266 research outputs found

    The palaeoceanography of the Leeuwin Current : implications for a future world

    Get PDF
    Long-term progressive changes of the Leeuwin Current are linked to plate and ocean basin ‘geography’ and Cenozoic global climates and palaeoceanography. Suggestions of the presence of a proto-Leeuwin Current as early as late Middle to Late Eocene times (c. 35–42 Ma) cannot be verified by the fossil record of the western margin of Australia. “Leeuwin Current style” circulation around Australia was certainly established by the early Oligocene, in response to palaeogeographic changes in the Tasman Strait. This, followed by tectonic eorganisation of the Indonesian Archipelago throughout the Miocene, provided a palaeogeographic setting, which by the Pliocene was essentially that of today. The subsequent history of the Leeuwin Current comprises climatically-induced changes operating over orbital and sub-orbital temporal scales. Specifically, the advent of Pleistocene-style climates, especially over the last 800 000 years, and their associated interglacial – glacial states provide the two end-member climate-ocean states that have characterised Leeuwin Current activity during that time. Indications of the nature of these contrasting states is provided by: (i) the Last Interglacial (c. 125 Ka) during which sea level was higher by some +4 m, and with higher sea surface temperatures (SSTs) clearly indicating a more ‘active’ Leeuwin Current; and (ii) the Last Glacial Maximum (21 Ka), during which sea level wassome 130 m lower than today, resulting in massive shelf extensions along the coast of Western Australia, ccompanied by reduced Indonesian Throughflow, lower low latitude SSTs and changes in the Western Pacific Warm Water Pool, and with these changes, possibly reduced Leeuwin Current activity. Sub-orbital scale luctuations in current strength are driven by global climate change associated with El Niño – La Niña events as well as regional climatic changes driven by volcanism. These forcing mechanisms operate at time scales well within the reach of human experience, and provide important comparative data for predicting the response of the Leeuwin Current to climate change predicted for this century. Studies of the impact of changes in the vigour of the Leeuwin Current on shallow marine communities are in their infancy. Coupling climate models with geological analogues provide important research agenda for predicting the trajectory of future changes to the Leeuwin Current and their impacts on the marine biota of coastal Western Australia

    The Apoptotic Effects of Methylparaben and Ultraviolet B Light on M624 Human Melanoma Cells

    Get PDF
    Methylparaben is a commonly used antimicrobial in cosmetics that has been shown to have negative effects on mammalian cells. Human melanoma M624 cells were treated with 1 and 5 mM methylparaben in the presence and absence of 25 mJ/cm2 ultraviolet B (UV-B) light. Cell proliferation assays showed that 5 mM methylparaben was toxic to M624 cells after 24 hours. Apoptotic signaling pathways were analyzed via isolation of separate cellular compartments and protein analysis via western blot. Upon 5 mM methylparaben treatment, PARP I was cleaved indicating apoptosis, which was mediated by the TNF-α receptor activated in the lipid rafts of the M624 cells. Upon 25 mJ/cm2 UV-B radiation, PARP II was activated indicating cellular damage, cytochrome c was released from the mitochondria, and caspase-3 was expressed. Upon combinatory treatment with 5 mM methylparaben and 25 mJ/cm2 UV-B, apoptosis was induced through mitochondrial release of cytochrome c, expression of caspase-3 and cleavage of PARP I, while methylparaben-induced TNF-α receptor activation and UV-B-induced PARP II activation was inhibited., demonstrating that antimicrobial methylparaben in cosmetics can cause damage to cells

    Not lesser but Greater fractional anisotropy in adolescents with alcohol use disorders

    Get PDF
    AbstractObjectiveThe objective of this study is to examine white matter microstructure using diffusion tensor imaging (DTI) in a sample of adolescents with alcohol use disorders (AUD) and no psychiatric or substance co-morbidity.MethodsFifty adolescents with AUD and fifty non-alcohol abusing controls matched on gender and age were studied with DTI, neurocognitive testing, and a clinical assessment that included measures of alcohol use and childhood trauma. Maps of fractional anisotropy (FA) and mean diffusivity (MD) were computed, registered to a common template, and voxel-wise statistical analysis used to assess group differences. Associations between regions of altered WM microstructure and clinical or neurocognitive measures were also assessed.ResultsCompared with controls, adolescent drinkers without co-morbid substance abuse or externalizing disorder, showed 1) no regions of significantly lower FA, 2) increased FA in WM tracts of the limbic system; 3) no MD differences; and 4) within the region of higher FA in AUD, there were no associations between FA and alcohol use, cognition, or trauma.DiscussionThe most important observation of this study is our failure to observe significantly smaller FA in this relatively large alcohol abuse/dependent adolescent sample. Greater FA in the limbic regions observed in this study may index a risk for adolescent AUD instead of a consequence of drinking. Drinking behavior may be reinforced in those with higher FA and perhaps greater myelination in these brain regions involved in reward and reinforcement

    CLH-3, a ClC-2 anion channel ortholog activated during meiotic maturation in C. elegans oocytes

