126 research outputs found

    Probing the Color Glass Condensate in an electron-ion collider

    Full text link
    Perturbative Quantum Chromodynamics (pQCD) predicts that the small-xx gluons in a hadron wavefunction should form a Color Glass Condensate (CGC), characterized by a saturation scale Qs(x,A)Q_s (x, A) which is energy and atomic number dependent. In this paper we study the predictions of CGC physics for electron - ion collisions at high energies. We consider that the nucleus at high energies acts as an amplifier of the physics of high parton densities and estimate the nuclear structure function F2A(x,Q2)F_2^A(x,Q^2), as well as the longitudinal and charm contributions, using a generalization for nuclear targets of the Iancu-Itakura-Munier model which describes the epep HERA data quite well. Moreover, we investigate the behavior of the logarithmic slopes of the total and longitudinal structure functions in the kinematical region of the future electron - ion collider eRHIC.Comment: 18 pages, 9 figures. Version to be published in the European Physical Journal

    Saturation in diffractive deep inelastic eA scattering

    Full text link
    In this paper we investigate the saturation physics in diffractive deep inelastic electron-ion scattering. We estimate the energy and nuclear dependence of the ratio σdiff/σtot\sigma^{diff}/\sigma^{tot} and predict the x_{\pom} and β\beta behavior of the nuclear diffractive structure function F2,AD(3)(Q2,β,xIP)F_{2,A}^{D(3)}(Q^2, \beta, x_{IP}). Moreover, we analyze the ratio RA1,A2diff(Q2,β,xIP)=F2,A1D(3)/F2,A2D(3)R^{diff}_{A1,A2}(Q^2, \beta, x_{IP}) = F_{2,A1} ^{D(3)}/F_{2,A2} ^{D(3)}, which probes the nuclear dependence of the structure of the Pomeron. We show that saturation physics predicts that approximately 37 % of the events observed at eRHIC should be diffractive.Comment: 15 pages, 7 figures. Version to be published in the European Physical Journal

    Exclusive processes in electron - ion collisions

    Get PDF
    The exclusive processes in electron-ion (eAeA) interactions are an important tool to investigate the QCD dynamics at high energies as they are in general driven by the gluon content of the target, which is strongly subject to parton saturation effects. In this paper we compute the cross sections for the exclusive vector meson production as well as the deeply virtual Compton scattering (DVCS) relying on the color dipole approach and considering the numerical solution of the Balitsky-Kovchegov equation including running coupling corrections (rcBK). The production cross sections obtained with the rcBK solution and bCGC parametrization are very similar, the former being slightly larger.Comment: 6 pages, 4 figure

    Constraining the nuclear gluon distribution in eAeA processes at RHIC

    Get PDF
    A systematic determination of the gluon distribution is of fundamental interest in understanding the parton structure of nuclei and the QCD dynamics. Currently, the behavior of this distribution at small xx (high energy) is completely undefined. In this paper we analyze the possibility of constraining the nuclear effects present in xgAxg^A using the inclusive observables which would be measured in the future electron-nucleus collider at RHIC. We demonstrate that the study of nuclear longitudinal and charm structure functions allows to estimate the magnitude of shadowing and antishadowing effects in the nuclear gluon distribution.Comment: 6 pages, 3 eps figure

    Saturation physics at HERA and RHIC: An unified description

    Get PDF
    One of the frontiers of QCD which are intensely investigated in high energy experiments is the high energy (small xx) regime, where we expect to observe the non-linear behavior of the theory. In this regime, the growth of the parton distribution should saturate, forming a Color Glass Condensate (CGC). In fact, signals of parton saturation have already been observed both in epep deep inelastic scattering at HERA and in deuteron-gold collisions at RHIC. Currently, the description of the experimental data of these experiments is possible considering different phenomenological saturation models for the two processes within the CGC formalism. In this letter we analyze the universality of these dipole cross section parameterizations and verify that they are not able to describe the HERA and RHIC data simultaneously. We analyze possible improvements in the parameterizations and propose a new parametrization for the forward dipole amplitude which allows us to describe quite well the small-xx epep HERA data on F2F_2 structure function as well as the dAudAu RHIC data on charged hadron spectra. It is an important signature of the universality of the saturation physics.Comment: 12 pages, 4 figures. Version to be published in Physics Letters

    Could saturation effects be visible in a future electron-ion collider?

