4 research outputs found

    Charge-dependent flow and the search for the chiral magnetic wave in Pb-Pb collisions at root s(NN)=2.76 TeV

    Get PDF
    Peer reviewe

    Technical Design Report for the Upgrade of the ALICE Inner Tracking System

    No full text
    Technical Design Report for the Upgrade of the ALICE Inner Tracking Syste

    Technical design report for the upgrade of the ALICE inner tracking system

    Get PDF
    ALICE (A Large Ion Collider Experiment) is studying the physics of strongly interacting matter, and in particular the properties of the Quark-Gluon Plasma (QGP), using proton-proton, proton-nucleus and nucleus-nucleus collisions at the CERN LHC (Large Hadron Collider). The ALICE Collaboration is preparing a major upgrade of the experimental apparatus, planned for installation in the second long LHC shutdown in the years 2018-2019. A key element of the ALICE upgrade is the construction of a new, ultra-light, high-resolution Inner Tracking System (ITS) based on monolithic CMOS pixel detectors. The primary focus of the ITS upgrade is on improving the performance for detection of heavy-flavour hadrons, and of thermal photons and low-mass di-electrons emitted by the QGP. With respect to the current detector, the new Inner Tracking System will significantly enhance the determination of the distance of closest approach to the primary vertex, the tracking efficiency at low transverse momenta, and the read-out rate capabilities. This will be obtained by seven concentric detector layers based on a 50 μm thick CMOS pixel sensor with a pixel pitch of about 30×30 μm2. This document, submitted to the LHCC (LHC experiments Committee) in September 2013, presents the design goals, a summary of the R&D activities, with focus on the technical implementation of the main detector components, and the projected detector and physics performance

    Low-latency Gravitational-wave Alerts for Multimessenger Astronomy during the Second Advanced LIGO and Virgo Observing Run

    Get PDF
    Advanced LIGO's second observing run (O2), conducted from November 30, 2016 to August 25, 2017, combined with Advanced Virgo's first observations in August 2017 witnessed the birth of gravitational-wave multi-messenger astronomy. The first ever gravitational-wave detection from the coalescence of two neutron stars, GW170817, and its gamma-ray counterpart, GRB 170817A, led to an electromagnetic follow-up of the event at an unprecedented scale. Several teams from across the world searched for EM/neutrino counterparts to GW170817, paving the way for the discovery of optical, X-ray, and radio counterparts. In this article, we describe the online identification of gravitational-wave transients and the distribution of gravitational-wave alerts by the LIGO and Virgo collaborations during O2. We also describe the gravitational-wave observables which were sent in the alerts to enable searches for their counterparts. Finally, we give an overview of the online candidate alerts shared with observing partners during O2. Alerts were issued for 14 candidates, six of which have been confirmed as gravitational-wave events associated with the merger of black holes or neutron stars. Eight of the 14 alerts were issued less than an hour after data acquisition.Comment: 27 pages, 5 figures, 3 tables, accepted for publication in the Astrophysical Journa
    corecore