SLV), yellow SLV=0, 

blue SLV=<0.5, green SLV=>0.5 
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5.5 Discussion 

Core integrity 

Lithostratigraphic and geochemical analysis of cores taken from 18 Flow Country 

lochs has established that the sediments of these shallow, potentially wind stressed, 

lochs have not been substantially disturbed. The cores had a visible stratigraphy, and 

analysis of both 210Pb and heavy metals could be used to successfully establish core 

integrities and chronologies. In 16 of the 18 cores analysed in this chapter there was 

no strong evidence of sediment mixing or re-suspension. The heavy metal profiles 

from the remaining two sites (Loch Losgann and Lochan Croc nan Lair) did indicate 

that some surface sediments could be missing, which could have resulted from 

sediment re-deposition and/or loss during the coring process. Although the 137Cs 

peaks were indistinct in the 210Pb dated cores, validation of both core integrity and 

timeframe was possible using XRF profiles. These findings are in accordance with 

Allott and Rose, (1993), who used both radiometric and SCP approaches to date 

sediment cores taken from Flow Country lochs, with minimal evidence of disturbance 

by physical mixing. 

Overall there is strong evidence from these data that sediments in these shallow 

lochs have not been substantially affected by physical or biological mixing. 

 

Recent environmental change at 18 blanket bog lochs 

Diatom and chironomid taxa present in the tops and bottoms of the cores are largely 

typical of those associated with low nutrient, acidic lochs. However, there are some 

indications of increasing nutrients and acidity in the tops of the cores compared to 

the bottoms as meso-oligotrophic species and taxa associated with acidification have 

become more common. Evidence of community change and particularly the 

increased occurrence of nutrient and acidification tolerant taxa could indicate that 

Flow Country lochs have experienced nutrient enrichment and/or acidification. 

Typical agricultural activities and human sewage (that are commonly the source of 

nutrient inputs in the lowlands) are not present in the Flow Country, where the 

landscape is predominantly low nutrient blanket bog. Sources of nutrients in the Flow 

Country are likely to be associated with either atmospheric deposition and/or 

catchment sources associated with anthropogenic land management practices (such 
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as rotational heather burning and/or forestry plantations). Taxa tolerant of 

acidification identified in the tops of the cores suggest acidification could also be an 

issue in these systems, and is most likely a consequence of either atmospheric 

deposition or proximal forestry. Diatom analysis of lake sediment cores indicates that 

rapid acidification has occurred in lakes throughout North America and North West 

Europe over the last 150 years as a consequence of atmospheric deposition 

(Battarbee et al., 1984). However there is also evidence that coniferous forestry 

plantations on peatlands can result in increasing acidity of proximal surface waters 

(Harriman and Morrison, 1982; Neal et al., 2004, 2001; Reynolds et al., 1995), as their 

foliage are particularly efficient scavengers of acid particles from atmospheric 

sources (Nature Conservancy Council, 1986).  

Atmospheric deposition can impact sites that are remote from industrial sources of 

nitrogen and sulphur pollution (Fay et al., 1987), and can result in increases in the 

biomass of primary producers such as algae, particularly in otherwise unimpacted 

systems (Lepori and Keck, 2012). Although quantitative measures of diatom biomass 

were not determined in this chapter, it is possible that the increases in nutrient 

tolerant taxa identified are a consequence of long distance atmospheric deposition. 

However, deposition data (NEGTAP, 2001) suggests the Flow Country is not a high 

deposition region. Top-bottom analysis does not provide the temporal resolution 

necessary to separate nutrient inputs from atmospheric (deposition) and catchment 

(forestry/burning) sources. Palaeolimnological analysis at a fine scale temporal 

resolution would enable signals from deposition and catchment sources to be 

disentangled.  

The catchment-based sources of nutrients in the Flow Country are most likely to be 

associated with land practices such as rotational heather burning and/or coniferous 

forestry plantations.  

The burning of peatland is a widespread practice undertaken to encourage growth of 

nutrient-rich grasses for grazing cattle and sheep, and in more recent times has 

become a key management practice on many sporting estates, to create habitat 

suitable for grouse and deer. In the Flow Country it was found to be the most 

widespread land management practice, with 51% of NCC sites surveyed having 

evidence of some burning, and a further 10% abundant burning (Lindsay et al., 1988). 
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Nutrient cycling, hydrology and surface vegetation are all affected as a consequence 

of burning (Clay et al., 2009a; Ramchunder et al., 2009; Worrall et al., 2007; Worrall 

and Clay, 2010). However, the focus of research to date is predominantly on 

terrestrial peatland areas, rather than open water bodies, such as lakes. Whilst 

evidence suggests there can be large nutrient losses following heather burning 

(45kg/ha of nitrogen (Allen, 1964), the main consequence for lakes and rivers 

documented in the literature centres around the effects on water colour and DOC, 

rather than increases in nutrients. However, a consensus on the extent to which 

heather burning effects water colour and DOC export has yet to be reached (Clay et 

al., 2009a; Holden et al., 2012). Whilst it appears unlikely that heather burning is 

likely to be the source of increased nutrients, fine temporal scale analysis of remains, 

particularly charcoal, would provide further insights into the potential effects of 

heather burning on Flow Country lochs. 

Forestry plantations have been shown to substantially influence the ecology of 

boreal and/or peatland lakes (Drinan et al., 2013b, 2013c; Graham et al., 2014; 

Lepistö and Saura, 1998; Turkia and Lepistö, 1999). The application of fertilisers at 

the time of planting and/or in subsequent years to relieve deficiency, and the 

installation of drainage ditches to decrease soil saturation and enable tree growth 

facilitate the export of both sediments and nutrients from plantations into nearby 

lochs. Commonly used fertilisers are phosphate, potassium and nitrogen based; the 

maximum recommended application rate is 350kg/ha-1 for granulated rock 

phosphate and granulated urea fertilisers when planting (Department of Agriculture 

Food & the Marine, 2015). The addition of nitrogen based fertilisers is not always 

necessary as drainage, site preparation and P addition can increase mineralisation of 

N from the peat (Ramberg, 1976; Renou and Farrell, 2005). Data concerning the 

quantity and frequency of fertilisers applied to forestry plantations in the Flow 

Country was not obtainable. However, recent increases in nutrient tolerant taxa, 

indicated from the top-bottom analysis, suggest that nutrient export to the lochs has 

occurred. Whilst it is possible that this is a consequence of forestry operations, there 

is no clear correlation between lochs with forestry within close proximity and 

increases in nutrient tolerant taxa. This could indicate either that the effects of 

forestry affect a larger area than might be expected, or that other factors are 
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contributing to the nutrient increases. To discern how nutrient levels in the lochs 

have changed since forestry plantations were established data from a fine temporal 

scale is necessary because both atmospheric and catchment sources could be 

contributing. However, the coarse-temporal resolution of the data generated in this 

chapter do not allow the sources to be differentiated. Fine-scale resolution analysis 

would enable the contribution of nutrient sources to be disentangled more clearly 

and will be undertaken in Chapter 6.  

 

Recent environmental change in the context of common scoter decline 

The aquatic communities of the cores from lochs with low scoter loch value are 

somewhat separate to those with higher scoter loch value in some instances, 

indicating that the ecology of high and low scoring SLV sites have probably been 

different for the last 150-200 years. The implication of this could be that low scoring 

scoter sites have always been sub-optimal for breeding common scoter, and only 

began to be used as the population increased. As the overall Flow Country scoter 

population declined, low SLV sites may have been abandoned first as more space 

becomes available at the optimal sites. The type and extent of community change 

indicated by the top-bottom analysis has also provided useful insights, which could 

be used to prioritise lochs for conservation management and restoration in relation 

to common scoter. 

 

Site selection for further palaeolimnological analyses  

This chapter has examined the coarse-scale change at a relatively large number of 

Flow Country sites. Results have demonstrated substantial change has occurred over 

the last 150-200 years, and additionally have highlighted the limitations of top-

bottom analysis. These limitations could be addressed by fine scale temporal scale 

analysis, particularly multi-proxy analysis of the most recent sediments (the last 30-

50 years). Four sites were therefore selected for further analyses partly based on the 

results from this chapter, and partly to include sites with a mixture of landscape 

settings and fish densities to allow examination of the hypotheses developed in this 

thesis. AMHU, FEAR, LEIR and TALA all had visible stratigraphies, and heavy metal 

profiles that indicated undisturbed sediment deposition. In addition, LEIR had been 
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successfully 210Pb dated which meant there was potential to cross-correlate cores for 

dating from this site. FEAR and LEIR have the highest scoter loch value of any of the 

sites and TALA and AMHU were amongst the lowest. The four sites have differing 

degrees of forestry/deforested area within close proximity and a mixture of fish 

densities. Although recent surveys indicated several of the lochs could be fishless the 

accuracy of these data is questionable as other sources (Bruce Sandison, 2015; 

Crawford, 1991) indicate the presence of trout. Consequently, sites covering a range 

of fish densities were selected rather than a site suspected, but not confirmed to be 

fishless. 
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5.6 Key findings and implications 

• Sediment cores were successfully taken and dated (using heavy metals and 

210Pb analyses) from a challenging palaeolimnological environment, namely 

shallow, wind-stressed lochs with fine and potentially flocculent sediments. 

→ The sites appear suitable for palaeolimnological work. 

• Substantial community change was demonstrated in both diatoms and 

chironomids, although there is a noticeable increase in nutrient tolerant 

species there is no clear pattern in the overall community composition change 

in terms of either direction or extent.  

→ All the lochs of the Flow Country are undergoing environmental 

change. The sources of increased nutrients could be either 

atmospheric or catchment-based. However, the coarse temporal 

resolution of the top-bottom approach does not allow the relative 

contribution of these processes to be established. 

• Some groupings of lochs are apparent on the basis of SLV. Some low SLV lochs 

have communities distinct from sites with high SLV both now and historically, 

suggesting that there have always been differences between these types of 

sites. However, it is difficult to be confident about this interpretation because 

there are inconsistencies. 

→ The implication could be that some sites have always been less 

suitable for scoter, and that use of these sites increased during past 

peaks in populations when overall number of scoter were higher and 

the population more widespread. 

• The palaeolimnological data from this chapter was also used to identify four 

sites to be the focus of fine resolution palaeolimnological analysis which will 

be explored using fine scale, multiproxy analysis in Chapter 6. 
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CHAPTER 6: MULTIPROXY ANALYSIS OF LARGE BORE SEDIMENT CORES TO 

EXAMINE FINE RESOLUTION ENVIRONMENTAL CHANGE AT FOUR FLOW COUNTRY 

LOCHS AND ASSESS THE IMPLICATIONS FOR COMMON SCOTER DECLINES  

 

6.1 Overview  

Chapter 6 involves multiproxy analysis of wide bore sediment cores to examine 

recent environmental change at a temporal resolution contemporaneous with 

common scoter declines. Top-bottom analysis (Chapter 5) indicated that the lochs of 

the Flow Country have undergone substantial change over the last 150-200 years. 

However, with this broad scale preliminary analysis it was not possible to assess the 

timescale of change and consequently the most pertinent drivers of change could not 

be identified. This chapter assesses recent environmental change at four Flow 

Country lochs by examining changes in diatom, invertebrate and macrophyte 

community communities over the last 150-200 years. This palaeolimnological 

evidence is then used to evaluate the theories of common scoter decline relating to 

forestry and/or fish. The findings from this chapter are used to assess the use of 

palaeolimnology to identify the drivers of freshwater species declines and provide 

evidence for conservation management. 

 

6.2 Introduction 

The aim of this chapter is to use multi-proxy palaeolimnological analyses to examine 

recent environmental change at lochs in an internationally important UK wetland, 

the Flow Country. Analysis will be undertaken at a fine temporal resolution, which 

will enable exploration of how recent environmental change in Flow Country lochs 

may be influencing the decline of a priority waterbird species, the common scoter.  

This chapter will firstly examine recent environmental change at four Flow Country 

lochs set in different landscape settings and with a range of brown trout densities. 

This fine temporal resolution palaeolimnological evidence will then be considered in 

the context of the two theories for common scoter decline. Palaeolimnological 

evidence will be used to explore the following questions relating to the two 

competing theories of common scoter decline: 
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i) Is there evidence of change in the fish (brown trout) populations at the 

four lochs, and if so what are the implications for macroinvertebrate 

abundance? 

a. Can fish scale evidence be used to determine whether fish 

introductions have occurred at the lochs? 

b. Do other macrofossil indicators provide evidence of fish introduction 

at the lochs?  

c. Is there evidence of a change to macroinvertebrate communities that 

could be associated with brown trout introductions and/or changes in 

population structure? i.e. is there a reduction in large bodied and/or 

planktonic taxa, which could be detrimental to breeding common 

scoter? 

ii) Are the effects of afforestation (in the 1980s) evident at the four lochs? 

a. Does geochemical analysis of the cores indicate that there has been a 

change in sedimentation rates or sediment composition that could be 

a consequence of increased erosion associated with the 1980s? 

b. Is there evidence of changes to water chemistry (i.e. increased 

nutrients from fertilisation events or acidification as a result of 

forestry) during the 1980s?  

c. Has the abundance and/or composition of invertebrate communities 

changed since the 1980s? and could this be indicative of the effects of 

forestry i.e. increased sedimentation, eutrophication and/or 

acidification.  

 

6.3. Methods 

6.3.1 Study Area 

This chapter focuses on four lochs in the Flow Country and further information 

about the study area is provided in Chapter 2. 

 

6.3.2 Site Selection 

Four of the 18 lochs analysed at a coarse temporal resolution in Chapter 5 were 

examined using wide bore, fine resolution analysis in this chapter. These were Loch 
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a'Mhuillinn (AMHU), Loch nam Fear (FEAR), Loch Leir (LEIR) and Loch Talaheel (TALA) 

(Table 6.1). Hereafter this chapter will use the four-letter loch codes to denote the 

study sites. Details of how these sites were selected is provided in Chapter 2, Section 

2.3. An overview of the site characteristics are provided in Table 6.1. Details of the 

landcover types both within a 500m buffer of the lochs and the wider catchment 

(from CEH lakes portal data, Hughes et al., 2004) are provided. Based on these data 

TALA is categorised as bog, although it is acknowledged that there is some deforested 

area to the west but this is not within in the catchment of the loch. AMHU is primarily 

bog with small amount of forest. The catchment of FEAR contains substantially more 

forest than AMHU. Finally, LEIR has a catchment consisting of bog with some areas 

of deforestation.  

 

Loch name 
(Code) 

Loch type 
(Scoter 

loch value) 

Brown trout 
density  

(Fish caught 
per rod hour) 

Dominant 
landcover type (% 

of catchment) 

Dominant 
landscape 

within 500m of the 
loch 

Loch 
a'Mhuillinn 

(AMHU) 

Historic 
(0.50) 

2.7 Bog (94) 
Forestry (6) 

Bog 

Lochan nam 
Fear 

(FEAR) 

Current 
(1.00) 

0.3 Bog (68) 
Forestry (32) 

Bog, partial forest 

Loch Leir 
(LEIR) 

Current 
(0.95) 

9 Bog (91) 
Deforested area (9) 

Bog, some 
deforested area 

Loch Talaheel 
(TALA) 

Historic 
(0.24) 

1.6 Bog (100) Bog, some 
deforested area 

Table 6.1 Overview of the four study sites 

 

6.3.3 Field and laboratory methods 

Wide (15cm) bore Big Ben cores (Patmore et al., 2014) were taken from each of the 

four sites in April 2015; the Big Ben corer was designed specifically to take large 

volumes of sediment in each slice and facilitate macrofossil analysis. The cores were 

sliced at 0.5cm intervals; the coring sites were located close to the site from which 

the Glew cores had previously been collected (Table 2.4 and 2.5, section 2.4.2.1.1). 

For detailed information concerning the field methodologies employed see Chapter 

2. Section 2.4.2.1.1 
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The laboratory analysis of the Big Ben cores included loss on ignition analysis 

(Chapter 2, 2.4.2.2.1) for every slice along the length of the core. Three of the four 

Big Ben cores (FEAR, AMHU and TALA) were dated using radiometric analysis 

(Chapter 2, 2.4.2.2.4). The Glew core from LEIR had been radiometrically dated, and 

therefore it was possible to establish approximate dates for the LEIR Big Ben core by 

cross correlating using the results from the XRF (2.4.2.2,3) and LOI analysis. Due to 

time constraints XRF was not carried out on the Big Ben cores from FEAR, AMHU and 

TALA.  

