42 research outputs found

    Successful Treatment of Recalcitrant Pediatric Pemphigus Vulgaris With Rituximab

    Get PDF
    Pemphigus vulgaris (PV) affecting the pediatric population is extremely rare, representing less than 3% of all PV cases. Conventional treatment with systemic steroids with or without adjuvant immunosuppressants used in adult cases of PV is often employed. However, pediatric cases often present a therapeutic challenge given their increased susceptibility to systemic therapy’s associated risks. To date, no specific guidelines regarding treatment strategies in this patient population exist. We describe a 14-year-old Hispanic female patient with severe, recalcitrant PV with suboptimal treatment response to systemic steroids and intravenous immunoglobulin (IVIG) successfully treated with rituximab (RTX), showing control of disease in as early as 2 weeks after treatment initiation. To our knowledge, only 45 cases of pediatric PV successfully treated with RTX have been reported in the literature, highlighting its use as a safe therapeutic option in this patient population

    Measurement of event-shape observables in Z→ℓ+ℓ− events in pp collisions at √ s=7 TeV with the ATLAS detector at the LHC

    Get PDF
    Event-shape observables measured using charged particles in inclusive ZZ-boson events are presented, using the electron and muon decay modes of the ZZ bosons. The measurements are based on an integrated luminosity of 1.1fb−11.1 {\rm fb}^{-1} of proton--proton collisions recorded by the ATLAS detector at the LHC at a centre-of-mass energy s=7\sqrt{s}=7 TeV. Charged-particle distributions, excluding the lepton--antilepton pair from the ZZ-boson decay, are measured in different ranges of transverse momentum of the ZZ boson. Distributions include multiplicity, scalar sum of transverse momenta, beam thrust, transverse thrust, spherocity, and F\mathcal{F}-parameter, which are in particular sensitive to properties of the underlying event at small values of the ZZ-boson transverse momentum. The Sherpa event generator shows larger deviations from the measured observables than Pythia8 and Herwig7. Typically, all three Monte Carlo generators provide predictions that are in better agreement with the data at high ZZ-boson transverse momenta than at low ZZ-boson transverse momenta and for the observables that are less sensitive to the number of charged particles in the event.Comment: 36 pages plus author list + cover page (54 pages total), 14 figures, 4 tables, submitted to EPJC, All figures including auxiliary figures are available at http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2014-0

    Erratum: "A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo" (2021, ApJ, 909, 218)

    Get PDF
    [no abstract available

    GW190814: gravitational waves from the coalescence of a 23 solar mass black hole with a 2.6 solar mass compact object

    Get PDF
    We report the observation of a compact binary coalescence involving a 22.2–24.3 Me black hole and a compact object with a mass of 2.50–2.67 Me (all measurements quoted at the 90% credible level). The gravitational-wave signal, GW190814, was observed during LIGO’s and Virgo’s third observing run on 2019 August 14 at 21:10:39 UTC and has a signal-to-noise ratio of 25 in the three-detector network. The source was localized to 18.5 deg2 at a distance of - + 241 45 41 Mpc; no electromagnetic counterpart has been confirmed to date. The source has the most unequal mass ratio yet measured with gravitational waves, - + 0.112 0.009 0.008, and its secondary component is either the lightest black hole or the heaviest neutron star ever discovered in a double compact-object system. The dimensionless spin of the primary black hole is tightly constrained to ïżœ0.07. Tests of general relativity reveal no measurable deviations from the theory, and its prediction of higher-multipole emission is confirmed at high confidence. We estimate a merger rate density of 1–23 Gpc−3 yr−1 for the new class of binary coalescence sources that GW190814 represents. Astrophysical models predict that binaries with mass ratios similar to this event can form through several channels, but are unlikely to have formed in globular clusters. However, the combination of mass ratio, component masses, and the inferred merger rate for this event challenges all current models of the formation and mass distribution of compact-object binaries

    Charged-particle multiplicities in pp interactions at root s=900 GeV measured with the ATLAS detector at the LHC ATLAS Collaboration

    Get PDF
    The first measurements from proton–proton collisions recorded with the ATLAS detector at the LHC are presented. Data were collected in December 2009 using a minimum-bias trigger during collisions at a centre-of-mass energy of 900 GeV. The charged-particle multiplicity, its dependence on transverse momentum and pseudorapidity, and the relationship between mean transverse momentum and charged-particle multiplicity are measured for events with at least one charged particle in the kinematic range |η|500 MeVpT>500 MeV. The measurements are compared to Monte Carlo models of proton–proton collisions and to results from other experiments at the same centre-of-mass energy. The charged-particle multiplicity per event and unit of pseudorapidity at η=0η=0 is measured to be 1.333±0.003(stat.)±0.040(syst.)1.333±0.003(stat.)±0.040(syst.), which is 5–15% higher than the Monte Carlo models predict

    Evidence for the associated production of a W boson and a top quark in ATLAS at √s = 7 TeV

