1,494 research outputs found

    Electron Scattering on 3He - a Playground to Test Nuclear Dynamics

    Full text link
    The big spectrum of electron induced processes on 3He is illustrated by several examples based on Faddeev calculations with modern nucleon-nucleon and three-nucleon forces as well as exchange currents. The kinematical region is restricted to a mostly nonrelativistic one where the three-nucleon c.m. energy is below the pion production threshold and the three-momentum of the virtual photon is sufficiently below the nucleon mass. Comparisons with available data are shown and cases of agreement and disagreement are found. It is argued that new and precise data are needed to systematically check the present day dynamical ingredients.Comment: 27 pages, 24 figure

    Experimental local realism tests without fair sampling assumption

    Full text link
    Following the theoretical suggestion of Ref. [1,2], we present experimental results addressed to test restricted families of local realistic models, but without relying on the fair sampling assumption

    SANTRAUKOS

    Get PDF
    .....

    Geometric Phase in Entangled Bipartite Systems

    Full text link
    The geometric phase (GP) for bipartite systems in transverse external magnetic fields is investigated in this paper. Two different situations have been studied. We first consider two non-interacting particles. The results show that because of entanglement, the geometric phase is very different from that of the non-entangled case. When the initial state is a Werner state, the geometric phase is, in general, zero and moreover the singularity of the geometric phase may appear with a proper evolution time. We next study the geometric phase when intra-couplings appear and choose Werner states as the initial states to entail this discussion. The results show that unlike our first case, the absolute value of the GP is not zero, and attains its maximum when the rescaled coupling constant JJ is less than 1. The effect of inhomogeneity of the magnetic field is also discussed.Comment: 5 pages and to be published in Euro. Phys. J.

    Low-dose whole-spine imaging using slot-scan digital radiography:A phantom study

    Get PDF
    鈴鹿医療科学大学博士(医療科学)application/pdfthesi

    Bragg spectroscopy of discrete axial quasiparticle modes in a cigar-shaped degenerate Bose gas

    Full text link
    We propose an experiment in which long wavelength discrete axial quasiparticle modes can be imprinted in a 3D cigar-shaped Bose-Einstein condensate by using two-photon Bragg scattering experiments, similar to the experiment at the Weizmann Institute [J. Steinhauer {\em et al.}, Phys. Rev. Lett. {\bf 90}, 060404 (2003)] where short wavelength axial phonons with different number of radial modes have been observed. We provide values of the momentum, energy and time duration of the two-photon Bragg pulse and also the two-body interaction strength which are needed in the Bragg scattering experiments in order to observe the long wavelength discrete axial modes. These discrete axial modes can be observed when the system is dilute and the time duration of the Bragg pulse is long enough.Comment: 5 pages, 3 figures, title, abstract, results changed, references added. to appear in The European Physical Journal

    Magnetostatic field noise near metallic surfaces

    Full text link
    We develop an effective low-frequency theory of the electromagnetic field in equilibrium with thermal objects. The aim is to compute thermal magnetic noise spectra close to metallic microstructures. We focus on the limit where the material response is characterized by the electric conductivity. At the boundary between empty space and metallic microstructures, a large jump occurs in the dielectric function which leads to a partial screening of low-frequency magnetic fields generated by thermal current fluctuations. We resolve a discrepancy between two approaches used in the past to compute magnetic field noise spectra close to microstructured materials.Comment: 9 pages, 1 figure, EPJ D style, accepted in Topical Issue on "Atom Chips

    Moments of semileptonic B decay distributions in the 1/m_b expansion

    Full text link
    We report the OPE-based predictions for a number of lepton energy and hadronic mass moments in the inclusive semileptonic B -> X_c \ell\nu decays with a lower cut on the charged lepton energy. We rely on the direct OPE approach where no expansion in the charm mass is employed and the theoretical input is a limited set of underlying OPE parameters including m_b and m_c. A Wilsonian treatment with a `hard' cutoff is applied using running low-scale masses m_Q(\mu) and kinetic expectation value \mu_\pi^2(\mu). This leaves for perturbative corrections only genuinely short-distance effects and makes them numerically small. Predictions are also given for the modified hadronic moments of the kinematic variable \cal N_X^2 which is a combination of M_X^2 and E_X. Measurement of such moments would allow a more reliable extraction of higher-order nonperturbative heavy quark parameters from experiment.Comment: 16 pages, LaTeX, three figure

    Size of Isospin Breaking in Charged K(L4) Decay

    Full text link
    We evaluate the size of isospin breaking corrections to form factors ff and gg of the K4K_{\ell 4} decay process K+π+π+νK^+\to\pi^+\pi^-\ell^+\nu_{\ell} which is actually measured by the extended NA48 setup at CERN. We found that, keeping apart the effect of Coulomb interaction, isospin breaking does not affect modules. This is due to the cancelation between corrections of electromagnetic origin and those generated by the difference between up and down quark masses. On the other hand, electromagnetism affects considerably phases if the infrared divergence is dropped out using a minimal subtraction scheme. Consequently, the greatest care must be taken in the extraction of ππ\pi\pi phase shifts from experiment.Comment: 29 pages, LaTeX, 7 postscript figure
    corecore