    Get PDF
    AbstractBackground: ClC anion channels are ubiquitous and have been identified in organisms as diverse as bacteria and humans. Despite their widespread expression and likely physiological importance, the function and regulation of most ClCs are obscure. The nematode Caenorhabditis elegans offers significant experimental advantages for defining ClC biology. These advantages include a fully sequenced genome, cellular and molecular manipulability, and genetic tractability.Results: We show by patch clamp electrophysiology that C. elegans oocytes express a hyperpolarization- and swelling-activated Cl− current with biophysical characteristics strongly resembling those of mammalian ClC-2. Double-stranded RNA–mediated gene interference (RNAi) and single-oocyte RT-PCR demonstrated that the channel is encoded by clh-3, one of six C. elegans ClC genes. CLH-3 is inactive in immature oocytes but can be triggered by cell swelling. However, CLH-3 plays no apparent role in oocyte volume homeostasis. The physiological signal for channel activation is the induction of oocyte meiotic maturation. During meiotic maturation, the contractile activity of gonadal sheath cells, which surround oocytes and are coupled to them via gap junctions, increases dramatically. These ovulatory sheath cell contractions are initiated prematurely in animals in which CLH-3 expression is disrupted by RNAi.Conclusions: The inwardly rectifying Cl− current in C. elegans oocytes is due to the activity of a ClC channel encoded by clh-3. Functional and structural similarities suggest that CLH-3 and mammalian ClC-2 are orthologs. CLH-3 is activated during oocyte meiotic maturation and functions in part to modulate ovulatory contractions of gap junction–coupled gonadal sheath cells

    J.S. Bell's Concept of Local Causality

    Full text link
    John Stewart Bell's famous 1964 theorem is widely regarded as one of the most important developments in the foundations of physics. It has even been described as "the most profound discovery of science." Yet even as we approach the 50th anniversary of Bell's discovery, its meaning and implications remain controversial. Many textbooks and commentators report that Bell's theorem refutes the possibility (suggested especially by Einstein, Podolsky, and Rosen in 1935) of supplementing ordinary quantum theory with additional ("hidden") variables that might restore determinism and/or some notion of an observer-independent reality. On this view, Bell's theorem supports the orthodox Copenhagen interpretation. Bell's own view of his theorem, however, was quite different. He instead took the theorem as establishing an "essential conflict" between the now well-tested empirical predictions of quantum theory and relativistic \emph{local causality}. The goal of the present paper is, in general, to make Bell's own views more widely known and, in particular, to explain in detail Bell's little-known mathematical formulation of the concept of relativistic local causality on which his theorem rests. We thus collect and organize many of Bell's crucial statements on these topics, which are scattered throughout his writings, into a self-contained, pedagogical discussion including elaborations of the concepts "beable", "completeness", and "causality" which figure in the formulation. We also show how local causality (as formulated by Bell) can be used to derive an empirically testable Bell-type inequality, and how it can be used to recapitulate the EPR argument.Comment: 19 pages, 4 figure

    Supermassive Black Holes in Galactic Nuclei: Past, Present and Future Research

    Full text link
    This review discusses the current status of supermassive black hole research, as seen from a purely observational standpoint. Since the early '90s, rapid technological advances, most notably the launch of the Hubble Space Telescope, the commissioning of the VLBA and improvements in near-infrared speckle imaging techniques, have not only given us incontrovertible proof of the existence of supermassive black holes, but have unveiled fundamental connections between the mass of the central singularity and the global properties of the host galaxy. It is thanks to these observations that we are now, for the first time, in a position to understand the origin, evolution and cosmic relevance of these fascinating objects.Comment: Invited Review, 114 pages. Because of space requirements, this version contains low resolution figures. The full resolution version can be downloaded from http://www.physics.rutgers.edu/~lff/publications.htm

    Spatial Patterns of Parrotfish Corallivory in the Caribbean: The Importance of Coral Taxa, Density and Size

    Get PDF
    The past few decades have seen an increase in the frequency and intensity of disturbance on coral reefs, resulting in shifts in size and composition of coral populations. These changes have lead to a renewed focus on processes that influence demographic rates in corals, such as corallivory. While previous research indicates selective corallivory among coral taxa, the importance of coral size and the density of coral colonies in influencing corallivory are unknown. We surveyed the size, taxonomy and number of bites by parrotfish per colony of corals and the abundance of three main corallivorous parrotfish (Sparisoma viride, Sparisoma aurofrenatum, Scarus vetula) at multiple spatial scales (reefs within islands: 1–100 km, and between islands: >100 km) within the Bahamas Archipelago. We used a linear mixed model to determine the influence of coral taxa, colony size, colony density, and parrotfish abundance on the intensity of corallivory (bites per m2 of coral tissue). While the effect of colony density was significant in determining the intensity of corallivory, we found no significant influence of colony size or parrotfish abundance (density, biomass or community structure). Parrotfish bites were most frequently observed on the dominant species of reef building corals (Montastraea annularis, Montastraea faveolata and Porites astreoides), yet our results indicate that when the confounding effects of colony density and size were removed, selective corallivory existed only for the less dominant Porites porites. As changes in disturbance regimes result in the decline of dominant frame-work building corals such as Montastraea spp., the projected success of P. porites on Caribbean reefs through high reproductive output, resistance to disease and rapid growth rates may be attenuated through selective corallivory by parrotfish

    On the limits of quantum theory: contextuality and the quantum-classical cut

    Full text link
    This paper is based on four assumptions: 1. Physical reality is made of linearly behaving components combined in non-linear ways. 2. Higher level behaviour emerges from this lower level structure. 3. The way the lower level elements behaves depends on the context in which they are imbedded. 4. Quantum theory applies to the lower level entities. An implication is that higher level effective laws, based in the outcomes of non-linear combinations of lower level linear interactions, will generically not be unitary; hence the applicability of quantum theory at higher levels is strictly limited. This leads to the view that both state vector preparation and the quantum measurement process are crucially based in top-down causal effects, and helps provide criteria for the Heisenberg cut that challenge some views on Schroedinger's cat.Comment: 65 pages, 10 diagrams. Revised in response to referee comments; to appear in Annals of Physic

    Personality traits and mental disorders

    Get PDF
    Peer reviewe
    • 

    corecore