The cores were analysed for diatom, invertebrate and macrophyte remains. XRF 

analysis from the short Glew cores indicated that the top 10cm of the cores would 

be sufficient to cover the last 150-200 years and that the period of particular interest 

(ca. 1970s to present day) was likely to be covered by the top 5cm of the cores. 

Chironomid samples from the Big Ben cores were analysed (following the method in 

Chapter 2, section 2.4.2.2.6) prior to the refinement of timescales by radiometric 

dating and therefore every sample down to 5cm and every other sample between 5 

and 10cm was analysed. Diatom and macrofossil analysis (methods detailed in 

Chapter 2, section 2.4.2.2.5 and 2.4.2.2.7) was carried out after the radiometric 

dating results were determined and therefore for every slice down to the calculated 

depth of 1900 was analysed.  

 

6.3.4 Statistical analysis and data presentation 

Plots of the cores’ stratigraphy are useful tools for exploring changes in taxa over 

time; plots of the most frequently occurring taxa were produced using the C2 graphic 

software package (Juggins, 2007). Constrained incremental sum-of-squares 

clustering (CONISS) is a technique used to identify statistically significant splits or 

zones in stratigraphic plots (Grimm, 1987). The approach is based on cluster analysis, 

constrained by agglomeration of stratigraphically adjacent samples (Birks et al., 

2012). A pairwise dissimilarity matrix is first created (in this case using Euclidean 

distances) and a sum-of-squares statistic calculated for each cluster, which is 

recalculated as clusters are merged. Stratigraphically adjacent clusters that, when 

merged, result in the least increase in total dispersion are identified (Birks et al., 

2012). CONISS analysis was carried out in R (R Core Team, 2016), using the rioja 
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package (Juggins, 2012) on the (untransformed) accumulation rate data for diatom, 

chironomid, macrophyte, zooplankton and invertebrate communities. Statistically 

significant splits (identified using the broken stick model (Bennett, 1996)) were 

illustrated on the stratigraphic plots for each group. 

Ordinations are a useful tool for exploring patterns of community change over time 

and examining differences/similarities between lochs (Legendre and Legrendre, 

2012). In this chapter change in community composition was explored using 

unconstrained principal component analysis (PCA) ordinations. This analysis was 

selected in preference to detrended correspondence analysis (DCA) based on 

gradient lengths assessed in Canoco ver5. For each group (diatom, chironomid, 

invertebrate, zooplankton and macrophyte) the cores from each site were 

represented in the same ordination space together with the dominant taxa, which 

allowed comparison of community change between cores and examination of 

changes in community composition over time, down the cores. Multi-indicator PCA 

was used to provide an overview of the type and extent of change at each site.  

Data relating to the radiometric dating is represented using Microsoft excel. 

 

6.4 Results  

The result section of this chapter consists of two main sections. Firstly, 

palaeolimnological data will be presented to establish the integrity and timescales of 

the cores (sections 6.4.1.1 and 6.4.1.2), and document recent environmental change 

at the study sites by examining diatom, macrophyte, zooplankton and invertebrate 

communities (6.4.1.3-6). A summary of the environmental change experienced at 

each site is presented in section 6.4.1.7. Secondly these data will be used to address 

the questions identified in the introduction, relating to the two theories for common 

scoter decline in the Flow Country (section 6.4.2). 
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6.4.1 Recent environmental change at four Flow Country lochs 

6.4.1.1 Core lithostratigraphy 

 

Loch a'Mhuillinn (AMHU) 

The appearance and lithostratigraphic analysis of the Big Ben core from AMHU 

(AMHU_BB) is shown in Figure 6.1. At the base of AMHU_BB (45-35cm) the sediment 

is grey with a consistency similar to clay, whilst for the rest of the length (35-0cm) 

the core is silty. The dry weight is highest at the base of the core (45cm), and 

decreases steadily until a depth of 16.5-17.0cm at which point there is a marked 

increase in dry weight (to 36%). The dry weight declined steadily from 16.5-17.0 to 

the top (0cm) of the core. Percentage loss on ignition at 550oC (LOI) increases from 

the base of the core to ca. 40% at 19.5-20.0cm this is followed by a decrease. The LOI 

increases steadily from ca. 10% at 16.5-17.0cm to a peak of ca. 60% at 5.5-6.0cm. LOI 

decreases between 5.5-6.0cm and 4.0-4.5 cm depth, at the top of the core LOI 

increases to ca. 50%. 

 

Loch nam Fear (FEAR) 

The LOI, dry weight and appearance of the Big Ben core from FEAR (FEAR_BB) are 

given in Figure 6.2; the core is a mixture of silt and sand. Two distinct sandy layers 

are visible in the core at 8-3 cm and 26-24cm, and a less distinct sandy band is visible 

between 13-11cm. Along much of the core length the dry weight ranges between 10-

20%, but two distinct peaks are visible towards the base of the core at 29-28cm and 

24-23cm (to ca. 30% and ca. 50% respectively). LOI declines between 33 and 23cm, 

reaching its lowest a 24-23cm (ca. 5%), which corresponds with a peak in dry weight. 

Following this LOI increases rapidly to reach it highest (75%) at 21-20cm depth. From 

21cm to the top of the core the LOI shows overall decreases, however with several 

sharp increases and decreases included.  

 

Loch Leir (LEIR) 

The appearance and lithostratigraphic analysis of the Big Ben core from LEIR 

(LEIR_BB) are shown in Figure 6.3. A single sandy layer can be seen at 7-6 cm depth, 

and above this the silt is paler in colour than the silt below. Dry weight and LOI are 
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relatively stable in the lower part of the core ranging between 10 and 20% (dry 

weight) and 48 and 87% (LOI). There is a marked change at around 9 cm coinciding 

with a large decrease in %LOI (from 72 to 48%) between 9.5 and 7.5cm depth at the 

same period increases in dry weight are observed, peaking at 31 and 55% at 8 -7.5 

and 6-5.5cm respectively. The top 7 cm of the core overall show steadily increasing 

LOI, with two pronounced decreased between 6.5-5.0 and 3.0-1.0cm. 

 

Loch Talaheel (TALA) 

The lithostratigraphic analysis and appearance of core TALA_BB taken from TALA is 

shown in Figure 6.4; the core has layers of silt and sand and a clay like substrate at 

the base. The dry weight and %LOI are relatively stable at the base of the core (48-

40cm), however the LOI increases between 40-28cm (from 11% to 34%) whilst the 

dry weight declines slightly (32% to 14%). Decreases in %LOI associated with the first 

sandy layer are observed at 19-16cm depth, and is followed by an increase in LOI to 

reach its highest value (ca. 80%) between 13.0 and 8.5cm depth. The top of TALA_BB 

is predominantly sandy with little silt and organic material as can be seen in the 

associated increases in dry weight and decrease in %LOI to less than 5% between 5.0-

0.0cm 

 

Core lithostraigraphies summary 

• The cores from the four lochs range from 32 to 47cm in length and the sediment are 

composed of silt, sand and clay. The sediment of TALA_BB is noticeably different to 

the other three sites being primarily sand rather than silt, particularly towards the 

surface of the core. 

• The stratigraphies of the lochs appear conformable and predominantly silt based, 

although there are distinct layers of different sediment visible. Sandy layers are visible 

in three of the four cores (the exception being AMHU). These layers occur at between 

25-0cm, but there there is no consistency among cores in the number of or depth at 

which sandy layers occur. 

•  

 



219 
 

 

Figure 6.1Lithostratigraphy of core AMHU_BB from Loch a’Mhuillinn (AMHU) and 

photograph of core intact. Arrows on the core show the visible stratigraphic changes 

which relate to the %DW and %LOI 
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Figure 6.2Lithostratigraphy of core FEAR_BB from Loch nam Fear (FEAR) and 

photograph of core intact. Arrows on the core show the visible stratigraphic 

changes which relate to the %DW and %LOI 
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Figure 6.3Lithostratigraphy of core LEIR_BB from Loch Leir (LEIR) and photograph of 

core intact. Arrows on the core show the visible stratigraphic changes which relate 

to the %DW and %LOI 
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Figure 6.4Lithostratigraphy of core TALA_BB from Loch Talaheel (TALA) and 

photograph of core intact. Arrows on the core show the visible stratigraphic changes 

which relate to the %DW and %LOI 
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6.4.1.2 Core Chronology 

Loch a'Mhuillinn (AMHU) 

Sediment accumulation rate is relatively stable in the lower part of the core (6.25-

4.5cm) but from 4.5cm to the surface, a gradual increase in sediment accumulation 

rate is observed (Figure 6.6). Total 210Pb and supported 210Pb activity reach 

equilibrium at ca. 7cm (Figure 6.5). The simple constant rate of 210Pb dating model 

(CRS) places 1986 at between 2.75 and 3.25 cm which broadly agrees with the 137Cs 

profile (Table 6.2). However, the 137Cs peak was broad and 241Am peak was absent. 

There was concern this could have indicated physical mixing and therefore the CRS 

model was evaluated by aligning peaks in the LOI profiles of AMHU_1 and AMHU_BB, 

and using the XRF profile from AMHU_1 (detailed in 5.4.2) to estimate the depth of 

1980 and 1900 (Figure 6.7). There was good corroboration between the approaches 

with 1980 calculated as 3.25cm using the CRS model and 2.25cm using the peak of 

the XRF profile, similarly 1900 was calculated as 5.25cm using the CRS model and XRF 

approach (Table 6.3). Corroborating dates for the CRS model in this way suggests no 

physical mixing had taken place in the surface sediments of AMHU. Sediment 

accumulation rate in AMHU_BB increases gradually from 0.0021 g cm-2 yr1 in ca. 1850 

to 0.0138 g cm-2 yr1 in 2014, there is no evidence of forestry effecting the sediment 

accumulation rate in loch AMHU.. 

 

Loch nam Fear (FEAR) 

Total 210Pb and supported 210Pb reach equilibrium at approximately 8cm (Figure 6.9). 

The simple CRS model places 1963 and 1986 at 3.5 and 2cm respectively (Table 6.4); 

however, it was not possible to use the 137Cs record to corroborate as the peak was 

not distinct rather it continues to increase in the surface sediments. Similarly, it is not 

possible to use the 241Am associated with nuclear weapons testing as 241Am was not 

recorded in sufficient quantities at any point along the core. Whilst the lack of a 241Am 

or 137Cs peak has been attributed to physical mixing elsewhere this does not appear 

to be the case here. It was possible to align the peaks of the LOI profiles from FEAR_1 

and FEAR_BB, and use the XRF derived Pb concentrations (section 5.4.2) to provide 

an approximate depth for 1980 and 1900. There is good agreement between the 

depth for 1980 and 1900 generated by the radiometric and XRF analysis (Table 6.5 
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and Figure 6.10), which suggests physical mixing has not taken place in Loch FEAR.  

Sediment accumulation rate in FEAR_BB increases from 0.0026 g cm-2 yr1 to 0.0198 

in ca. 1960, with a clear peak at ca. 1920 and between 1940 and 1950. Sediment 

accumulation remains high between ca. 1960 and 1990 before decreasing in the 

upper most part of the core (Figure 6.8). There is some evidence that sediment 

accumulation being higher during the period of forestry planting (ca.1980s) however, 

there are other peaks in the core which suggest there could be other factors 

influencing sediment accumulation rate in FEAR.  

 

Loch Leir (LEIR) 

The Big Ben core from Loch LEIR was not radiometrically dated using 210Pb, but was 

analysed for Pb using XRF. A Glew core taken in 2013 was dated using 210Pb (Chapter 

5, 5.4.2), and it was therefore possible to cross-correlate the XRF and %LOI profiles 

of the Glew and Big Ben cores to establish an approximate core chronology. The XRF 

Pb profile for the Glew core peaks at 3.5cm, the Big Ben peak was at 1.5. Aligning the 

peaks of the profiles indicates ca. 1970 in the Big Ben core is at 1.75cm and 1900 at 

5.5-6.0cm (Figure 6.11). 

 

Loch Talaheel (TALA) 

210Pb activities in the TALA_BB core are relatively low with equilibrium being reached 

at c. 1.5cm (Figure 6.13). Similarly, to AMHU_BB and FEAR_BB, the 137Cs record is of 

little use for dating as the nuclear weapons testing and Chernobyl peaks could not be 

identified. The simple CRS model puts the 1960s at 0.5-1cm (Table 6.6, Figure 6.12) 

and 1900 at ca. 3cm. Similarly, to the other radiometrically dated cores, an attempt 

was made to align the peaks in the LOI profiles of TALA_1 and TALA_BB with the aim 

of establishing an estimated date for 1980 and 1900 using the XRF Pb profile of 

TALA_1. However, this was challenging as the LOI profiles of both TALA_1 and 

TALA_BB show no distinct pattern or tie points, and consequently it was difficult to 

confidently align the LOI profiles of the cores (Figure 6.14). There is a large amount 

of difference between the estimates of 1980 and 1900 from the CRS (ca. 0.75cm 1980 

and 1.75cm 1900) and XRF (1.75cm 1980 and 5.75cm 1900) approaches (Table 6.7). 

Calibrating dating using XRF Pb concentrations from TALA_1 was not feasible because 
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it was not possible to confidently cross correlate the LOI profiles from TALA_1 and 

TALA_BB. Although the chronology from the CRS model is used for TALA_BB in this 

chapter the results are considered with some caution, as without 137Cs or 241Am 

peaks or corroboration from the XRF Pb profile of TALA_1 the dating of the Loch TALA 

core may not be particularly robust. Sediment accumulation rate increases gradually 

in TALA_BB from 0.0061 g cm-2 yr1 in ca.1925 and 0.0216 g cm-2 yr1 in 2002. 

 

 

  

 

 

Core chronologies summary 

• The chronologies of cores from lochs Loch a'Mhuillinn, Loch nam Fear, Loch Leir and 

Loch Talaheel were determined using radiometric dating techniques. The 137Cs and 

234Am peaks were absent or poorly defined in the cores, and therefore the accuracy 

of the dates from the CRS models was assessed by cross correlating with the short 

cores and examining the XRF Pb profiles. 

