55 research outputs found

    Parallax in “Pi of the Sky” project

    Get PDF
    The main goal of the “Pi of the Sky” project is search for optical transients (OTs) of astrophysical origin, in particular those related to gamma-ray bursts (GRBs). Since March 2011 the project has two running observatories: one in northern Chile and the other one insouthern Spain. This allows for regular observations of a common sky fields, visible from both observatories which are scheduled usually 1–2 h per night. In such a case, the on-line flash recognition algorithm, looking for optical transients, can use parallax information toassure that events observed from both sites have parallax angle smaller than the error of astrometry. On the other hand, the remaining OT candidates can be verified against a hypothesis of being near-Earth objects. This paper presents algorithm using parallax information for identification of near-Earth objects, which might be satellites, or space debris elements. Preliminary results of the algorithm are also presented

    "Pi of the Sky" - all-sky, real-time search for fast optical transients

    Full text link
    An apparatus to search for optical flashes in the sky is described. It has been optimized for gamma ray bursts (GRB) optical counterparts. It consists of 2x16 cameras covering all the sky. The sky is monitored continuously and the data are analysed on-line. It has self-triggering capability and can react to external triggers with negative delay. The prototype with two cameras has been installed at Las Campanas (Chile) and is operational from July 2004. The paper presents general idea and describes the apparatus in detail. Performance of the prototype is briefly reviewed and perspectives for the future are outlined

    Time Projection Chamber (TPC) detectors for nuclear astrophysics studies with gamma beams

    Get PDF
    Gamma-Beams at the HIS facility in the USA and anticipated at the ELI-NP facility, now constructed in Romania, present unique new opportunities to advance research in nuclear astrophysics; not the least of which is resolving open questions in oxygen formation during stellar helium burning via a precise measurement of the 12C() reaction. Time projection chamber (TPC) detectors operating with low pressure gas (as an active target) are ideally suited for such studies. We review the progress of the current research program and plans for the future at the HIS facility with the optical readout TPC (O-TPC) and the development of an electronic readout TPC for the ELI-NP facility (ELITPC)

    Electronic system of the RPC Muon Trigger in CMS experiment at LHC accelerator (Elektroniczny system trygera mionowego RPC w eksperymencie CMS akceleratora LHC

    Get PDF
    This paper presents implementation of distributed, multichannel electronic measurement system for RPC - based Muon Trigger in the CMS experiment at LHC. The introduction shortly describes the research aims of LHC and shows the metrological requirements for CMS - good spatial and time resolution, and possibility to estimate multiple physical parameters from registered collisions of particles. Further the paper describes RPC Muon Trigger consisting of 200 000 independent channels for position measurement. The first part of the paper presents the functional structure of the system in the context of requirements put by the CMS experiment, like global triggering system and data acquisition. The second part describes the hardware solutions used in particular parts of the RPC detector measuremnt system and shows some test results. The paper has a digest and overview nature

    Status report of the RD5 experiment

    Get PDF

    CMS physics technical design report : Addendum on high density QCD with heavy ions

    Get PDF
    Peer reviewe

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC

    Get PDF
    corecore