40 research outputs found

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    Get PDF
    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure fl ux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defi ned as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (inmost higher eukaryotes and some protists such as Dictyostelium ) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the fi eld understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation it is imperative to delete or knock down more than one autophagy-related gene. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways so not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field

    Intestinal Monocyte-Derived Macrophages Control Commensal-Specific Th17 Responses

    Get PDF
    Contains fulltext : 153209.pdf (publisher's version ) (Open Access)Generation of different CD4 T cell responses to commensal and pathogenic bacteria is crucial for maintaining a healthy gut environment, but the associated cellular mechanisms are poorly understood. Dendritic cells (DCs) and macrophages (Mfs) integrate microbial signals and direct adaptive immunity. Although the role of DCs in initiating T cell responses is well appreciated, how Mfs contribute to the generation of CD4 T cell responses to intestinal microbes is unclear. Th17 cells are critical for mucosal immune protection and at steady state are induced by commensal bacteria, such as segmented filamentous bacteria (SFB). Here, we examined the roles of mucosal DCs and Mfs in Th17 induction by SFB in vivo. We show that Mfs, and not conventional CD103(+) DCs, are essential for the generation of SFB-specific Th17 responses. Thus, Mfs drive mucosal T cell responses to certain commensal bacteria

    Growth and host interaction of mouse segmented filamentous bacteria in vitro

    No full text
    manuscrit déposé dans PMC https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5102327/The gut microbiota plays a crucial role in the maturation of the intestinal mucosal immune system of its host(1,2). Within the thousand bacterial species present in the intestine, the symbiont segmented filamentous bacterium(SFB) is unique in its ability to potently stimulate the post-natal maturation of the B-and T-cell compartments and induce a striking increase in the small-intestinal Th17 responses(3-5). Unlike other commensals, SFB intimately attaches to absorptive epithelial cells in the ileum and cells overlying Peyer's patches(6,7). This colonization does not result in pathology; rather, it protects the host from pathogens(4). Yet, little is known about the SFB-host interaction that underlies the important immunostimulatory properties of SFB, because SFB have resisted in vitro culturing for more than 50 years. Here we grow mouse SFB outside their host in an SFB-host cell co-culturing system. Single-celled SFB isolated from mono-colonized mice undergo filamentation, segmentation, and differentiation to release viable infectious particles, the intracellular offspring, which can colonize mice to induce signature immune responses. In vitro, intracellular offspring can attach to mouse and human host cells and recruit actin. In addition, SFB can potently stimulate the upregulation of host innate defence genes, inflammatory cytokines, and chemokines. In vitro culturing thereby mimics the in vivo niche, provides new insights into SFB growth requirements and their immunostimulatory potential, and makes possible the investigation of the complex developmental stages of SFB and the detailed dissection of the unique SFB-host interaction at the cellular and molecular levels
    corecore