• The chronologies of the cores from Loch a'Mhuillinn, Loch nam Fear and Loch Leir 

were successfully affirmed by the cross-correlation with Pb XRF profiles. However, it 

was not possible to corroborate the dates in Loch Talaheel as there seemed to be a 

large discrepancy between the dating estimates based on the CRS and XRF Pb profiles. 
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Figure 6.5 Fallout radionuclide concentrations in core AMHU_BB, showing (a) total 

210Pb (solid pink line) and unsupported 210Pb (solid blue line) (b) unsupported 210Pb, 

and (c) 137Cs  

 

 

 

Figure 6.6. Radiometric chronology of core AMHU_BB, showing the corrected CRS 

dates (solid blue line) and sediment accumulation rates (black dashed line) 
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Depth Drymass Chronology Sediment Accumulation Rate 

  Date Age     

cm g cm-2 AD yr ± g cm-2 yr-1 cm yr-1 ± % 

0 0 2015 0     

0.25 0.0118 2014 1 2 0.0138 0.243 11.9 

0.75 0.0427 2012 3 2 0.0128 0.165 10.2 

1.75 0.1277 2004 11 2 0.0089 0.095 7.8 

2.25 0.1836 1998 17 2 0.0095 0.082 7.7 

2.75 0.2445 1991 24 2 0.0079 0.066 9.1 

3.25 0.3027 1982 33 2 0.0056 0.046 10.1 

3.75 0.3661 1969 46 3 0.0045 0.032 11.6 

4.25 0.446 1947 68 5 0.0027 0.016 15.7 

4.75 0.5331 1922 93 9 0.0052 0.032 37.8 

5.25 0.6085 1905 110 14 0.0035 0.026 48.1 

5.75 0.6707 1887 128 24 0.0033 0.028 84.6 

6.25 0.7272 1866 149 28 0.0021 0.015 100.7 

Table 6.2. 210Pb chronology of core AMHU_BB taken from Loch a’Mhuillinn (AMHU) 

 

 

 

Depth  

(cm) 

Age  

CRS model 

Pb concentration 

from XRF (ug/g) 

Age estimate 

from XRF 

0.25 2014 - 2013 

1.25 2004 66 - 

2.25 1998 118.4 1980 

3.25 1982 39.8 - 

4.25 1947 25.7 - 

5.25 1905 32.2 1900 

6.25 1866 27.6 - 

7.25 - 66 - 

8.25 - 65.7 - 

9.25 - 22 - 

10.25 - 24.1 - 

11.25 - 19.3 - 

12.25 - 19.4 - 

Table 6.3 Date estimates for AMHU_BB from cross correlation with the XRF Pb profile 

from AMHU_1 
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Figure 6.8 Fallout radionuclide concentrations in core FEAR_BB, showing (a) total 

210Pb (solid pink line) and unsupported 210Pb (solid blue line) (b) unsupported 210Pb, 

and (c) 137Cs  

 

 

 

Figure 6.9. Radiometric chronology of core FEAR_BB, showing the corrected CRS 

dates (solid blue line) and sediment accumulation rates (black dashed line) 
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Depth Drymass Chronology Sediment Accumulation Rate 

  Date Age     

Cm g cm-2 AD yr ± g cm-2 yr-1 cm yr-1 ± % 

0 0 2015 0     

0.25 0.0046 2014 1 2 0.0059 0.092 15.7 

0.75 0.0483 2008 7 2 0.0092 0.089 12.4 

1.25 0.1079 2001 14 2 0.008 0.071 14.5 

1.75 0.161 1995 20 2 0.0082 0.051 14.1 

2.25 0.2686 1984 31 4 0.0117 0.047 19.1 

2.75 0.4094 1974 41 5 0.0184 0.064 25.4 

3.25 0.5549 1966 49 6 0.0198 0.068 32.6 

3.75 0.6998 1959 56 8 0.023 0.088 39 

4.25 0.8177 1953 62 9 0.0161 0.074 45.9 

4.75 0.9165 1946 69 11 0.0118 0.065 48.7 

5.25 1 1942 73 13 0.0181 0.117 52.6 

5.75 1.0705 1938 77 14 0.0064 0.041 50.1 

6.25 1.1587 1927 88 20 0.0095 0.052 78.1 

6.75 1.2524 1918 97 27 0.0114 0.067 102.4 

7.25 1.3283 1903 112 31 0.0026 0.015 118.7 

Table 6.4. 210Pb chronology of core FEAR_BB taken from Loch nam Fear (FEAR) 

 

 

Depth  

(cm) 

Age  

CRS model 

Pb concentration 

from XRF (ug/g) 

Age estimate 

from XRF 

0 2015 - - 

0.25 2014 81 2013 

1.25 2001 - - 

2.25 1984 86 1980 

3.25 1966 - - 

4.25 1953 50 - 

5.25 1942 - - 

6.25 1927 35.9 - 

7.25 1903 - 1900 

8.25 - 36.6 - 

9.25 - - - 

10.25 - 44.1 - 

11.25 - - 1850 

Table 6.5 Date estimates for FEAR_BB from cross correlation with the XRF Pb profile 

from FEAR_1 
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Figure 6.11 (A) The heavy metal lead (Pb) profile from Loch Leir (LEIR) and (B) cross 

correlation of 1970 and 1900 between the Big Ben and the Glew core 

 

 

Figure 6.12 Fallout radionuclide concentrations in core TALA_BB, showing (a) total 

210Pb (solid pink line) and unsupported 210Pb (solid blue line) (b) unsupported 210Pb, 

and (c) 137Cs  
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Figure 6.13. Radiometric chronology of core TALA_BB, showing the corrected CRS 

dates (solid blue line) and sediment accumulation rates (black dashed line) 

 

 

 

 

 

 

 

Depth Drymass Chronology Sediment Accumulation Rate 

  Date Age     

cm g cm-2 AD yr ± g cm-2 yr-1 cm yr-1 ± % 

0 0 2015 0     

0.25 0.2485 2002 13 3 0.0216 0.022 24.3 

0.75 0.747 1975 40 9 0.0152 0.015 43.5 

1.25 1.2745 1925 90 15 0.0061 0.006 63.7 

Table 6.6. 210Pb chronology of core TALA_BB taken from Loch Talaheel (TALA). 
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Depth  

(cm) 

Age  

CRS model 

Pb concentration 

from XRF (ug/g) 

Age estimate 

from XRF 

0 2015 - 2013 

0.25 2002 37.1 - 

0.75 1975 - - 

1.25 1925 44.6 1980 

1.75 - - - 

2.25 - 42.5 - 

2.75 - - - 

3.25 - 31.6 - 

3.75 - - - 

4.25 - 37.1 - 

4.75 - - - 

5.25 - 44.6 - 

5.75 - - - 

6.25 - 42.5 1900 

Table 6.7 Date estimates for TALA_BB from cross correlation with the XRF Pb profile 

from TALA_1 
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6.4.1.3 Diatoms 

6.4.1.3.1 Abundance and composition 

Loch a'Mhuillinn (AMHU) 

13 samples of AMHU_BB were analysed for diatoms which included every 0.5cm slice 

down to a depth of 6.5cm which covered the period of the last 150-200years (based 

on 210Pb dates). The mean number of species recorded per slice was 34. The diatom 

accumulation increases from 0.37 g cm-2 yr-1 at 6cm (ca. 1850) to 9.86 g cm-2 yr-1 at 

0-0.5cm (present day) (Figure 6.15). Distinct diatom increases are evident at ca. 1980 

(between 3.5-4.0 and 3.0-3.5) and ca. 2006 (between 1.0-1.5 cm and 0.5-1.0 cm) 

where the diatom accumulation rate almost doubles. AMHU_BB is dominated 

throughout by benthic diatoms, the mean percentage of benthic diatom in samples 

along the core is 72.4% (range 66-79%). The dominant taxa in AMHU_BB were 

Fragilaria sensu lato, particularly Fragilaria exgiua, Pseudostaurosira. brevistriata 

and F. pinnata, which were present throughout the core (Figure 6.15). Aulacoseria 

ambigua was present in lower numbers throughout the core. Asterionella formosa 

and Fragilaria virescens appear in the core between 4-0 cm depth, with the 

accumulation of A. Formosa particularly increasing at 1.5cm depth (2005). CONISS 

analysis identifies two statistically significant breaks in the AMHU_BB diatom 

stratigraphy, at ca. 2005-2010 (1 cm) and ca.1970 (4 cm). 

 

Loch nam Fear (FEAR) 

13 samples from FEAR_BB were analysed for diatoms which included every 0.5cm 

slice down to a depth of 8.0 cm which covered the period since ca. 1900 (based on 

210Pb dates). The mean number of species in FEAR_BB is 37, which is the highest of 

any of the four cores. The accumulation rate of diatoms increases up the core from 

0.41 g cm-2 yr-1at 7.5-8.0cm to peak at 25.2 g cm-2 yr-1 at 0.0-0.5cm (Figure 6.16). 

Accumulation doubles at periods dated as ca. 1920, 1940, 1980 and 2000 and there 

is a substantial increase in diatom accumulation in the surface sediments. Benthic 

species dominate the diatom record (range along the core length is 62-74%), and 

although a steady increase in planktonic species is observed towards the surface of 

the core benthic taxa still dominate. Fragilaria sensu lato species are the most 

prevalent taxa throughout the core (mean 38%) however Achnanthes sp. and 
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Aulacoseira sp. also make up a substantial proportion of the community (27 and 12% 

respectively). Eunotia sp. are present in low abundance between 10-2cm (mean 

<2%), after which their number decreases further between 2.0 and 0cm. The most 

frequently occurring Fragilaria sensu lato were F. exigua and F. elliptica which are 

present throughout the core and S. construens var venter which is only absent 

between 2.0 and 3.0cm. Planktonic Aulacoseira. ambiugua are present between 7.5 

and 0.0cm with a distinct peak at 2.5-3.0 cm. Aulacoseira lacustris, Navicula radiosa, 

Cycotella sp. and Achnanthes sensu lato appear in the samples from 5.0 to 0cm. 

Asterionella formosa is present in low accumulation rate throughout the core, with 

noticeable peaks associated with 1940 and ca. 1995 to 2005. CONISS analysis 

identifies two statistically significant shifts in FEAR_BB diatom stratigraphy, at 

ca.1980 (3 cm) and ca. 1925 (7 cm). 

 

Loch Leir (LEIR) 

Every slice of the LEIR_BB core was analysed down to a depth of 6cm (12 samples in 

total) which covered the last 150 years (Figure 6.17). The mean number of species 

recorded per slice was 26, the lowest recorded at any of the four sites. Diatom 

accumulation is relatively stable between 6 and 2.5cm (ca. 0.5 valves per g cm-2 yr-1), 

with evidence of a slight increase between 2.5 and 2.0cm (ca. 1950 and 1970). A 

substantial increase a period estimated at ca. 1970s-1980s occurs with diatom 

accumulation more than doubling during this time. Following this there is a slight 

decrease between 1.5 and 0.0cm to mean of 2.8 per g cm-2 yr-1, but accumulation 

remains substantially higher than pre-1980s. Benthic diatoms dominate throughout 

the core, planktonic species are most prevalent between 5.5-4.0cm, ca. 1900 (mean 

23%). Fragilaria sensu lato were the most abundant taxa present throughout the core 

(mean 72%, range 65-76%) followed by Achnanthes sensu lato (mean 10%, range 4-

14%) and Aulacoseira sp. (mean 6%, range 2-11%); Eunotia sp. were the least 

abundant taxa throughout the core (mean <1%). S. construens var venter, F. exigua 

and F. elliptica are the most prevalent species making up on average 17, 11 and 34% 

of the species respectively. T. floculosa is present at low accumulation rate from 2-

0cm and A formosa in the top 1.5cm of LEIR_BB (since ca. 1980). CONISS analysis 
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confirms there is a statistically significant shift in the diatom community in LEIR_BB 

associated with the ca. 1980s (1.5 cm). 

 

Loch Talaheel (TALA) 

The diatom analysis of TALA_BB included every 0.5cm slice down to a depth of 2.5cm 

which covered a time period of 1850-present. The mean number of species recorded 

per slice was 29. Diatom accumulation increases distinctly between the 1970s and 

1990s and remains high in the surface sediments. Benthic diatoms dominate the 

record, planktonic species made up only 10-20% of the diatoms community along the 

core length. Fragilaria sensu lato dominated the community (27-50%) followed by 

Achnanthes sp. (11-25%); Aulacoseira sp. (2-10%), and Eunotia sp. (2-9%) which were 

present in lower numbers (Figure 6.18). F. exigua was the most abundant species and 

was present in all of the samples between 2.5cm and 0cm. Achnanthes altaica is only 

present in the top 1 cm of the TALA_BB core and Aulacoseira lacustris in the top 0.0-

0.5 cm. CONISS analysis identifies a single statistically significant shift in the diatom 

stratigraphy of TALA_BB at ca. 1990 (1 cm). 
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6.4.1.3.2 Change in diatom community composition at all 

four study sites 

The downcore communities of each core are represented in the same ordination 

space to enable comparisons of diatom communities’ composition both down each 

core (to a depth associated with ca. 150-200 years BP) and between cores. The first 

two axes of the PCA and account for 28.9 and 12.8% of the variation respectively 

(Figure 6.19). The community composition in LEIR and TALA was similar along the 

core length; present day communities are shown to be similar as are the bottoms 

(both at ca. 1850). Community composition of Loch AMHU and FEAR are distinctly 

different to LEIR and TALA, and from one another for their entire length. FEAR moves 

along towards a community dominated by pelagic species of Achnanthes and 

Aulacoseira (Cambourn and Charles, 2000). The top of AMHU is associated with taxa 

such as Asterionella formosa and Tabellaria flocculosa, both species typical of higher 

nutrient availability. The abundance of diatoms is lower in lochs LEIR and TALA but 

the direction of change is similar to loch AMHU towards a community with more 

nutrient tolerant taxa. 
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Diatoms summary 

• The accumulation rate of diatoms has increased steadily at all four sites since 1850, 

notable increases are evident in the 1980s (lochs FEAR and TALA) and early 2000s (loch 

AMHU) 

• Benthic species dominate the records of all four cores. Although the proportion of 

planktonic species steadily increases in more recent sediments the overall percentage 

of planktonic species does not exceed 30% even in the surface sediments. 

• Fragilaria sensu lato are the most commonly recorded taxa in the sites; followed by 

Achnanthes, Aulacoseira, Naviulcae and Eunotia.  

• Commonly occurring Fragilaria sensu lato species include S. construens var venter, F. 

exigua and F. elliptica 

• There are noticeable increases in nutrient tolerant taxa such as A. formosa and A. 

ambigua in the surface sediments of the cores. 

• Exploration of community composition at the four lochs using PCA shows the diatom 

communities of LEIR and TALA to be relatively similar, with much overlap along the 

core length. The diatom communities in the bottoms of AMHU and FEAR do not 

overlap with either LEIR or TALA or one another.  

• The direction of community change in lochs AMHU, LEIR and TALA is similar, towards 

a community associated with nutrient tolerant taxa, whereas FEAR moves in a 

different direction towards a community associated with more planktonic taxa, such 

as Aulacoseira sp.  
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6.4.1.4 Macrophytes  

6.4.1.4.1 Abundance and composition 

Macrophyte remains in the cores consisted of leaves, seeds and oospores from 

aquatic plants. Species level identification was not possible in most cases due to the 

taxonomic limitations of the groups involved, so taxa were identified to genus level. 

Five types of seeds were not identifiable to this level and were labelled unidentified 

seeds 1 to 5. 

Loch a'Mhuillinn (AMHU) 

10 plant taxa were represented in AMHU_BB during the last 150 years (Figure 6.20) 

and three distinct phases were identifiable. Pre-1850 to ca. 1900 (7.5-6.0 cm) is 

characterised by low sediment accumulation rates and charcoal counts. The plant 

remains of most groups are sparse during this period except the remains of Isoetes 

sp. and unidentified seed (1) which were most numerous during this period. Between 

1900 and 2000 (6.0-2.0cm) there are several peaks in charcoal counts, particularly at 

ca. 1920 and 1970. During this period macrophyte remains were consistently low. 

Lobelia sp. and Nitella sp. are each recorded just once in the 1970s (Lobelia sp.) and 

1990s (Nitella sp.). The most recent phase in the AMHU_BB core between 2000 and 

2015 (2.0-0.0 cm) charcoal counts drop to their lowest levels. Increases can be 

observed in all macrophyte taxa during this period, the only exception being Isoetes 

sp. remains which continue to persist but only at low levels. Moss sp. and Juncus sp. 

substantially increase during this period; Lobelia sp. continues to appear sporadically 

and Nitella sp. is absent. CONISS analysis identifies a single statistically significant 

break in the macrophyte stratigraphy of AMHU_BB in the mid to late 2000s (1 cm). 

 

Loch nam Fear (FEAR) 

A total of 16 plant taxa were identified in FEAR_BB, and three phases are identifiable 

and charcoal remains show several peaks between the ca. 1940s and 2000. (Figure 

6.21). Pre-1900 (10-7.5 cm) is characterised by a comparatively low abundance of 

charcoal as well as the remains for most groups. There is a stepped increase in most 

taxa at 1940 (ca. 6.0cm), remains continue to be recorded at this elevated level until 

ca. 1980 (2.5cm), when a distinct decline occurs. Between 1940 and 1980 (ca. 6.5 - 

2.5 cm) most groups are relatively stable, slight declines occur in unidentified seed 
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(1) and Moss sp. (1). Between 1980 and 2015 (2.5-0.0cm) the accumulation of 

macrophyte remains increase steadily however for most groups (except unidentified 

seed (1) and Juncus) the accumulation rate of remains does not exceed those 

recorded between 1940 and 1980. Two statistically significant shifts can be identified 

in the FEAR_BB macrophyte stratigraphy at 1990 (2.5 cm) and ca. 1920 (7.0 cm).  

 

Loch Leir (LEIR) 

The last 150 years are represented in the top 5.5cm of LEIR_BB, 10 plant taxa were 

identified to at least genus level (Figure 6.22). Seeds from the slender Naiad, Najas 

flexilis, were recorded in LEIR_BB. The species was not found in the macrophyte 

surveys (Chapter 3) or in the previous macrophyte surveys (in the late 1980s) by SNH 

and constitutes the first record of the species for the area. Charcoal counts in LEIR_BB 

are highest in the lower part of the core between ca. 1900 and 1940 after which they 

decline throughout the 20th century. 