    Get PDF
    We expect to observe parton saturation in a future electron - ion collider. In this letter we discuss this expectation in more detail considering two different models which are in good agreement with the existing experimental data on nuclear structure functions. In particular, we study the predictions of saturation effects in electron - ion collisions at high energies, using a generalization for nuclear targets of the b-CGC model, which describes the epep HERA quite well. We estimate the total, longitudinal and charm structure functions in the dipole picture and compare them with the predictions obtained using collinear factorization and modern sets of nuclear parton distributions. Our results show that inclusive observables are not very useful in the search for saturation effects. In the small xx region they are very difficult to disentangle from the predictions of the collinear approaches . This happens mainly because of the large uncertainties in the latter. On the other hand, our results indicate that the contribution of diffractive processes to the total cross section is about 20 % at large A and small Q^2, allowing for a detailed study of diffractive observables. The study of diffractive processes becomes essential to observe parton saturation.Comment: 7 pages 5 figure

    Heavy quarkonium: progress, puzzles, and opportunities

    Get PDF
    A golden age for heavy quarkonium physics dawned a decade ago, initiated by the confluence of exciting advances in quantum chromodynamics (QCD) and an explosion of related experimental activity. The early years of this period were chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in 2004, which presented a comprehensive review of the status of the field at that time and provided specific recommendations for further progress. However, the broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles could only be partially anticipated. Since the release of the YR, the BESII program concluded only to give birth to BESIII; the BB-factories and CLEO-c flourished; quarkonium production and polarization measurements at HERA and the Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the deconfinement regime. All these experiments leave legacies of quality, precision, and unsolved mysteries for quarkonium physics, and therefore beg for continuing investigations. The plethora of newly-found quarkonium-like states unleashed a flood of theoretical investigations into new forms of matter such as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b}, and b\bar{c} bound states have been shown to validate some theoretical approaches to QCD and highlight lack of quantitative success for others. The intriguing details of quarkonium suppression in heavy-ion collisions that have emerged from RHIC have elevated the importance of separating hot- and cold-nuclear-matter effects in quark-gluon plasma studies. This review systematically addresses all these matters and concludes by prioritizing directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K. Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D. Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A. Petrov, P. Robbe, A. Vair

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results

    Jet size dependence of single jet suppression in lead-lead collisions at sqrt(s(NN)) = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF
    Measurements of inclusive jet suppression in heavy ion collisions at the LHC provide direct sensitivity to the physics of jet quenching. In a sample of lead-lead collisions at sqrt(s) = 2.76 TeV corresponding to an integrated luminosity of approximately 7 inverse microbarns, ATLAS has measured jets with a calorimeter over the pseudorapidity interval |eta| < 2.1 and over the transverse momentum range 38 < pT < 210 GeV. Jets were reconstructed using the anti-kt algorithm with values for the distance parameter that determines the nominal jet radius of R = 0.2, 0.3, 0.4 and 0.5. The centrality dependence of the jet yield is characterized by the jet "central-to-peripheral ratio," Rcp. Jet production is found to be suppressed by approximately a factor of two in the 10% most central collisions relative to peripheral collisions. Rcp varies smoothly with centrality as characterized by the number of participating nucleons. The observed suppression is only weakly dependent on jet radius and transverse momentum. These results provide the first direct measurement of inclusive jet suppression in heavy ion collisions and complement previous measurements of dijet transverse energy imbalance at the LHC.Comment: 15 pages plus author list (30 pages total), 8 figures, 2 tables, submitted to Physics Letters B. All figures including auxiliary figures are available at http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HION-2011-02
    corecore