    Get PDF
    Contains fulltext : 103353.pdf (preprint version ) (Open Access

    The miniJPAS survey: a preview of the Universe in 56 colours

    No full text
    International audienceThe Javalambre-Physics of the Accelerating Universe Astrophysical Survey (J-PAS) will soon start to scan thousands of square degrees of the northern extragalactic sky with a unique set of 5656 optical filters from a dedicated 2.552.55m telescope, JST, at the Javalambre Astrophysical Observatory. Before the arrival of the final instrument (a 1.2 Gpixels, 4.2deg2^2 field-of-view camera), the JST was equipped with an interim camera (JPAS-Pathfinder), composed of one CCD with a 0.3deg2^2 field-of-view and resolution of 0.23 arcsec pixel−1^{-1}. To demonstrate the scientific potential of J-PAS, with the JPAS-Pathfinder camera we carried out a survey on the AEGIS field (along the Extended Groth Strip), dubbed miniJPAS. We observed a total of ∌1\sim 1 deg2^2, with the 5656 J-PAS filters, which include 5454 narrow band (NB, FWHM∌145\rm{FWHM} \sim 145Angstrom) and two broader filters extending to the UV and the near-infrared, complemented by the u,g,r,iu,g,r,i SDSS broad band (BB) filters. In this paper we present the miniJPAS data set, the details of the catalogues and data access, and illustrate the scientific potential of our multi-band data. The data surpass the target depths originally planned for J-PAS, reaching magAB\rm{mag}_{\rm {AB}} between ∌22\sim 22 and 23.523.5 for the NB filters and up to 2424 for the BB filters (5σ5\sigma in a 33~arcsec aperture). The miniJPAS primary catalogue contains more than 64,00064,000 sources extracted in the rr detection band with forced photometry in all other bands. We estimate the catalogue to be complete up to r=23.6r=23.6 for point-like sources and up to r=22.7r=22.7 for extended sources. Photometric redshifts reach subpercent precision for all sources up to r=22.5r=22.5, and a precision of ∌0.3\sim 0.3% for about half of the sample. (Abridged

    The miniJPAS survey: A preview of the Universe in 56 colors

    No full text
    International audienceThe Javalambre-Physics of the Accelerating Universe Astrophysical Survey (J-PAS) will scan thousands of square degrees of the northern sky with a unique set of 56 filters using the dedicated 2.55 m Javalambre Survey Telescope (JST) at the Javalambre Astrophysical Observatory. Prior to the installation of the main camera (4.2 deg2 field-of-view with 1.2 Gpixels), the JST was equipped with the JPAS-Pathfinder, a one CCD camera with a 0.3 deg2 field-of-view and plate scale of 0.23 arcsec pixel−1. To demonstrate the scientific potential of J-PAS, the JPAS-Pathfinder camera was used to perform miniJPAS, a ∌1 deg2 survey of the AEGIS field (along the Extended Groth Strip). The field was observed with the 56 J-PAS filters, which include 54 narrow band (FWHM ∌ 145 Å) and two broader filters extending to the UV and the near-infrared, complemented by the u, g, r, i SDSS broad band filters. In this miniJPAS survey overview paper, we present the miniJPAS data set (images and catalogs), as we highlight key aspects and applications of these unique spectro-photometric data and describe how to access the public data products. The data parameters reach depths of magAB ≃ 22−23.5 in the 54 narrow band filters and up to 24 in the broader filters (5σ in a 3″ aperture). The miniJPAS primary catalog contains more than 64 000 sources detected in the r band and with matched photometry in all other bands. This catalog is 99% complete at r = 23.6 (r = 22.7) mag for point-like (extended) sources. We show that our photometric redshifts have an accuracy better than 1% for all sources up to r = 22.5, and a precision of ≀0.3% for a subset consisting of about half of the sample. On this basis, we outline several scientific applications of our data, including the study of spatially-resolved stellar populations of nearby galaxies, the analysis of the large scale structure up to z ∌ 0.9, and the detection of large numbers of clusters and groups. Sub-percent redshift precision can also be reached for quasars, allowing for the study of the large-scale structure to be pushed to z > 2. The miniJPAS survey demonstrates the capability of the J-PAS filter system to accurately characterize a broad variety of sources and paves the way for the upcoming arrival of J-PAS, which will multiply this data by three orders of magnitude.Key words: surveys / techniques: photometric / astronomical databases: miscellaneous / stars: general / galaxies: general / cosmology: observations⋆ miniJPAS data and associated value added catalogs are publicly available http://archive.cefca.es/catalogues/minijpas-pdr20191

    Mapping genomic loci implicates genes and synaptic biology in schizophrenia

    No full text
    Schizophrenia has a heritability of 60-80%1, much of which is attributable to common risk alleles. Here, in a two-stage genome-wide association study of up to 76,755 individuals with schizophrenia and 243,649 control individuals, we report common variant associations at 287 distinct genomic loci. Associations were concentrated in genes that are expressed in excitatory and inhibitory neurons of the central nervous system, but not in other tissues or cell types. Using fine-mapping and functional genomic data, we identify 120 genes (106 protein-coding) that are likely to underpin associations at some of these loci, including 16 genes with credible causal non-synonymous or untranslated region variation. We also implicate fundamental processes related to neuronal function, including synaptic organization, differentiation and transmission. Fine-mapped candidates were enriched for genes associated with rare disruptive coding variants in people with schizophrenia, including the glutamate receptor subunit GRIN2A and transcription factor SP4, and were also enriched for genes implicated by such variants in neurodevelopmental disorders. We identify biological processes relevant to schizophrenia pathophysiology; show convergence of common and rare variant associations in schizophrenia and neurodevelopmental disorders; and provide a resource of prioritized genes and variants to advance mechanistic studies. © 2022. The Author(s), under exclusive licence to Springer Nature Limited
    corecore