There are two distinct phases in the LEIR_BB macrofossil record. During the first 

phase, from pre-1850 to ca. 1980 (5.5 – 1.5 cm), Isoetes sp. are the most abundant 

type of remains, and accumulation rate of remains also increases during this period, 

approximately double between ca. 1850 (5.5-6cm) and 1980 (1.5-2.0cm). Other plant 

remains during this phase are low; moss sp. occurs only in low levels and Najas 

flexilis, Potomogeton sp. and Juncus sp. only occur sporadically. The second period in 

LEIR_BB is from 1980 to 2015 (1.5-0.0 cm) and is characterised by a distinct shift in 

macrophyte taxa. The abundance of Isoetes sp. drops substantially; Nitella sp. and 

Potamogeton sp. both appear for the first time in the ca. 1980s (2cm). Between ca. 

1980s and 2015 all moss taxa increase; Isoetes sp. also increase but do not reach 

levels recorded prior to 1980. CONISS analysis confirms there is a statistically 

significant shift in the macrophyte stratigraphy of LEIR_BB associated with the 1980s. 

 

Loch Talaheel (TALA) 

The last 150 years are represented in the top 2.5cm deposited in Loch TALA, and 

seven macrophyte taxa were identified and charcoal remains are very low 

throughout the core. Between 1850 and 1950 (1.5-2.5cm) sediment accumulation 

rate is low (0.0061-0.015 g cm-2 yr-1) and taxa prevalent during this period were 
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Juncus sp., Isoetes sp., Nitella sp. and Lobelia sp., Moss sp. in TALA_BB were not 

recorded during this period. Between 1950 and 2015 (1.5cm-0.0cm) Moss sp. also 

increase. The abundance of Juncus sp., Isoetes sp. and Nitella sp. all decrease 

between 1950 and 2015, and Lobelia sp. does not occur. CONISS identifies a single 

statistically significant split in the TALA_BB macrophyte stratigraphy at ca. 1990 (1.0 

cm). 
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6.4.1.4.2 Change in macrophyte community composition at 

all four study sites 

The similarities and differences in the macrophyte communities of AMHU_BB, 

FEAR_BB, LEIR_BB and TALA_BB was explored by displaying multiple cores on a single 

ordination space (Figure 6.24). PCA axis 1 accounts for 48.5% of the variability and 

PCA axis 2 29.4.0%. The macrophyte communities of the cores are primarily distinct 

from one another, with only a small period of overlap between the bottom of 

AMHU_BB and parts of FEAR_BB, indicating the macrophyte community of loch 

AMHU was historically more similar to loch FEAR. Whilst FEAR_BB shows signs of 

remaining fairly stable over the last 150-200 years, loch AMHU moves towards a 

community characterised by species of Juncus. TALA_BB and LEIR_BB are distinctly 

separate from both one another and from AMHU_BB and FEAR_BB. The base of loch 

LEIR shows relatively little changes, but a substantial change in community 

composition occurs post 1995. After this, the community is characterised by moss sp. 

and Nitella sp. Loch TALA is characterised through by low abundance of macrophyte 

remains and shows relatively little change over the last 150 years. 
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Figure 6.24 Axis 1 and 2 of a PCA of the macrophyte communities of the four lochs 

over the last 150-200 years. 
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Macrophyte summary 

• Between 7 and 16 macrophyte taxa were recorded in the lochs, all species that are 

typically associated with oligotrophic lochs 

• All of the species were recorded in the contemporary macrophyte surveys with the 

exception of Najas flexilis in Loch LEIR which is a new record for the area. 

• Both Loch LEIR and Loch FEAR show distinct shifts in the 1980s and in both cases there 

is a decline in Isoetes sp. In Loch FEAR several other species decline at the same time 

whilst in Loch LEIR Moss sp. and Juncus sp. increase. 

• In Loch AMHU the same pattern occurs of a decline, followed by an increase. However 

the timing is slightly later (early 2000s)  

• The small number of samples covering the last 150 years in Loch TALA make patterns 

difficult to identify. However there appears to be shift in the middle of the twentieth 

century. 

• PCA indicates the base of AMHU_BB overlaps with FEAR_BB, whilst the community of 

FEAR_BB shows realtively little change, loch AMHU changes to become more 

dominated by species of Juncus. Loch LEIR and TALA are separate from FEAR and 

AMHU and one another. LEIR is relatively stable for the early part of the record. 

However, substantial changes are observed post 1980s. TALA is characterised by a low 

abundance of macrophyte taxa and shows little overall change relative to the other 

sites. 
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6.4.1.5 Zooplankton  

The zooplankton picked from the Flow Country cores consisted of cladocera ephippia 

(Alona and Daphnia sp.), and the headshields of the large species of Eurycercus 

lamellatus which have been shown to be an important food resource for common 

scoters in other parts of their range (Bengtson, 1971).  

 

6.4.1.5.1 Abundance and composition 

Loch a'Mhuillinn (AMHU) 

Accumulation of cladocera remains increases over the last 150 years from 0.004 g 

cm-2 yr-1 at 1985 (ca.3.0cm) to 0.05 g cm-2 yr-1 in 2015 (0.0cm). Daphnia sp. and Alona 

sp. were the most dominant groups of cladocera present in the AMHU_BB core 

between 1850 and 1900 (Figure 6.25). Low levels of both taxa were recorded 

between 1900 and 1990s (5.5-2.5cm) following which the abundance of both groups 

increases to levels higher than at any other time over the last 150 years. Eurycercus 

sp. were present in very low abundance between 1850 and 1980s, however between 

1980s and 2010 the abundance of Eurycercus sp. increases. CONISS analysis 

identified a single statistically significant break in the AMHU_BB for cladocera 

remains at ca. 2004 (2.0 cm). 

 

Loch nam Fear (FEAR) 

Low levels of cladocera were present at the base of FEAR_BB (10-7cm, pre-1900) and 

the accumulation rate of remains increases up the core with a total of 0.01 g cm-2 yr-

1 recorded in the surface sediments (Figure 6.26). There is a noticeable increase, 

particularly in Alona sp. at ca. 1920 (6.5-7.0 cm) and then a decrease in all taxa in ca. 

1980s (2.5cm), followed by a steady increase to the surface sediments. Accumulation 

of cladocera does not reach pre-1980 levels until the surface sediments (0.5-0.0cm). 

There are three statistically significant shifts in the cladocera remains present in 

FEAR_BB at ca. 1990 (2.5 cm), 1960 (4.5 cm) and 1920 (7.0 cm). 

 

Loch Leir (LEIR)  

The accumulation of cladoceran remains in Loch LEIR was low until ca. 1990-2000 

(1.0-0.5cm) when there is a distinct increase (from 0.002 g cm-2 yr-1 to 0.007 g cm-2 
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yr-1). Daphnia sp. were the most abundant cladocera taxa in the first phase of the 

LEIR_BB core (between 6.0-2.0cm), but were only present in low accumulation rate 

(Figure 6.27). Eurycercus sp. and Alona sp. were present in very low accumulation 

rate during this phase. A distinct shift is observed in the cladocera community at ca. 

1990 (1.0-1.5cm), with all groups increasing in abundance, a trend which continues 

in the surface sediments. CONISS identifies two statistically significant shifts in the 

cladocera remains present in LEIR_BB, one associated with ca. 1960 (2.0 cm) and one 

with ca. 1980 (1.5 cm) 

 

Loch Talaheel (TALA) 

Despite a small number of samples being examined for cladocera remains in 

TALA_BB, a distinct shift is evident at ca. 1970-80s (1.5-2.0 cm) with total remains 

increasing from 7 x10-5 g cm-2 yr-1 to 0.0004 g cm-2 yr-1 (Figure 6.28). Between 1850-

1950 (2.5-1.5 cm) cladocera remains were very sparse in TALA_BB. Increases in the 

accumulation rate of remains is observed between 1950-1970 (1.5-1.0cm) and again 

between ca. 1970 and present day (1.0-0.0cm). CONISS analysis confirms the 

observed shift in cladocera remains at ca. 1970 (1.0 cm) is statistically significant. 

 

Figure 6.25 Stratigraphic plot of the cladocera remains in AMHU_BB. Red line indicate 

the statistically significant splits determined by CONISS analysis 
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Figure 6.26 Stratigraphic plot of the cladocera remains in FEAR_BB. Red line indicates 

the statistically significant splits determined by CONISS analysis 

Figure 6.27 Stratigraphic plot of the cladocera remains in LEIR_BB. Red line indicates 

the statistically significant splits determined by CONISS analysis 
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Figure 6.28 Stratigraphic plot of the cladocera remains in TALA_BB. Red line indicate 

the statistically significant splits determined by CONISS analysis 

 

6.4.1.5.2 Change in community composition at all four study 

sites 

PCA was used to explore the similarities of cladoceran remains between cores (Figure 

6.29); PCA axis 1 accounts for 86.3% of the variation, whilst PCA axis 2 accounts for 

1.6%. LEIR_BB overlaps with the base of FEAR_BB and the top of TALA_BB. AMHU_BB 

is similar to the surface samples from FEAR_BB. The direction of change in LEIR and 

TALA is the same both moving towards a community more strongly dominated by 

Alona sp. Conversely FEAR and AMHU are both progressing towards communities in 

which Daphnia sp. are the most prevalent taxa.  
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Figure 6.29 Axis 1 and 2 of a PCA of the zooplankton communities of the four lochs 

over the last 150-200 years.  
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Zooplankton summary 

• The accumulation of cladocera remains in all four cores increases over the last 150-

200 years. In Lochs AMHU and LEIR there is a distinct increase post 1980. In Loch FEAR, 

similarly to the macrophytes, there is a period of increased remains between 1940 and 

1980, and a drop at ca. 1980 which is followed by a slow increase towards the top of 

the core. 

• Mean accumulation rate of remains per sample was lowest at Loch TALA (0.00001 g 

cm-2 yr-1), followed by Loch LEIR (0.007 g cm-2 yr-1), Loch FEAR (0.006 g cm-2 yr-1), and 

was highest at Loch AMHU (0.01 g cm-2 yr-1)  

• Comparison of community change between sites indicates that loch LEIR and TALA are 

moving towards and community more dominated by Alona sp., whilst in FEAR and 

AMHU there is a change towards a community characterised by Daphnia sp. 
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6.4.1.6 Invertebrates 

The invertebrate remains represented in the Big Ben cores were Trichoptera, 

Coleoptera, Ephemeroptera and Diptera. Trichoptera cases were categorised into 

four types and fronto-clypeal apotomes (structures from the dorsal part of the head) 

were also counted. Coleoptera elytra were enumerated, as were the mandibles of 

Ephemeroptera. Sialidae were represented by their labrum. Six types of invertebrate 

mandible were identified, most likely from Tricoptera and Coleoptera groups. 

Chaoboridae mandibles were picked with the other macrofossil remains, and were 

identified as Chaoburus flavicans. Chironomid head capsules were picked from a 

smaller amount of material following the method of (Brooks et al., 2007) 

Chironomids were identified to sub-family. The number of macrofossil remains 

recorded was corrected for sediment accumulation rates. 

 

6.4.1.6.1 Abundance and composition 

Loch a'Mhuillinn (AMHU) 

Nine types of invertebrate remain were recorded at AMHU, representing at least five 

orders (Figure 6.30). Between 1890-1980 (7.5-3.5cm) the accumulation rate of 

invertebrate remains in AMHU_BB was predominantly low; the most abundant group 

was Trichoptera case type 2. The accumulation rate of Ephemeroptera, Trichoptera 

and Mandibles type 1 and 2 all increase between 1990s and 2015 (2.0-0.0cm). 

Coleoptera increases occur slightly later (ca. 2000) and Sialidae only occurs 

sporadically at 3 and 5.5cm. Chaoborus flavicans mandibles were only found in one 

slice of AMHU_BB and then only in very small numbers. Overall the accumulation 

rate of remains in the cores was highest in the surface samples, the only exceptions 

being Trichoptera case type 2 which peaks at 4.5cm. CONISS identifies two 

statistically significant breaks in the invertebrate stratigraphy of AMHU_BB at ca. 

1960 (4.0 cm) and ca. 2014 (0.5 cm). 

There are two phases in the chironomid counts over the top 10cm of AMHU_BB 

(Figure 31), confirmed by CONISS analysis which identifies a statistically significant 

split at ca. 2000 (2.0 cm). Between 1850 and 2000 (10-2.0cm) the total accumulation 

rate of chironomids increases gradually, whilst. between 2 and 0 cm (2000-2015) 

there was a distinct increase in total chironomid accumulation rate, the accumulation 
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rate of heads is higher than at any period between 1850 and 2000. The relative 

proportions of different chironomid groups between 2-0cm are relative stable 

orthocladiinae mean 49% (range 39% to 54%), tanytarsini mean 29% (range 28-32%), 

chironominae mean 9% (range 6-13%) and tanypodinae mean 12% (range7-20%). 

However, diamesinae are not recorded in this most recent phase.  

 

Loch nam Fear (FEAR) 

14 different types of invertebrate remains were found in FEAR_BB (Figure 32). 

Between 1850 and 1940 the accumulation rate of remains was low, the most 

frequently occurring group was Ephemeroptera. Similarly, to the macrophyte taxa, 

invertebrate remains in FEAR_BB were most abundant between 1940 and 1980 (6.5-

2.5cm). At ca.1980 (2.5) a stepped decline occurs in Ephemeroptera and Trichoptera 

case type 2 and Chaoborus flavicans disappears from the core. Between 1980 and 

2015 (2.5-0.0cm) the accumulation rate of remains increases, Trichoptera fronto 

cylpeal apertomes, Coleoptera and Ephemeroptera remain low until the mid-2000s 

before increasing noticeably in the surface sediments. Bivalves also occur in the 

surface samples for the first time. One statistically significant break in the 

stratigraphy is identified using CONISS at ca. 1990. 

Similarly, to the macroinvertebrates, chironomid accumulation rate was low from 

pre-1900 to 1940 (10 -5.0cm) but with a distinct peak at ca. 1940 (Figure 33). 

Between 1940 and 1980 there is a noticeable increase in total chironomid 

accumulation rate and particularly in Diamesinae group. Total accumulation rate 

remains relatively stable from 1980-2015 (2.5-0cm) but with two distinct peaks at ca. 

2000 (1.0-1.5) and ca. 2010-2015 (0.5-0.0cm) where the accumulation rate of 

remains more than doubles. Diamesinae occur in all the samples at the base of the 

core but are not present between ca. 1950-present (4.0-0.0 cm). Slight declines in 

Tanypodinae and Chironominae groups occur between 3.0 and 1.5cm. Orthocladiinae 

are the most dominant group from 10-2.0cm (range 41-60%), however between 2.0-

2.5 (1980-1990) Tanytarsini are the most abundant taxa (range 47-48%). In the 

surface sediments (0.0-0.5cm) Orthocladiinae are again the most common taxa 

making up 48% of the chironomid remains. The proportion of Chironominae were 

roughly stable throughout the core, making up 6-20% (mean 11%) of the total heads. 
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Tanypodinae made up on average 8% of the total heads throughout the core, making 

up a distinctly smaller proportion of the total heads at 2-3cm (ca. 1980s). CONISS 

analysis identifies two statistically significant shifts in the chironomid stratigraphies 

of FEAR_BB, at 2000 (1.5 cm) and 1915 (7.0 cm) 

 

Loch Leir (LEIR) 

A total of 11 invertebrate groups were recorded in Loch LEIR (Figure 34). The most 

frequently occurring groups in the base of the core (ca.pre-1900-1930s, 6.0-4.0cm) 

were Coleoptera, Trichoptera case type 2 and Mandible type 3. Coleoptera and 

Mandible type (2) remains increase gradually up the core. The accumulation rate of 

Ephemeroptera, Trichoptera and Sialidae all show stepped increases associated with 

a period dated as approximately 1970-80 (2.0-1.0 cm). The accumulation rate of 

Ephemeroptera, Sialidae and mandible type 2 is highest in the surface sediments; at 

this point they are all higher than at any other point down the core. A single 

statistically significant shift in the macroinvertebrate stratigraphy is identified by the 

CONISS analysis, in ca. 1990 (1.0 cm) 

11 samples were examined for chironomid remains covering the top 6.5cm of the 

LEIR_BB core (Figure 35). Between 1850 and present there are two distinct phases in 

LEIR_BB, that are confirmed by the CONISS analysis. Total chironomid concentrations 

between 1900 and ca. 1970 are stable or slightly declining. Similarly, to macrofossil 

analysis a shift can be seen in the chironomid abundance at ca. 1970-1980 (1.5-

2.0cm), a distinct increase in chironomid abundance is observed. Total heads almost 

double from 2.5-3.cm to 2.0-2.5cm. Increases are seen in all taxa (except Diamesinae) 

and particularly in Tanypodinae at 2.0cm. Tanytarsini are the most prevalent group 

in the LEIR_BB core, making up on average 40% of the community. Orthocladiinae 

are more prevalent in the bottom of FEAR_BB whilst Tanypodinae reach their highest 

levels at 2.0-0.0cm depth (mean 20% of the community composition compared to 

mean 7% for 2-7cm). 

 

Loch Talaheel (TALA) 

Nine types of invertebrate remains were recorded in TALA_BB (Figure 36); the limited 

number of samples representing the last 150-200 years makes it difficult to be 
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confident about patterns or trends. Generally, remains are low in the base of 

TALA_BB between ca. 1900-1950. Ephemeroptera, Trichoptera and mandibles types 

(2) and (5) increase from ca. 1980 (1.5-1.0cm). CONISS analysis identifies a single 

statistically significant shift in TALA_BB at ca.2005 (0.5 cm). 

Chironomid remains in TALA_BB were extremely low compared to other Big Ben 

sites, a very large amount of sediment needed to be examined in order to locate 50 

heads; between 2 and 64 grams of sediment was analysed from TALA_BB compared 

to means of 1.2, 1.3 and 2.5 from AMHU_BB, FEAR_BB and LER_BB respectively. 

Between the pre-1850 and 1980s period (at 2.5-1.5cm) chironomid accumulation 

rate in TALA_BB are consistently low (0.09-2.1 heads per g w/w, Figure 37). At ca. 

1980-1990 (1.5cm) there is a distinct shift in TALA_BB as sediment accumulation rate 

increases (from 0.0061 g cm-2 yr-1 to 0.0152 g cm-2 yr-1), concurrent increases in all 

chironomid taxa are observed (from a total mean of 0.85 heads per g w/w in 2.0-

4.0cm to 6.87 heads per g w/w in 2.0-0.0cm) with the exception of Diamesinae, which 

are no longer present. A single statistically significant shift in the chironomid 

stratigraphy is identified at ca. 1990 (1.0 cm). 
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6.4.1.6.2 Change in invertebrate community composition at 

all four study sites 

PCA of the invertebrate and chironomid communities was used to explore the 

similarities between sites (Figures 6.38 and 6.39). The first two PCA axis of the 

macroinvertebrate ordination account for a total of 70.5% of the variation (56.9% 

PCA 1 and 13.6% PCA 2). There is much overlap in the progression of AMHU_BB, 

FEAR_BB and LEIR_BB, whilst TALA_BB is distinctly separate, being characterised by 

a low abundance of all invertebrate groups. AMHU_BB and FEAR show a relatively 

small amount of change towards communities characterised by Coleoptera and 

bivalves, whilst LEIR_BB shows a more substantial change, particularly in the post 

1980s period. The trajectory of LEIR_BB is similar to AMHU and FEAR during the 

1980s and 1990s but post ca. 2000 the invertebrate community of LEIR_BB becomes 

less similar, being characterised by Ephemeroptera and Trichoptera. 

The chironomid communities of the four lochs show some overlap in their tracks, 

however both FEAR and LEIR are clearly associated with higher abundances of 

chironomids than AMHU and TALA. The direction of community change is similar in 

TALA_BB and AMHU_BB, being associated with increasing abundance, whilst LEIR 

and FEAR move more strongly along PCA axis 2, towards communities associated 

with Tanypodinae sp. 
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Figure 6.38 Axis 1 and 2 of a PCA of the macroinvertebrate communities of the 

four lochs over the last 150-200 years. 
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Figure 6.39 Axis 1 and 2 of a PCA of the chironomid communities of the four lochs 

over the last 150-200 years.  
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Invertebrate summary 

• Between 9 and 14 invertebrate taxa were recorded in the lochs. Bivalves were only 

recorded in lochs FEAR and LEIR. Chaoborus flavicornis was only recorded in Lochs 

AMHU and FEAR 

• Increases in the abundance of most invertebrate taxa were observed at all sites 

between 1850 and 2015, and typically the number of remains in the surface sediments 

were substantially higher than at any other point in the cores. 

• Ordination of invertebrate communities suggests much similarity in the progression of 

AMHU_BB, FEAR_BB and LEIR_BB, whilst TALA_BB is somewhat separate and 

characterised by low abundance of invertebrate remains.  

• Generally, increases are observed in the total numbers of chironomids at the sites over 

the last 150-200 years, with marked increases associated with the 1980s evident in the 

sites. There is some evidence of a reduction in Diamesiene taxa in the surface of the 

cores. 

• PCA analysis of chironomid communities revealed that lochs FEAR and LEIR are 

associated with higher abundances of chironomids than TALA and AMHU for much of 

the core length. The direction of change in TALA and AMHU is similar and characterised 

by increased abundance, whilst the change is also similar at LEIR and FEAR. 
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6.4.1.7 Site summaries  

This section provides an overview of the recent environmental change at each of the 

four sites. Results of the radiometric dating and timescales covered by the cores are 

reviewed. Summary stratigraphic plots provide an overview of change for key taxa at 

each site.  

 

6.4.1.7.1 Loch a'Mhuillinn (AMHU) 

• Radiometric dating of AMHU_BB indicates that the last 150 years are represented 

in the top 7cm. Although the 137Cs profile displays a broad (rather than distinct) 

peak, it is possible to corroborate the dates from the CRS model using the Pb 

profile from the XRF analysis of AMHU_1. 

• A summary stratigraphic plot of AMHU_BB is shown in Figure 6.40, it shows that: 

i. Total diatom accumulation rate increases steadily from 1900 to ca. 1970. 

There is a distinct increase in diatom accumulation at ca. 1980s, and 

between the 1990s and 2015 diatom accumulation rate increased more 

rapidly almost doubling between 2-1cm (ca. 2005). 

ii. Benthic taxa dominate the diatom species; nutrient tolerant species such 

as A. formosa appear in low numbers between 4.0-0.0 cm depth (1960s 

to present) and increase towards the top of AMHU_BB, particularly post 

2000. 

iii. The remains of all macrophyte taxa increase between 1850 and 2015 with 

the exception of Isoetes sp. which decreases and is only present in low 

numbers between ca. 1980s and 2015 (3.0 - 0.0cm). 

iv. The accumulation rate of cladocera in samples between 8.0cm and 2.0 cm 

is low. Between 2.0-0.0 the total accumulation of cladocera is increases 

distinctly, particularly post 2000.  

v. Most invertebrate groups increase steadily between 1850 and present; at 

2cm (post 2000) total chironomid accumulation rate doubles.  
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6.4.1.7.2 Loch nam Fear (FEAR) 

• Radiometric dating was unable to establish clear 137Cs or 241Am peaks, but cross 

correlation with the Pb profile of FEAR_1 establishes that the age estimates from 

the CRS model were correct. 1850 was placed at 7.25cm and 1980 at 2.25cm.  

• A summary stratigraphic plot of FEAR_BB is shown in Figure 6.41, it shows that: 

i. The total accumulation rate of diatoms increases slightly between 1850 

and 2015, with the largest increase in the surface sediments.  

ii. Benthic taxa dominate in FEAR_BB. Nutrient tolerant taxa, such as A. 

formosa are present throughout the period of 1850-2015; distinct peaks 

occur at ca. 1900, 1970-1980 and the surface sediments. 

iii. The accumulation rate of macrophyte remains in FEAR_BB is highest 

between 1940-1980s. At 2.5cm (1980s) there is a distinct decline in all 

macrophyte groups, Juncus sp. and Moss sp. are the most prevalent 

groups in the surface sediments (Figure 42).  

iv. The accumulation rate of cladocera remains are highest between 1940-

1980, during this period Alona sp. are the most commonly recorded 

cladoceran remains. At ca. 1980 there is a distinct decline in all taxa.  

v. The majority of invertebrate remains in FEAR_BB follow the same pattern 

as the macrophytes and cladocera with increases in accumulation rate 

between 1940 and 1980, however the pattern is not evident for all 

groups. Chaoborus flavicans disappear from FEAR_BB at 2.5cm (1980), 

similarly Diamesinae chironomids are not recorded between 3.5-0.0cm. 

Conversely Bivalve sp., which were not apparent in the lower part of the 

core, are found between 2.0-0.0cm. Trichoptera sp., Ephemeroptera sp. 

and Coleoptera sp. all increase between 1980 and 2015, commonly to 

levels greater than at any other point down core. 
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6.4.1.7.3 Loch Leir (LEIR) 

• Dates for LEIR_BB was established by correlation with LEIR_1 which was 210Pb 

dated. The cross correlation estimated 1900 at 6.25 and 1970 at 1.75cm. 

• A summary stratigraphic plot of LEIR_BB is shown in Figure 6.42, it shows that: 

i. Total diatom accumulation rate increases up the length of LEIR_BB. There 

is a distinct increase in diatom accumulation rate at 1.5cm (1980s).  

ii. Benthic taxa dominate the core. Nutrient tolerant species such as A. 

formosa and C. rossi increase in the surface sediments, particularly 

between 1.5-0.0 cm (1980). 

iii. Isoetis sp. are the most dominant taxa between 6-2 cm, a distinct decline 

is evident at 1.5-2.0cm. Moss species increase in accumulation rate, 

particularly at 1.5-2.0cm (1980s-2015). Najas flexilis is not present 

between 1.0-0.0cm.   

iv. Cladocera accumulation rate is low in LEIR_BB between 5.0 and 1.5cm at 

1.5cm (1980) there is a substantial increase in cladocera remains. 

v. In the lower part of LEIR_BB the most prevalent invertebrate group is 

Coleoptera sp. Bivalvia sp. occur between 2.0 and 0.0cm (1970-2015). 

Between 1980 and 2015 (1.5-0.0cm) Ephemeroptera sp., Coleoptera sp., 

and Trichoptera sp., all increase substantially. Chironomid sp. are low in 

the base of the core, at ca. 1990 a stepped increase occurs.  
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6.4.1.7.4 Loch Talaheel (TALA) 

• Radiometric dating of TALA_BB was hampered by an absence of a 137Cs peak. 

Unlike FEAR_BB and AMHU_BB corroboration with the XRF Pb profile from 

TALA_1 did not provide robust evidence to support the CRS dates and 

interpretation of findings from TALA_BB must therefore be considered with 

caution. 

• A summary stratigraphic plot of LEIR_BB is shown in Figure 6.43, due to the small 

number of samples representing the last 150-200 years in TALA_BB is difficult to 

distinguish trends and/or patterns but in general the results indicate that:  

i. Overall diatom accumulation rate has increased between 2.5-0.0cm. 

Fragilaria sensu lato species dominated the community of TALA_BB and 

benthic taxa are more prevalent than planktonic species throughout the 

core. 

ii. Isoetis sp., Lobelia sp., Nitella sp. and Juncus sp. are the dominant 

macrophyte taxa between 2.5-1cm, at 1cm (ca. 1990) Lobelia sp. 

disappears, Nitella sp. and Isoetes sp. decline and Moss sp. species 

increase. 

iii. Cladocera remains are low between 2.5-1.5cm; there is a substantial 

increase in all cladocera taxa at 1.0-1.5cm (ca. 1980s-1990s). 

iv. All invertebrate groups are low between 1.5-2.5cm, increases in all groups 

occur at 1.0-1.5cm. 
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6.4.2 Interpretation of palaeolimnological data in the context of common 

scoter decline 

The first aim of this chapter was to provide palaeolimnological evidence of recent 

environmental change at four Flow Country lochs. Secondly this chapter aims to use 

these palaeolimnological data to examine two theories for common scoter decline in 

the Flow Country. A summary of the overall trends observed in the 

palaeolimnological data are provided in Figure 6.44 and statistically significant splits 

in the stratigraphic data (identified using CONISS) are illustrated in Figure 6.45. 

It has been suggested that brown trout introductions to the lochs or changes in the 

structure of the brown trout populations already populating the lochs may reduce 

invertebrate food availability for common scoter. Palaeolimnological evidence will be 

used to examine the validity of this theory by determining whether there is evidence 

of fish introductions or change to fish population structure (section i)a and i)b below) 

and whether consequent reductions in macroinvertebrate abundance occur (section 

i)c).  

Existing literature indicates that coniferous forestry plantations on blanket bog can 

influence the physical, chemical and biological characteristics of nearby waterbodies. 

It has therefore been postulated that forestry plantations in the Flow Country may 

have resulted in changes to physico-chemistry of nearby lochs and that this has 

resulted in changes to the biological communities that are detrimental to feeding 

scoter. Section ii) below uses the palaeolimnological evidence to explore the effects 

of coniferous forestry planted during the 1980s on the lochs.  
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 No Strong change 

 Gradual increase between 1850-2015 

 
Gradual increase 1850-1980, followed by a more rapid increase post 1980 

 No strong change 1850-1980, followed by a more rapid increase post 1980 

 
Stepped increase between 1940 and 1980, followed by stepped decrease at 1980. 
Gradual increase between 1980 and 2015  

 Increase followed by decrease 

 
Gradual decrease between 1850 and2015 

 Gradual increase, stepped decrease 1980s, followed by gradual increase between 1980 
and 2015 

Figure 6.44 A summary of the findings from Chapter 6, showing the predominant 

trends. 
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i) Is there evidence of change in the fish (brown trout) populations at the 

four lochs, and if so what are the implications for macroinvertebrate 

abundance? 

It has been suggested that brown trout populations in Flow Country lochs have been 

altered in recent times. This alteration is thought to be due to either brown trout 

introductions at previously fishless sites or because of decreased fishing pressure 

from anglers. In either scenario, the result could be decreased invertebrate food 

availability as a consequence of trophic cascade effect. It is theorised that this could 

be detrimental to common scoter who are relying on the same invertebrate food 

resources. 

 

a. Can fish scale evidence be used to determine whether fish 

introductions have occurred at the lochs? 

No historic records documenting fish introductions could be identified to establish 

the dates of fish stocking events in Flow Country lochs, therefore palaeolimnological 

data were used to determine whether fish introductions had taken place and when. 

A wide bore Big Ben corer was used to attempt to establish the presence of fish from 

scale remains; the technique has successfully demonstrated changes in fish 

populations in shallow lakes, for example in the case of fish kill events (Sayer et al., 

2016). By examining fish scale remains it is possible to determine the colonisation 

date of the lochs by fish, and additionally make inferences about the size and age of 

fish in the population. However, there was no direct evidence of brown trout 

populations from scale remains in any of the four cores despite all four sites being 

known to currently contain brown trout. The lack of fish scale remains in sites known 

to contain trout is surprising, but could result from low fish densities. It is unlikely 

that the remains were undetected or degraded as other smaller and less robust 

macrofossil remains were found in the cores. 

 

b. Do other macrofossil indicators provide evidence of fish introduction 

at the lochs?  

Where evidence from fish scale remains is lacking, fish presence can also be 

established indirectly by examining species sensitive to fish predation, such as 
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Chaoborus sp. or Daphnia species. Previous palaeolimnological studies have 

demonstrated the suitability of using Chaoborus sp. and/or Daphnia sp. 

disappearance as an indicator of fish presence (Jeppesen et al., 2002; Sayer et al., 

2016; Uutala, 1990).  

The remains of Chaoborus flavicornis were detected in the lower part of one core 

(FEAR_BB), and disappeared at ca. 1980. Fish introductions to Flow Country lochs are 

believed to have occurred primarily around the latter part of the 19th century and 

early 20th century; principally in response to increased interest in fishing pursuits on 

sporting estates (Hancock per. comm.). If the disappearance of Chaoborus sp. 

remains in Loch FEAR are indicative of a fish introduction it occurs much later (1980) 

than would typically be expected. Whilst this might still appear plausible for a remote 

loch in the Flow Country, Loch FEAR is positioned close to the Altna breac railway 

station and the old Lochdhu hunting lodge and hotel, both of which allow easy access 

to the site for anglers, and would have made it a priority site for earlier introductions.  

Other proxies in Loch FEAR show an unusual trend, that is not observed in the other 

study sites, there is a step increased in all groups in 1940 followed by a stepped 

decline in 1980 (Figure 6.44). An outlet weir is present at Loch FEAR; however, no 

information was obtainable concerning when the structure was installed or when it 

more recently failed. It is possible that the changes, observed in multiple taxa are due 

to changes in the water level of the loch during this time. This theory is somewhat 

supported by the ecology of Chaoborus flavicans, which have been shown to respond 

to changes in water level in addition to fish predation pressure. In a Finnish study 

Luoto and Nevalainen, (2009) found Chaoborus flavicornis to be more abundant in 

deeper lakes (2-7m) compared to shallower (1-2m) ones. As fish stocking in Loch 

FEAR in the 1980s appears unlikely it is possible that the disappearance of Chaoborus 

sp. from Loch nam Fear is associated with a reduction in water level (following the 

weir failure) rather than a fish introduction. 

None of the other lochs contained Chaoborus sp. remains in the core with the 

exception of one mandible in AMHU at 5.5-6cm depth, (ca. 1905); the indirect 

evidence of fish introductions from Chaoborus sp. remains at AMHU is not 

conclusive.  
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Previous research has also used changes in zooplankton populations to indicate fish 

introductions; typically by reductions in large planktonic taxa (Davidson et al., 2010; 

Jeppesen et al., 2002, 1996). Morphological changes (such as reduced epphipia size 

or mucros length) have also been associated with fish introductions and changes in 

fish population structure. None of the sites in this study show declines in planktonic 

Daphnia sp. epphipia which would be indicative of fish introductions. The eppihipia 

size and mucros length of Cladocera were not assessed in this study and it is therefore 

possible that subtle changes in brown trout population structure may have been 

overlooked.  

 

c. Is there evidence of a change to macroinvertebrate communities that 

could be associated with brown trout introductions?  

It is hypothesised that changes to brown trout populations in Flow Country lochs 

could be effecting macroinvertebrate populations in a manner that is detrimental for 

competing species, such as common scoter. There is no strong direct or indirect 

evidence that fish introductions have taken place in the four sites, although it is 

acknowledged that subtle changes in population structure may have been 

undetected. It is therefore important to examine whether changes in invertebrate 

abundance or composition have occurred that could be associated with either 

introductions or changes in population structure. The abundance of 

macroinvertebrate remains at the four study sites has increased since ca. 1850, with 

noticeable increases in abundance occurring around the 1980s period (Figure 6.44). 

The composition of the invertebrate communities at the sites has also been shown 

to have been relatively stable until the 1980s-1990s. Changes in abundance and 

community composition take place later than changes in fish communities are 

thought to have occurred. The changes in invertebrate communities observed since 

the 1980s (when common scoter decline began) indicates an increase in abundance, 

particularly groups such as Coleoptera, Trichoptera and Ephemeroptera, all of which 

are consumed by both brown trout and common scoter (Bengtson, 1971; Cramp and 

Simmons, 1977; M Hancock et al., 2015). Evidence from macrophyte and diatom 

communities also indicates an increase in nutrients during this period, suggesting 
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changes in nutrients rather than fish populations are driving the observed change in 

community composition since the 1980s.  

 

ii) Are the effects of afforestation (in the 1980s) evident at the four lochs? 

Drainage and planting of the forestry around the study lochs occurred between 1985 

and 1989. Removal of trees is known to have taken place in 2003 (Loch LEIR) and 

1999 (Loch TALA), whilst the forestry at Loch FEAR remains. The nearest forestry to 

AMHU is more than 0.5km away and was planted between 1986 and 1989. Planting 

coniferous forestry in the catchments of peatland lochs has been shown to increase 

sediment accumulation rates (Littlewood et al., 2010) and nutrients inputs (due to 

fertiliser additions, (Cummins and Farrell, 2003a; Renou et al., 2000)) and cause 

acidification (Nisbet and Evans, 2014). Changes to invertebrate and zooplankton 

communities have also been documented following forestry plantations (Drinan et 

al., 2013b, 2013c) which could have implications for breeding scoter. Big Ben cores 

in this chapter were used to assess whether changes to the physical, chemical and/or 

biological characteristics have taken place as a consequence of forestry.  

 

a. Does geochemical analysis of the cores indicate that there has been a change 

in sedimentation rates or sediment composition that could be a consequence 

of increased erosion associated with the 1980s? 

Palaeolimnological data indicates that there has been an increase in sediment 

accumulation rate at three of the four study sites (AMHU, LEIR and TALA). However, 

the patterns are not consistent. Whilst Loch TALA does show increases consistent 

with the timescale of forestry Lochs LEIR and AHMU show increases in sediment 

accumulation rate and organic matter occurring over much of the twentieth century, 

and at FEAR there is an increase in sediment accumulation rate followed by a 

decrease post 1960 (Figure 6.44).  

The changes in organic matter concentrations in the cores for the last 150 years do 

not indicate strong patterns, although gradual increases in organic matter content 

are shown in Lochs FEAR and LEIR post 1980 and post 2000 in AMHU. Overall the 

evidence is only weak that the forestry has effecting the physical characteristics of 

the lochs.  
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b. Is there evidence of changes to water chemistry during/or since the 1980s?  

There is strong evidence that the chemistry of the lochs has changed since the time 

of forestry activities in the catchments of the lochs. An increase in nutrient tolerant 

diatom species (such as Asterionella formosa) has occurred and sensitive macrophyte 

(Isoetes sp.) and chironomid taxa (Diamesiene) have shown concurrent declines. 

Although there is some evidence of lochs becoming more productive over the course 

of the twentieth century, (as evidenced by overall increases in abundance of many 

taxa) (Figure 6.44), statistically significant shifts are identified during or in the years 

following forestry planting (Figure 6.45).  

 

c. Has the abundance and/or composition of invertebrate communities changed 

since the 1980s?  

Palaeolimnological analysis indicates a statistically significant change in the biological 

communities of lochs, particularly during and/or post the 1980s (Figure 6.45). The 

abundance of diatom, cladocera, macrophyte and invertebrate remains increases 

over the twentieth century, and these increases are accelerated post 1980s (Figure 

6.44). In FEAR, LEIR and TALA the significant changes in all groups occur during the 

period of forestry plantation. At loch AMHU, where forestry plantation is more than 

0.5km distance, a statistically significant shift occurs later (ca. 2000 onwards) and 

there is also evidence of a shift in diatom and invertebrate groups at ca. 1970. At loch 

FEAR there is evidence of a shift in all groups during the 1980s. At both LEIR and TALA, 

where the shift in invertebrate populations occurs later than for the other groups, 

forestry has been harvested at both of these sites  
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6.5 Discussion 

This chapter aimed to explore two theories for common scoter decline in the Flow 

Country. Firstly, that afforestation and drainage of the Flow Country catchments in 

the 1980s may have altered the physico-chemistry of the lochs. It was postulated that 

afforestation of blanket bog surrounding the scoter breeding lochs could have 

adversely affected the physical loch structure and/or invertebrate food supply for 

common scoter. Alternatively, the second theory centred around the idea that the 

competitive balance between brown trout and scoters may have altered in recent 

decades, either as a result of decreased fishing pressure or because of fish stocking 

at previously fishless sites. Common scoters compete with brown trout for food and 

therefore changes in the abundance or population structure of brown trout could 

have resulted in reduced invertebrate abundance which could be detrimental for 

common scoter.  

The palaeolimnological evidence from this chapter demonstrates that a gradual 

increase in nutrient availability has been occurring in the four study sites between 

ca. 1850 and 1980. A distinct increase in productivity is evident at all sites during the 

ca. 1980s. Between the 1980s and present, trends of increasing productivity are 

accelerated, with increases being larger and more rapid between 1980 and present 

than between ca. 1850 and 1980. The increases in productivity could be attributed 

to a number of anthropogenic activities that have been shown to influence peatland 

catchments including; drainage, grazing of livestock, forestry, rotational burning and 

atmospheric deposition (Rydin and Jeglum, 2013). The potential mechanisms and 

pathways of increasing nutrient availability in peatland lakes will firstly be discussed. 

This will be followed by a discussion of the implications of increasing productivity for 

breeding common scoter and an evaluation of the palaeolimnology approach to 

species decline research.  

 

Mechanisms driving recent increases in productivity at four Flow Country lochs 

i) Atmospheric deposition  

Ombrotrophic bogs, like the Flow Country, receive the majority of their nutrients 

from atmospheric deposition, being largely disconnected from lateral movement of 

mineral rich waters (Rydin and Jeglum, 2013). Anthropogenic emissions of fertilising 
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compounds such as nitrogen oxides (NOx) and ammonium (NH4
+) have increased 

since industrialisation, as a result of increases in vehicle emissions, industry and 

domestic combustion (Jones et al.,2014). The deposition of these nutrients onto 

habitats that are adapted to very low N inputs can substantially effect N cycling 

within the system and result in changes to species composition and abundance 

(NEGTAP, 2001, Carroll et al.,1999). The exact pathways by which N deposition 

affects freshwaters is difficult to establish due to the interactions taking place 

throughout the N cycle in both the terrestrial and aquatic systems (NEGTAP, 2001). 

In addition to which, the effects of atmospheric N deposition can be further 

compounded by other more localised anthropogenic land management practices 

such as burning, grazing and drainage (Holden et al., 2007). Palaeolimnological 

studies are able to demonstrate change at remote, low impacted sites that is 

hypothesised to have been in response to N deposition. The floristic change observed 

in communities such as diatoms has been shown to be rapid and to far exceed 

changes resulting from natural variability and/or climate change (Wolfe et al., 2001 

and 2006). Although the Flow Country is considered a low deposition region of the 

UK, in such low N-limited systems the effects of even modest increases in N 

availability has the potential to have more pronounced influences (Catalan et al., 

2013). The floristic changes in diatom communities observed in the current study are 

similar to those described in other lakes where N deposition is suspected, with 

increases in taxa such as Asterionella formosa in addition to overall increases in 

diatom biomass (Wolfe et al.,2006). It is possible therefore, that the gradual 

increases in nutrient availability at the study sites between ca. 1850 and 1980 are a 

result of atmospheric N deposition. The rapid changes observed post ca. 1980s, when 

emissions caps resulted in decreases in atmospheric nitrogen sources, suggest that 

other more localised factors, such as land use, could be influencing the lochs during 

these more recent times.  

 

ii) Land-use 

Drainage 

The drainage of peatland habitats changes wetland bog systems into terrestrial 

environments that can be more easily used for anthropogenic services such as 
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plantation forestry and grazing. The drainage of peatlands to increase their 

anthropogenic value has occurred for many hundreds of years, but has increased in 

both scale and extent in recent times as drainage machinery and technology has 

developed. The International Mire Conservation Group estimates total European 

losses of peatland to drainage of 130 000km2, with several countries having lost up 

to 80% of their peatland. In the UK it is estimated that approximately a quarter of 

peatlands have been drained for use by agriculture (12%), forestry (13%) and peat 

extraction (<1%) (Rydin and Jeglum, 2013). Approximately a quarter of Flow Country 

sites surveyed in the mid-1980s had evidence of some drainage that was not 

associated with forestry activities (Lindsay et al., 1988). Such drainage has been 

shown to increase run off and decrease the level of the water table, resulting in 

increased peat desiccation, shrinkage and air flow (Conway and Miller (1960) and 

Lindsay et al.,(1988)). Increased aerobic decomposition in peats, as a result of this 

increased air flow, increases the mobilisation and loss of minerals and nutrients 

(Holden et al., 2004). These mobilised nutrients can be transported to nearby 

streams and lochs affecting their water quality (Holden et al., 2004). Typically, large 

increases in ammonium (NH4
+) have been observed (Lundin, 1994 and Miller et al., 

1996) in addition to increases in Ca, Mg, K and DOC (Sallantaus 1995, Miller et al., 

1996 and Astrom et al., 2001). Studies examining nutrient release following peatland 

drainage have found that the export of nutrients is typically short-lived (Holden et 

al., 2004). However, the timescales over which nutrient release from drainage 

ditches could be affecting nearby open waterbodies has not been the focus of long 

term study. The affects of extensions to the ditch networks together with the long-

term influences of peat desiccation and degradation are therefore not well 

understood. Ditches are visible around several of the study sites from aerial imagery 

and could be a key pathway for nutrient transport into Flow Country lochs.  

 

Grazing and burning 

Grazing is one of the most common uses of peatlands in Europe and can be carried 

out at low densities without the need for drainage or fertiliser addition (Lindsay et 

al., 1988). The potential impacts of grazing on the open waterbodies of peatlands is 

likely to be minimal. The majority of nutrients produced by livestock are obtained 
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from the peatland itself and therefore little additional nutrients are likely to be 

added. However, grazing is often combined with rotational burning which is used to 

stimulate the growth of grasses and/or provide habitat suitable for species of game 

birds and deer. In Britain, burning of peatland is a widespread practice that has been 

shown to impact upon nutrient cycling, hydrology and surface vegetation  (Holden et 

al., 2007; Laubhan, 1995; Maltby et al., 1990; Ward et al., 2007). During the fire, 

nutrients and volatile materials (such as carbon, nitrogen, sulphur and cations of 

potassium, magnesium and calcium) are lost via the smoke and ash. Accumulation of 

ash will occur at the site of the fire itself, but has also been found to travel significant 

distances away carried by wind (Lindsay et al., 1988). The absorption of nutrients 

from the ash at the site of the fire depends on the severity of fire itself and the extent 

to which the surface Sphagnum has been degraded. Severe degradation can result in 

a net loss of nutrients as severely damaged Sphagnum is unable to reabsorb nutrients 

from deposited ashes. The fire can also cause a deposition of hydrophobic waxes, 

which creates a water repellent film on the peat surface. This results in a reduction 

of the downward leaching of nutrients into the lower layers of the peat and can lead 

to increased surface runoff (Lindsay et al., 1988; Ramchunder et al., 2009). Increases 

in nutrient availability combined with increased surface runoff and a lowering of the 

water table can result in localised increases in nutrients. The paleolimnological data 

from this chapter provide some evidence to suggest that fire may have resulted in 

periodic increases in erosion and nutrient release. There are several occasions when 

peaks in charcoal counts occur at the same time as increases in both sediment 

accumulation rate and invertebrate and diatom abundance. However, the pattern is 

not consistent suggesting other factors may also be contributing to nutrient 

increases.  

 

Plantation Forestry 

Whilst gradual increases in productivity between ca. 1850 and 1970 appear most 

likely to be a result of atmospheric deposition, the stepped increased in nutrient 

tolerant taxa and overall abundance of both algae and invertebrates in the 1980s 

strongly suggest that forestry is affecting the study sites. Plantation forestry in the 

Flow Country primarily consists of non-native conifers; Sitka spruce (Picea sitchensis) 
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and Lodgepole pine (Pinus contorta). Ploughing, drainage and fertiliser application 

are typically required for plantations to be successful on deep peat and have all been 

shown to affect the physical, hydrological and chemical characteristics of nearby 

waterbodies (Kentämies 1981, Miller et al.,1996, Prevost et al.,1999, Cummins and 

Farrell 2003, Ramchunder et al.,2009, McElarney et al.,2010 and Drinan et 

al.,2013a,b). Ploughing to create a series of furrows and ridges on which to plant new 

trees is commonly carried out to facilitate tree growth in water saturated peatland 

soils. The process has been shown to increase surface water runoff during the initial 

stages (Conway and Miller, 1960 and Burke, 1967). This can be particularly 

problematic for nearby watercourses if combined with fertiliser application, as 

excess nutrients are more readily transported into the surrounding catchment. Peat 

degradation resulting from ploughing has also been shown to result in further 

nutrient release as aerobic decomposition increases nutrient availability (Holden et 

al., 2004 and Ramchunder et al., 2009). At the time of planting, in addition to 

ploughing, a drainage network is also commonly installed to further reduce water 

retention and enable a more successful crop. Drainage can facilitate the transport of 

water over greater distances than ploughing alone, transporting nutrients more 

extensively across the catchment. Fertilisers are commonly applied at the time of 

planting to relieve deficiency, but can also be added later to facilitate further growth. 

Frequently used fertilisers are potassium, phosphorus and nitrogen based 

compounds (Renou and Farrell, 2005). Phosphorus is particularly mobile in peatland 

soils and substantial amounts of phosphorus can be lost to proximal waterways as 

run-off following application (Kenttämies, 1981; Renou et al., 2000). Turkia et al., 

(1998) used palaeolimnological techniques to examine changes in six small Finnish 

lakes, affected by forestry and were able to identify changes in diatom community 

composition associated with both ditching and fertilisation events, particularly signs 

of eutrophication. The extent of the nutrient enrichment was found to vary between 

sites, as was the case in the Flow Country sites examined in this chapter, and was 

probably due to differences in geology and hydrology.  

Once established the trees in coniferous plantations have also been shown to 

exacerbate nutrient uptake by peatland soils, by efficiently scavenging atmospheric 

nitrogen pollutants and sea salts, increasing base cation uptake and creating an acidic 
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surface layer on the soils (Nisbet and Evans, 2014). It is possible that the continued 

increases in productivity observed in the study sites since the time of forestry 

planting are the result of forestry scavenging and depositing atmospheric nutrients 

in the areas around the study sites.  

Lochs Leir and Talaheel both had areas of deforested plantation close by, although it 

was unclear whether the deforested areas close to Talaheel were indeed within the 

catchment of the loch itself. The process of forest harvesting can also result in the 

release of nutrients into nearby water courses. Increases in levels of nutrients and 

alteration to pH, conductivity, dissolved oxygen, temperature and suspended 

sediments have all been demonstrated for waterways adjacent to felling (Finnegan 

et al., 2014). O’Driscoll et al., (2013) reported substantial changes to invertebrate 

communities’ post felling, with increases in chironomid abundance and simultaneous 

decreases in macroinvertebrate diversity and species richness; however, diatom 

communities were not significantly affected by clear felling events. Similarly Räsänen 

et al., (2007) used a palaeolimnological approach to assess the effects of forestry 

harvesting in small boreal lakes in Sweden and observed only small changes in diatom 

communities, mostly related to changes in species abundance rather than species 

composition. However, studies of Irish peatlands have demonstrated that forestry 

can have a significant influence on the biological communities of proximal 

waterbodies including cladocera (Drinan et al., 2013b) and fish (Graham et al., 2014).  

The results of the current study indicate that sites with minimal or possibly no 

catchment forestry (e.g. AMHU and TALA) still show signs of increased nutrient 

availability, post 1980. Whilst the gradual increases prior to forestry activities could 

be due to atmospheric deposition, the causes of increases post 1980 are more 

difficult to establish. It could be due to artificial drainage networks linking these sites 

to nearby forestry that are facilitating the transport of water and nutrients from 

these areas of the peat. Palaeolimnological analysis of a site further removed from 

forestry and any possible drainage ditches could be used to examine the extent of 

forestry effects.  
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iii) Food web alterations 

Food web changes driven by top-down processes (such as fish) also have the 

potential to influence productivity and community structure in the lochs. None of the 

palaeolimnological indicators examined in this chapter were able to substantiate 

either fish introductions (to sites that were previously fishless) or changes to fish 

population structure. Palaeolimnological data from all four study lochs clearly 

indicates recent increases in abundance of invertebrate remains, including those 

typically sensitive to fish predation, such as Daphnia sp. If increases in invertebrate 

abundance and community composition are being driven by top-down processes 

then this would suggest either lower overall fish abundance (and therefore reduced 

predation resulting in more invertebrates) or changes to the balance between larger 

(trout) and smaller (stickleback) fish. There is no evidence to indicate whether the 

fish populations of the lochs have declined in recent times, indeed local anecdotal 

sources suggest a change in fish population structure are more likely. These changes 

are thought to have occurred as a result of reduced recreational fishing pressure on 

the lochs. However, if the lochs now contain a larger number of small fish (as is 

suggested) then the predation pressure on invertebrates would be likely to increase 

causing a reduction in invertebrate abundance, which is not what is indicated by the 

palaeolimnological data in this study. The increase in invertebrate abundance would 

suggest a release from predation pressure, if this is being driven by top down 

processes then an increase in larger piscivorous fish would be more probable. Overall 

it appears unlikely that top-down process are driving increases in productivity 

observed in the lochs, but more detailed surveys of fish population structure could 

be used to confirm this.  

 

Summary  

There are a number of potential mechanisms that could be causing the gradual 

increases in nutrients observed in the study sites between ca. 1850 and 1980, 

including land use practices and increased atmospheric deposition. With little 

evidence to indicate strong changes occurring in relation to land practice and 

management during this time, it is perhaps most likely that the changes observed 

result from atmospheric sources of nutrient deposition. Whilst the focus of this study 
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was to examine environmental change in relation to recent declines in common 

scoter populations, examining further samples from earlier in the cores could 

establish how the 1850-1980 trend relates to pre-1850 trends and whether 

atmospheric deposition is the most likely cause of inferred increase in productivity. 

Stepped productivity increases observed in the 1980s and the accelerated trend 

between 1980 and present appear most likely to be a result of forestry activities 

situated either directly within the catchments of the lochs or connected to the 

catchments of the lochs by drainage networks.  

 

Implications of recent environmental change for common scoter 

The palaeolimnological evidence from this chapter indicates the algal, invertebrate 

and macrophyte communities of the lochs have changed substantially over the last 

150 years, particularly since the 1980s. There have been increased in abundance in 

addition to shifts in community structure that indicate an increase in nutrient 

availability.  

Common scoter populations in the Flow Country peaked in the 1980s and have 

declined by almost 50% since 1990. Recent increases in invertebrate abundance, as 

indicated by the palaeolimnological data, suggests that reductions in invertebrate 

food resources are not the primary factor limiting scoter breeding at these sites. 

Previous research found that common scoter occurred more frequently at Flow 

Country sites with mesotrophic (rather than strongly oligotrophic) conditions (Fox 

and Bell, 1994). However, results from this thesis indicate that by the time this study 

was carried out (in the mid 1990s) the lochs of the Flow Country may already have 

experienced substantial nutrient enrichment. Common scoter have been shown to 

be highly site faithful in other parts of their range (I.K. Petersen and G. M. Hilton per. 

comm.) which makes it difficult to determine whether the association with 

mesotrophic conditions observed in the 1990s was a result of site preference or site 

fidelity.  

In addition to increases in overall abundance, palaeolimnological data has also 

provided evidence of substantial shift in invertebrate community composition during 

the period since common scoter decline. The feeding strategies of common scoter 

are not well understood. However, the limited evidence available suggests they are 
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opportunistic feeders, consuming abundant and easily accessible prey items (Fox, 

2003). It would seem unlikely therefore that shifts in community composition would 

be detrimental to adult breeding scoter. However, an additional implication of the 

observed community shift could be a move towards a community made up of 

smaller, less profitable taxa. The diversity and size classes of invertebrate species 

have been shown to affect lake use by other diving duck species (Eadie and Keast, 

1982) and could be a particular problem for young birds needing to rapidly build up 

reserves.  

The palaeolimnological evidence from four Flow Country lochs has provided clear 

evidence of recent environmental change and it appears highly likely that changes 

are associated with forestry activities. It remains difficult to confidently establish the 

mechanisms by which increased productivity and invertebrate abundance could 

result in declines of common scoter, particularly as they are thought to be generalist 

feeders. The results of this chapter could indicate either that another factor, besides 

food availability, is detrimentally influencing scoter breeding in the Flow Country. 

Alternatively, the shift in invertebrate community composition is resulting in a less 

profitable food resource, which could be a particular problem for young birds. In 

either scenario further work to establish mechanisms by which scoter feed would be 

valuable in addition to a better understanding of fledging success. 

 

Evaluating the use of a palaeolimnological approach to species decline research  

This chapter has demonstrated the applicability of a palaeolimnological approach to 

separate the spatially correlated variables associated with competing theories for 

common scoter decline. The benefits of a multi-indicator approach to build a clear, 

long term picture of recent environmental change at different trophic levels have 

also been demonstrated.  

The palaeolimnological analysis in this chapter has demonstrated the benefits of 

examining biological indicators at different trophic levels to facilitate understanding 

of environmental change. However, to allow for more time to be spent on a larger 

number of indicators, the taxonomy of some groups (chironomids and cladocera) 

was not fully resolved. The current study demonstrates that whilst extra information 

could have been gained from higher taxonomic resolution of these groups, it was not 
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vital, as key patterns could be established to answer the conservation questions of 

concern. This has implications for other conservation based palaeolimnological 

studies, in terms of prioritisation of resources. 

One limitation of using palaeolimnology in lochs which have a slow sediment 

accumulation rates, such as those in the Flow Country, is the inability to resolve 

annual (or near annual) scale change. Whilst a near annual resolution has been 

possible in other studies (Brooks et al., 2012) and could have been useful in this case, 

it was not vital and the determination of the key drivers of decline were not 

substantially hindered by being at a near decadal timescale.  

Ecological studies of species decline typically rely on contemporary data sources that 

provide only a snap shot of environmental conditions, typically over very limited time 

scales. A limitation of this approach is that it can be difficult to disentangle multiple 

spatially correlated variables, even if they are temporally separable. In this chapter 

palaeolimnological techniques have been shown to facilitate the diagnosis of species 

decline by providing detailed and standardised data over timescales substantially 

longer than those typical in traditional ecological approaches. However, a limitation 

of the palaeolimnological approach is that the analysis of core material is a time 

intensive process which limits detailed, fine resolution analyses to a smaller number 

of sites than could be covered by a traditional ecological approach. When the number 

of sites is small it can be difficult (or impossible) to answer questions of species 

decline using hypotheses testing approaches that are more familiar to contemporary 

ecologists. Use of palaeolimnology by the conservation community has been limited 

and a lack of understanding between respective fields has been suggested as one 

reason for this (Davies and Bunting, 2010). The findings from this study exemplify the 

benefits and limitations of a palaeolimnological approach. 

 



300 
 

 

6.6 Key findings and implications 

• Four lochs in the Flow Country were cored using a wide bore, Big Ben corer with the 

aim of examining questions around the changes in fish populations and as a result of 

forestry that could be detrimental for breeding common scoter 

→ It is possible to use this technique in these shallow lochs 

• Lithostratigraphic analysis indicated the cores had a conformable stratigraphy, and 

sediment primarily silt with with sandy layers 

→ Sandy layers indicate dynamic change however there was no clear pattern 

between sites spatially or temporally 

• Three of the four cores were dated using 210Pb, and one by cross correlation of XRF 

profiles with a 210Pb dated Glew core from the same site. 137Cs and 241Am peaks in the 

three radiometrically dated cores were broad or absent which could have indicated 

physical mixing. However cross correlation with the Glew cores confirmed the dates 

established by the CRS model in two oout of three sites. The dating of TALA_BB could 

not be substantiated with confidence. 

→ Cores from shallow wind stressed sites can be dated, some chemical mixing of 

137Cs and 241Am may occur but no physical mixing was evident in most cases. 

• Multi-proxy analysis of the four cores indicated an increase in loch productivity with 

many groups from multiple trophic levels increasing over the last 150 years. A distinct 

increase was discernible in the 1980s; particularly in nutrient tolerant taxa, whilst 

nutrient sensitive taxa decreased. Palaeolimnological data provided strong evidence 

that the lochs of the Flow Country have experienced substantial change over the last 

150 years, and particularly since the 1980s. Whilst there was no evidence of changes 

in fish populations having a detrimental effect on invertebrate food availability, there 

were increases in abundance and shifts in community composition associated with the 

1980s and commercial forestry activities.  

→ Palaeolimnology can be used to disentangle spatial correlated theories of 

species decline, generate and develop hypotheses and provide evidence for 

conservation management  
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CHAPTER 7: SUMMARY, CONCLUSIONS AND FUTURE DIRECTION  

7.1 Overview 

This chapter reviews the objectives and findings of this thesis; it brings together the 

conclusions from each chapter and discusses the management implications for Flow 

Country lochs and the conservation of common scoter. The future direction of 

research based on the findings from this thesis are identified. 

 

7.2 Introduction 

The common scoter is a UK red-listed breeding species and a priority for 

conservation, having experienced declines of more than 50% over the last 30 years. 

The Flow Country in Northern Scotland is one of several areas in Britain where the 

species breeds, and is an important stronghold, where declines have proceeded 

more slowly. The Flow Country is an internationally important wetland, consisting of 

over 440,000 hectares of blanket bog, interspersed with pools and oligotrophic lochs. 

Annual common scoter monitoring, covering approximately 100 sites in the Flow 

Country, has documented a substantial decline in the last 30 years. Research in 

Scotland on common scoter decline, has to date used traditional ecological 

approaches to characterise and compare lochs that are currently, or have historically 

been used by common scoter. Previous research has established that there is a 

statistically significant association between common scoter presence and loch 

characteristics such as; high pH and conductivity (Fox et al., 1989), shallow shorelines 

and soft sediments and an abundance of large bodied invertebrates (Hancock et al., 

2015). However, studies to date have not able to provide an in-depth assessment of 

the within-loch relationships at multiple trophic levels, particularly in the context of 

detailed physio-chemical data. Nor have substantial attempts been made to evaluate 

landscape scale characteristics and common scoter distribution using powerful tools 

such as GIS and/or SDM. Most importantly these data, based on a contemporary snap 

shot of conditions, are unable to provide any information about recent environment 

change at common scoter breeding sites. Without a temporal context, in which to 

view contemporary conditions, it is impossible to determine the extent to which 

changes in the lochs could be influencing declines. Long term data can identify 

whether particular lochs have always had more (or less) favourable conditions than 
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others, or whether differences in the extent (or type) of change at the loch is related 

to its current value to common scoter. Long term data can also provide evidence as 

to whether observed environmental changes are the result of anthropogenic 

pressures and/or natural variability. In addition to understanding why a species has 

declined, long term data can also be important in a practical management context. It 

can be used to identify sites that are the least impacted, and sites that should be a 

priority for management and/or restoration. Unfortunately, long term monitoring 

data, covering a range of variables is frequently lacking, inconsistent or non-existent. 

This was the case for lochs in the Flow Country. No long-term data was available to 

provide context to recent common scoter declines, and consequently it was difficult 

to disentangle competing theories, or make decisions as to the most appropriate and 

cost-effective management interventions. This thesis takes a unique approach to 

understanding the decline of a priority UK waterbird species, the common scoter. 

Detailed contemporary ecological survey data is combined with geospatial modelling 

and palaeolimnological reconstructions to provide a detailed understanding of the 

drivers of decline.  

An overview of how each aim of this research was met is detailed below and an 

overview of the main conclusions is given in section 7.3 of this chapter. Sections 7.4 

and 7.5 identify the management implications of these findings and directions for 

future research. 

 

Aim 1: Determine levels of heterogeneity in Flow Country lochs 

Whilst common scoter records for the Flow Country were more extensive and 

standardised than for any other breeding location in Scotland, data relating to the 

physical, chemical and biological communities of the lochs was shown to be 

substantially lacking. Chapter 3 used newly collected survey data to characterise 18 

Flow Country lochs. These analyses demonstrated that the algae, chironomid and 

macrophyte species present were generally typical of those found in low nutrient, 

acidic lochs. Analysis did, however, indicate that there was also much variation 

between the biological communities of the study lochs. Some lochs could be grouped 

based on algae, invertebrate and water chemistry characteristics, and three loch 

types could be identified based on macrophyte communities (Palmer et al., 1992). 
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The environmental variables explaining the differences in the composition of diatom, 

invertebrate and macrophyte communities were explored using constrained 

multivariate analysis. Key influences included water chemistry (DOC, Mg, and Ca), 

predation pressure (brown trout weight) and habitat structure (macrophyte cover). 

 

Aim 2: Develop and refine hypotheses for common scoter decline in the Flow 

Country using within-loch data 

Historic common scoter survey data was used to determine a scoter loch value for 

each of the 18 study sites. This was used as a response variable in a general linear 

model. Due to the large number of potentially influential within-loch variables, three 

sub-models (physical, chemical and biological) were initially run to identify the 

variables to be taken through to a final model. Variables taken through this initial 

model refinement process were sediment type, water depth, DOC and the 

abundance of macrophytes, invertebrates and fish. The statistically significant 

variables in the final model were DOC, water depth and sediment type. Common 

scoter loch use was higher at lochs with low DOC concentrations. The relationship 

between scoter loch use and sediment type varied depending on water depth, with 

soft sediment being more important to scoter at deeper sites. Although macrophyte 

cover, chironomid and fish abundance were non-significant in the final model, they 

were all considered as somewhat ecologically relevant due to making it through to 

the initial model refinement process. Overall Chapter 3 addressed aim 2 by 

determining that common scoter loch use is influenced by physical (sediment type 

and water depth), chemical (DOC) and, to a lesser extent, biological (fish and 

chironomid abundance) characteristics of Flow Country lochs. By combining these 

data with current literature and knowledge of pertinent Flow Country issues, the 

following theories concerning common scoter decline were developed: 

(1) Afforestation and drainage of the Flow Country catchments in the 1980s may have 

altered the physico-chemistry of lochs through increased sedimentation and/or DOC 

import which could adversely affect physical loch structure and/or invertebrate food 

supply for the common scoter. 

(2) Common scoters compete with brown trout for food, and the competitive balance 

between brown trout and scoters may have altered in recent decades, either as a 
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result of decreased fishing pressure or fish stocking events. Changes in the 

abundance or population structure of brown trout could have resulted reduced 

invertebrate abundance which could be detrimental for common scoter.  

 

Aim 3: Explore the influences of landscape scale drivers on common scoter 

distribution in the Flow Country 

Maxent, a species distribution modelling approach, was used to examine the 

contribution of landscape variables in explaining common scoter distribution in the 

Flow Country. Influential landscape variables identified in the Maxent analysis 

included proportion of forestry close to lochs, soil moisture and bedrock geology. The 

relationship between likelihood of common scoter presence at a loch and the 

proportion of forestry was unimodal, with scoter presence most likely at sites with 

50-70% of bog within a 500m buffer of the loch. Similarly, common scoter presence 

was more likely where soil moisture was neither excessively wet nor dry. The 

likelihood of common scoter presence was higher at sites with igneous bedrock types 

underlying the lochs. The relationships between landscape variables (forestry, soil 

moisture and bedrock geology) and important within-loch features, identified in 

Chapter 3 (DOC, sediment type, shallowness and the abundance of fish, invertebrates 

and macrophytes), were also explored. No statistically significant relationship could 

be identified between key loch characteristics and landscape features using GLMs. 

The implications of these findings were discussed in relation to whether the 

association between landscape variables and common scoter presence was 

correlative or causal. The core of common scoter breeding area in the Flow Country 

is located in the centre of the area selected for forestry activities. The unimodal 

relationship between scoter presence and proportion of forestry, together with high 

site fidelity and continued scoter declines does not support the theory that common 

scoter are benefiting from, or avoiding, changes occurring as a consequence of the 

forestry. Overall a correlative relationship was more probable, with scoter continuing 

to attempt breeding in the same core Flow Country area, despite the presence of 

forestry plantations.  
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Aim 4: Examine the effect of annual climate variation on both common scoter and 

key within loch features 

In addition to hypotheses concerning forestry and fish, there is also concern in the 

conservation community that, as a sub-arctic breeder on the southerly edge of its 

range, common scoter are being influenced by climate change. Annual climate 

variations can be a useful indicator of a species resilience to climatic change 

(Campbell et al., 2013). This thesis therefore explored whether the effects of annual 

climate variations at either the wintering or breeding grounds have influenced the 

number of scoter breeding in the Flow Country. Harsh winters could reduce the body 

condition and breeding propensity of arriving birds, and have implications for total 

numbers returning to breed in following years. Total numbers of common scoter in 

the Flow Country could also be affected by poor summer climate. The nesting success 

of females and development and fledging of ducklings could be affected by reduced 

body condition and/or phenological mis-matches. General linear models were used 

to examine associations between total common scoter numbers and climate at both 

regional (wintering grounds) and local (breeding grounds) scales. No significant 

relationship between change in common scoter numbers and annual variations in 

climate could be identified. The findings from this aim suggest that local landscape 

and within-loch influences could be more pertinent to common scoter decline than 

local or regional annual climate variation. 

 

Aim 5: To take short sediment cores from a number of Flow Country lochs and use 

lithostratigraphic and geochemical analyses to determine the suitability of these 

sites for palaeolimnological research 

The application of palaeolimnological techniques depends on sediments being 

deposited in a time-depth sequence and remaining undisturbed by physical mixing. 

Concerns have been raised over the implications of physical sediment mixing 

particularly for shallow, potentially wind stressed lochs, such as those in the Flow 

Country. Sediment cores were taken from 18 Flow Country lochs and 

lithostratigraphic and geochemical analyses carried out to determine core 

stratigraphy. There was no evidence of physical sediment mixing in the cores, 

although there was evidence in two of the 18 cores that some of the surface 
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sediments could have been lost. Cores taken in shallow, wind stressed lochs can have 

a conformable stratigraphy that is not substantially affected by physical mixing; the 

findings from Chapter 5 demonstrate that palaeolimnological approaches are 

appropriate in these systems.  

 

Aim 6: Use a palaeolimnological top-bottom approach to determine the extent and 

type of environmental change in Flow Country lochs, particularly in relation to 

levels of current loch use by common scoter 

A multiproxy approach was used to characterise diatom and chironomid 

communities in the tops and bottoms of 18 cores. The lochs were shown to have 

experienced substantial shifts in their diatom and chironomid communities over the 

last 150-200 years, and additionally a noticeable increase of nutrient and acid 

tolerant taxa was observed over this period. The implications of recent 

environmental change were considered in relation to current common scoter loch 

use. Some grouping of lochs was evident in relation to the extent and direction of 

recent community change and current common scoter loch use. Some sites with low 

scoter loch value were shown to have communities of chironomids and diatoms 

distinct from sites with high scoter loch value both now and historically, which could 

indicate that differences between sites have persisted over a substantial period. 

However, patterns were inconsistent and difficult to interpret at coarse temporal 

resolutions, particularly when the time intervals represented by the bottom slices 

could vary between cores. 

Overall a large amount of change has occurred in both diatom and chironomid 

communities in 18 Flow Country lochs over the 150-200 years. Whilst some patterns 

in relation to scoter loch use were evident, top-bottom analysis was unable to 

establish the precise timings or timescales for observed increases in nutrient tolerant 

taxa (or identify the most likely drivers), nor was it possible to examine recent 

environmental change, over timescales contemporaneous with common scoter 

decline. 
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Aim 7: Undertake wide bore, multi-proxy palaeolimnological analyses at four Flow 

Country lochs to examine recent environmental change at a fine temporal 

resolution, and explore the implications for common scoter 

Four Flow Country lochs were cored using a wide bore sediment corer, developed to 

enable large volumes of sediment to be collected for multiproxy analysis. Diatom, 

chironomid, and macrofossil (including plant and invertebrate) communities were 

examined for a period covering the last 150-200 years. Results indicated that the 

overall abundance of diatoms, chironomids and invertebrates had increased over this 

period. Distinct, stepped increases were visible at a point determined to be ca. 1980 

in several cores and taxa, and at the same time there were decreases in nutrient 

sensitive taxa such as Isoetes sp., Diamesinae sp. Atmospheric nutrient deposition 

was considered as the most likely cause of gradual increases observed between ca. 

1850 and 1980, although further work of samples down the core would be needed 

to confirm this.  

Palaeolimnological data covering the more recent past (1980-present) was 

considered in the context of the two theories for common scoter decline. Evidence 

did not support the theory that invertebrate abundance had been reduced because 

of increased consumption by fish. There was evidence to support a marked change 

in physical, chemical and biological characteristics of the lochs concurrent with 

forestry planting. 

 

7.3 Conclusions 

• Study lochs were generally typical of low nutrient, acidic waterbodies but 

variation existed between them in terms of both physico-chemistry and their 

biological communities. 

• The within-loch characteristics associated with common scoter presence were 

DOC (positive), sediment type and water depth (interaction, with soft sediments 

more important at deeper lochs), trout abundance (negative), macrophyte cover 

(positive) and chironomid abundance (positive). 

• Landscape features influencing common scoter distribution in the Flow Country 

were proportion of forestry close to a loch, the soil moisture and bedrock 

geology. The relationship between probability of common scoter presence and 
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both forestry and soil moisture was unimodal. Probability of common scoter 

presence was highest at lochs with an igneous bedrock geology.  

• No relationship could be identified between changes in the number of common 

scoter and annual variations in climate 

• Potentially challenging palaeolimnological environments, such as the shallow 

lochs of the Flow Country could be cored, and the cores had a conformable 

stratigraphy not affected by sediment mixing. 

• Despite remoteness and apparent lack of anthropogenic impact, top-bottom 

palaeolimnological evidence indicated that the lochs of the Flow Country are 

dynamic environmentally and have undergone substantial change over the last 

150-200 years. Additionally, there was evidence that both nutrient and acid 

tolerant taxa had increased. 

• Fine scale palaeolimnological analyses at four lochs was able to provide evidence 

of recent environmental change at a fine temporal resolution. Overall diatom 

abundance has increased over the last 150 years, and additionally a community 

shift has occurred, with nutrient tolerant taxa increasing, particularly around a 

period associated with the 1980s. Community composition of aquatic 

macrophytes has altered over the last 150 years; decreases in oligotrophic 

species such as Isoetes sp. have occurred, and associated increases in Moss sp. 

and Juncus sp. were observed. Chironomid abundance increased over the last 150 

years at all four sites. Despite the taxonomic resolution of the chironomids being 

low, a loss of nutrient sensitive Diamesinae species was observed. The 

invertebrate abundance at all four study lochs also increased, with the 

abundance of invertebrate remains in recent sediments being higher than as any 

point down core.  

• Recent environmental change at four Flow Country lochs was considered in 

relation to the following two theories for common scoter decline: 

i. Afforestation and drainage of the Flow Country catchments in the 1980s 

may have altered the physico-chemistry of lochs through increased 

sedimentation and/or DOC import which could adversely affect physical 

loch structure and/or invertebrate food supply for the common scoter. 
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ii. Common scoters compete with brown trout for food, and the competitive 

balance between brown trout and scoters may have altered in recent 

decades, either as a result of decreased fishing pressure or fish stocking 

events. Changes in the abundance or population structure of brown trout 

could have resulted reduced invertebrate abundance which could be 

detrimental for common scoter.  

Palaeolimnological evidence strongly supports the theory that forestry has 

affected the lochs of the Flow Country. There is no evidence of changes in fish 

populations or that the abundance of invertebrate food resources has reduced 

due to increased consumption by fish in recent times. The lochs appear to be 

becoming less oligotrophic, particularly since the 1980s. The associated shifts in 

community composition could make the lochs less profitable or suitable for 

common scoter who typically choose low nutrient, oligotrophic sites. 

 

7.4 Management implications 

The implications of this research for future research and management could be 

considered on two levels. Firstly, this research will encourage further collaboration 

between palaeolimnologists and conservation practitioners. Cross-disciplinary 

working has already been advocated (Davies and Bunting, 2010; Froyd and Willis, 

2008) and this thesis provides further evidence of the insights that can be gained by 

adopting a palaeolimnological approach to address issues of conservation 

management. Secondly, this research has more specific management implications 

for Flow Country lochs and breeding common scoter. This thesis provides evidence 

of recent environment change in Flow Country lochs, and in particular indicates that 

increases in nutrient availability have occurred since the 1980s. Palaeolimnological 

data demonstrate that, despite their remote location and largely unimpacted 

appearance, the lochs of the Flow Country are complex and dynamic environments, 

which are experiencing increasingly rapid change. A palaeolimnological assessment 

of a larger number of lochs is advocated, with the aim of assessing the extent of 

change, and using these findings to prioritise sites for protection and restoration. The 

findings from this research also highlight the impacts that forestry plantations can 

have for freshwater lochs in blanket bogs. The number of new plantations on areas 
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with deep peat has declined in recent times (Patterson and Anderson, 2000), but this 

thesis illustrates the long-term effects historic planting can have, and highlights the 

need for harvesting practices (such as ditch blocking) that limit the export of 

nutrients and sediment to freshwater lochs.  

In terms of the conservation management for common scoter, this thesis provides 

evidence that invertebrate abundance in Flow Country lochs has not decreased in 

recent times, however shifts in community composition have occurred. Common 

scoter breed on oligotrophic lakes throughout their range suggesting they are 

particularly adept at exploiting resources in freshwaters where overall resource 

abundance is low. A preference and/or particular adaptation for these types of site, 

combined with strong site fidelity, could be problematic for scoter in places where 

nutrient levels increase and the community shifts to include taxa that are less easy 

or profitable for scoter to exploit. The implication of this research for management 

in the Flow Country centres around ensuring further nutrient enrichment is limited 

as much as possible, particularly at lochs which are key breeding sites for common 

scoter.  

 

7.5 Research limitations and future direction 

This thesis demonstrates the value of a collaborative, cross-disciplinary approach 

between palaeolimnologists and conservation practitioners to address issues of 

wetland management and species conservation, however there were a number of 

limitations to this study which could be addressed by future research.  

The primary limitation of this study was that the data used to delineate the 

catchments of the lochs were somewhat questionable and resulted in ambiguity 

about the abundance of different landcover types within the catchments. Using 

generic GIS modelling approaches that use 50m DEM to delineate catchments is 

clearly more difficult in very low gradient environments such as the Flow Country. 

This could be addressed by using a finer scale DEMs and/or complementing GIS 

models with on the ground assessment of the hydrological processes. The arguments 

presented in this thesis could be further strengthened and somewhat clarified by 

palaeolimnological analyses from additional sites. The problems encountered in 

accurately establishing the catchment area of the lochs and the extent and 
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distribution of drainage ditches could be addressed with more detailed mapping and 

hydrological assessment. This would be key to establishing how much connectivity 

there is between lochs and areas of forestry and address the problem encountered 

with establishing a palaeolimnologically suitable unforested site.  

The gradual increases in productivity observed at the study sites between ca. 1850 

and 1970 were tentatively attributed to increases in atmospheric deposition during 

this period. However, this theory could be confirmed by examining further samples 

to establish how this trend compares to pre-industrial conditions.  

The future direction of research in this area should make palaeolimnology a more 

readily available and accessible tool for conservation practitioners. Palaeolimnology 

is a rapidly advancing field with new methods being developed to expand the number 

of ecological indicators available, and allow even more detailed interpretation of 

sediment core archives. For example, analysis of stable carbon and nitrogen isotopes 

(13C and 15N) in invertebrate and plant remains have been shown to give insights 

into food web structure (Heiri et al., 2012). Similarly, further work could explore the 

possibility of identifying ancient DNA (aDNA) in bulk sediment samples, to establish 

whether introduction of fish species (e.g. brown trout) can be determined in lochs 

that are thought to have been historically stocked.  

Chapter 3 gathered a large amount of new data for a relatively large number of sites, 

however, it would have been useful to have a more detailed assessment of fish 

populations within the sites. Quantitative population assessments and fish stocking 

data would have been particularly useful as they could have provided further insights 

into the factors structuring the communities of the lochs. In the Flow Country, 

practical management intervention work has already begun, that includes a 

quantative assessment of fish populations within the lochs. The RSPB is working with 

the local angling community to increase fishing pressure at several lochs and to 

compare the abundance of large bodied invertebrates available between these lochs 

and sites at which fishing pressure has not changed. The use of fish exclosures to 

increase invertebrate abundance is also bein trialed. In the future, the longer-term 

effects of this intervention could be examined using palaeolimnological techniques. 

Similarly, palaeolimnology could be used to establish the effects of loch restoration 

and determine impacts of long term environmental change.  
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This thesis has applied the palaeolimnological approach in a novel way, to address an 

issue that would typically be the remit of contemporary ecology and strict hypothesis 

testing. Combining palaeolimnological and ecological approaches can be challenging. 

Whilst palaeolimnological data can provide a substantial amount of detailed data 

concerning change over time, it can be difficult to generate the large sample sizes 

typical of ecology studies, and therefore traditional approaches to hypotheses 

testing can be difficult. This thesis was able to apply an amalgamation of both 

palaeolimnological and ecological approaches, which allowed detailed data 

concerning recent environmental change to be used to answer questions of applied 

conservation management providing a strong foundation for future cross disciplinary 

research. 
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